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Abstract: This paper deals with a set membership approach to design an Unknown Input
Interval Observer for uncertain Linear Time-Invariant (LTI) continuous-time systems. The goal
is to compute lower and upper bounds for unmeasured state as well as unknown inputs. The
bounds are guaranteed under the assumption that external disturbances and noises are bounded
with a priori known bounds. The proposed interval observer structure is based on decoupling the
unknown input effect on the state dynamics by solving algebraic constraints on the estimation
errors. Numerical simulations on a 5th-order lateral axis model of a fixed-wing aircraft are
provided to demonstrate the efficiency of the proposed technique.
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1. INTRODUCTION

Consider a system described by:
{

ẋ = Ax+Bu+Dξ + ω
y = Cx+ δ
ψ = Cx

, (1)

where x ∈ Rn is the state. The initial state vector x0
belongs to an interval [x0, x0]. u ∈ Rm denotes the system
input which belongs to an interval [u, u]. ξ ∈ E ⊂ Rq is the
unknown input vector of the model. y ∈ Rp and ψ ∈ Rp

represent respectively the measured output affected by
measurement noise and the free noise output. ω ∈ Rn

and δ ∈ Rp correspond respectively to the state and
measurement noises. These disturbances are assumed to
be bounded with a priori known bounds such that |ω| ≤ ω

and |δ| ≤ δ, where ω ∈ Rn and δ ∈ Rp are constant
componentwise positive vectors. It is also assumed that

|δ̇| ≤ δ̇ with δ̇ ≥ 0. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rn×q are constant matrices.

The problem of state estimation of systems described by
(1) has many solutions and has been widely investigated
in the literature. Popular and well-known observers are
mainly based on, for instance, H∞, Kalman filtering or
Luenberger structures. In situations where external distur-
bances and noises are assumed bounded without any addi-
tional assumption, interval observers can be an appealing
alternative approach. Basically, interval observers take a
different approach from the conventional point observers
since the latters converge asymptotically to the actual tra-
jectory of the system model while interval observers pro-
vide guaranteed lower and upper bounds for the estimate
at any time. Interval observers design requires stability and

cooperative properties Mazenc and Bernard [2011], Räıssi
et al. [2012]. One can distinguish two main set-membership
approaches to perform state estimation for continuous-
time systems. The first one (Alamo et al. [2005], Chisci
et al. [1996], Jaulin [2002], Kieffer and Walter [2006],
Kletting et al. [2006], Räıssi et al. [2004]) is based on
the well-known prediction/correction mechanism as in the
Kalman filter, where several geometrical forms for sets
description such as parallelotopes, ellipsoids, zonotopes
are used. The second approach Bernard and Gouzé [2004],
Gouzé et al. [2000], Mazenc and Bernard [2011], Moisan
et al. [2009], Räıssi et al. [2012] addresses closed loop
interval observers where the measurements are taken as
continuous-time data.

The state estimation of systems with unknown inputs
within a set-membership framework has been addressed
only in few works (Guerra et al. [2008], Rapaport and
Gouzé [2002]). In Rapaport and Gouzé [2002], a paral-
lelotopic unknown input interval observer is proposed. In
Guerra et al. [2008], a robust fault detection using an un-
known input interval observer with a zonotope representa-
tion is introduced based on an unknown input decoupling
approach. In the above works, unknown inputs are not
estimated. Following the main ideas reported in Hou and
Müller [1992], the contribution of this paper is to design
an unknown inputs interval estimator to derive guaranteed
lower and upper bounds of the unmeasured state and the
unknown inputs, consistent with the all a priori available
knowledge. Furthermore, a similar approach for state es-
timation has been proposed in Efimov et al. [2012], but
the unknown input estimation is not considered. As the
unknown input estimation part needs the evaluation of
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the noisy measurements derivatives, High Order Sliding
Modes (HOSM) differentiators will be used.

The paper is organized as follows. Section 2 recalls some
useful preliminaries. Section 3 presents the problem state-
ment and the assumptions used in the paper. Section 4
is devoted to the design of the unknown input interval
observer. Section 5 presents some numerical simulations.

2. PRELIMINARIES

2.1 Notations

The set of real matrices with n ×m elements is denoted
by Mn×m, In ∈ Mn×n depicts the identity matrix, 0n,m ∈
Mn×m represents the null matrix which is denoted by 0
when there is no confusion. M+

n×m represents the set of
positive real matrices.

Given a matrix A ∈ Mn×m, we denote A+ = max(0, A),

A− = A − A+ and A =

[

A 0
0 A

]

. AT and A† denote

respectively the transposition and pseudo-inverse matrices
of A, with A† = (ATA)−1AT .

In the following, the operators ≤, <,> should be under-
stood componentwise for vectors and matrices.

For x, x ∈ R
n, [x, x] denotes the set {x ∈ R

n | x ≤ x ≤ x}.

The symbol ‖.‖ denotes the euclidean norm L2. The
Euclidean norm of a vector x ∈ Rn is denoted by ‖x‖
and for a measurable and locally essentially bounded input
signal u : R+ → R, the symbol |u|[t0,t1] denotes its L∞

norm:
|u|[t0,t1] = ess sup‖u(t)‖, t ∈ [t0, t1],

if t1 = +∞, then we will simply write |u|.

Definition 1. A square matrix A = (Aij) ∈ Mn×m is said
to be Metzler if Aij ≥ 0, ∀i 6= j.

Lemma 2. (cooperativity property) Smith [1995] Given a
non-autonomous system described by ẋ(t) = Ax(t) +B(t)
where A is a Metzler matrix and B(t) ≥ 0. Then, x(t) ≥ 0,
∀t > 0 provided that x(0) ≥ 0.

2.2 HOSM differentiator

Assume that the measurement noise is bounded with an
a priori known bound δ. Then, the bounds of the output
vector are given by:

y(t) = y(t) + δ

y(t) = y(t)− δ
, ∀t ≥ 0. (2)

Given a s-th time differentiable signal yk(t), k = 1, . . . , p. A
HOSM differentiator Levant [2003] can be used to estimate
the successive derivatives of yk(t). It is described by:























q̇k0 =ν
k
0

νk0 =−λk0 |q
k
0 − yk(t)|

s
s+1 sign(qk0 − yk(t)) + qk1

q̇ki =ν
k
i

νki =−λki |q
k
i − νki−1|

s−i

s−i+1 sign(qki − νki−1) + qki+1

q̇ks =−λkssign(q
k
s − νks−1)

where λkj , k = 1, . . . , p, j = 0, . . . , s are positive constants
which can be chosen based on a procedure proposed in

Levant [2003].

Theorem 3. Levant [2003]: Let yk : R+ → R, k = 1, . . . , p
be a s-th time continuously differentiable signal and |δk| ≤
δk, then there exist 0 ≤ T < +∞ and some constants
µk
j > 0, j = 0, . . . , s such that for all t ≥ T :

|qkj (t)− ψ
(j)
k (t)| ≤ µk

j |δk|
s−j+1

s+1 , j = 0, . . . , s. (3)

2

The relation (3) represents the error bound of the jth

numerical output derivative estimate for j = 0, . . . , s.

According to theorem 3, there exist parameters λkj , k =
1, . . . , p, j = 0, . . . , s and a time instant T ∈ R+ such that
for all t ≥ T and for some constants µk

j > 0

|qkj (t)− ψ
(j)
k (t)| ≤ µk

j δ
s−j+1

s+1

k , j = 0, . . . , s. (4)

Denote by ǫ(t):

ǫ(t) = q1(t)− ψ̇(t) (5)

In addition, from (1), we have:

ψ̇(t) = ẏ(t)− δ̇(t) (6)

Then, from (6) and (5), we get:

ẏ(t) = q1(t) + δ̇(t)− ǫ(t) (7)

Finally, based on (7) and (4), we conclude that for all
t ≥ T , we have:

ẏ(t) = q1(t) + β,
ẏ(t) = q1(t)− β

(8)

where β = δ̇ + µ1δ
1
2 ≥ 0.

According to (6) and (5), we deduce also that

ẏ(t) = ẏ(t) + ζ1,
ẏ(t) = ẏ(t)− ζ2

(9)

where

ζ1 = δ̇ − δ̇ + µ1δ
1
2 + ǫ ≥ 0,

ζ2 = δ̇ + δ̇ + µ1δ
1
2 − ǫ ≥ 0.

3. PROBLEM STATEMENT

The main goal of this work is to estimate the lower and
upper bounds ξ, ξ ∈ Rq for the unknown input in (1)

such that ξ ∈ [ξ, ξ] and limt→∞ |ξ − ξ| < ρξ with ρξ is
a known positive constant. To this end, it is needed, first,
to estimate the lower and upper bounds x, x ∈ Rn for the
state x ∈ Rn which cannot be known exactly due to the
presence of disturbances and noises, that is x ∈ [x, x] and
limt→∞ |x−x| < ρx where ρx is a known positive constant.

In this work, an unknown input interval observer structure
similar to the one proposed in Darouach et al. [1994] for
certain LTI models is designed to deal with uncertain LTI
models described by (1). The proposed interval observer is
based on a decoupling of the unknown input effect on the
state dynamics.

In the sequel, the following hypotheses are assumed to be
verified.

Hypothesis 4.

rank(CD) = rank(D) = q,
q ≤ p

(10)
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This hypothesis is known as ”relative degree condition”
and is a classical condition for existence of unknown input
observers Fairman et al. [1984], Hou and Müller [1992],
Levant [1980].

Hypothesis 5. There exists a matrix W ∈ Mn×p such that
Ip+CW is nonsingular and the pair (PA,C) is detectable
where P = (In + EC) with

E = −D(CD)† +W (Ip − CD(CD)†) (11)

This hypothesis is required to ensure the observer stability
and the unknown input effect cancellation. It is clearly
discussed in Darouach et al. [1994].

Hypothesis 6. There exists a gain matrix K ∈ Mn×p and
a state transformation matrix T ∈ Mn×n of appropriate
dimensions such that T (PA − KC)T−1 is Metzler and
Hurwitz.

Note that hypothesis 6 is usually verified and the compu-
tation of the transformation matrix T ensuring the coop-
erativity property is detailed in Combastel [2013], Mazenc
and Bernard [2011], Räıssi et al. [2012].

Under hypothesis 6, there exists a non-singular state
transformation T ∈ Mn×n:

z = Tx (12)

for a given gain K such that T (PA−KC)T−1 is Metzler.
Hence, the system (1) is described in the coordinates (12)
by:

{

ż = TAT−1z + TBu+ TDξ + Tω

y = CT−1z + δ
(13)

4. MAIN RESULT

In this section, the interval observer design is introduced
and detailed in two parts. A first part details the state
estimation process and the second part is dedicated to the
unknown input estimation.

4.1 State estimation

Given L ∈ Mn×p and denote by:

K = L+NE,
N = PA−KC,
G = PB

(14)

Given the system (1) described by (13) in the coordinates
(12) and consider the observer structure:































ż = TNT−1z + (TK)+y + (TK)−y

+(TG)+u+ (TG)−u+ (−TE)+ẏ
+(−TE)−ẏ + (TP )+ω − (TP )−ω

ż = TNT−1z + (TK)+y + (TK)−y
+(TG)+u+ (TG)−u+ (−TE)+ẏ

+(−TE)−ẏ − (TP )+ω + (TP )−ω

(15)

where (ẏ, ẏ) and (y, y) are respectively defined in (8) and
(2).

Theorem 7 states the first result of this paper by ensuring
an interval state estimation in the coordinates z.

Theorem 7. Assume that z0 ≤ z(0) ≤ z0 and consider (15)
with z(0) = z0 and z(0) = z0. Then, there exists a time
instant T ∈ R+, 0 ≤ T < +∞ such that the state z(t),
solution of (13), satisfies

z(t) ∈ [z(t), z(t)] , ∀t ≥ T. (16)

In addition, there exists ρz > 0 such that

lim
t→∞

|z(t)− z(t)| < ρz. (17)

2

Proof. The proof is split into two steps. Firstly, upper
and lower observation errors are shown to be positive for
all t ≥ 0 (i.e. z(t) ≤ z(t) ≤ z(t)). In a second step, interval
observer stability is proved.

Step 1: Observation errors positivity
The upper and lower observation errors are defined by

{

ez = z − z
ez = z − z

(18)

Then, the dynamic observation errors are obtained by time
derivating (18) and using equations (15), (9) and (2), the
following equalities are deduced:































































ėz = TNT−1z + (TK)+(CT−1z + δ)
+(TK)−(CT−1z − δ) + (TG)+u

+(TG)−u+ (−TE)+(CT−1ż + δ̇)

+(−TE)−(CT−1ż − δ̇) + (TP )+ω
−(TP )−ω − ż

ėz = ż − TNT−1z − (TK)+(CT−1z − δ)
−(TK)−(CT−1z + δ)− (TG)+u

−(TG)−u− (−TE)+(CT−1ż − δ̇)

−(−TE)−(CT−1ż + δ̇)
+(TP )+ω − (TP )−ω

(19)

By using the expression of ż given in (13), the expression
of K, N and G given in (14), the matrix P defined in
hypothesis 5, and recalling that for any matrix F ∈ Mn×m,
we have F = F+ + F−, it can be easily shown that:











ėz=TNT
−1ez + T (NP − PA+ LC)T−1z

−TPDξ +H1(.)
ėz=TNT

−1ez − T (NP − PA+ LC)T−1z
+TPDξ +H2(.)

(20)

where
H1(.) = (TG)+(u− u)− (TG)−(u− u)

+(TP )+(ω − ω)− (TP )−(ω + ω)
+(TK)+(δ + δ)− (TK)−(δ − δ)
+(−TE)+ζ1 − (−TE)−ζ2

and
H2(.) = (TG)+(u− u)− (TG)−(u− u)

+(TP )+(ω + ω)− (TP )−(ω − ω)
+(TK)+(δ − δ)− (TK)−(δ + δ)
+(−TE)+ζ2 − (−TE)−ζ1

Assume that the matrices N , K, E are solutions of the
following algebric constraints:

{

NP − PA+ LC = N − PA+KC = 0
PD = 0

(21)

Then, according to (14), the equations (21) can be rewrit-
ten as:

{

N +KC − ECA = A
ECD = −D

. (22)
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Or in a compact form as:

[N K E] Σ = Θ (23)

where

Σ =

[

In 0
C 0

−CA CD

]

and Θ = [A −D] .

Under hypothesis 4, the solution set for (23) is parametrized
by a matrix Z = [Z1 K W ] and it is given as follows:

[N K E] = ΘΣ† + Z(I2n+p − ΣΣ†) (24)

where Σ† =

[

In 0 0
(CD)†CA 0 (CD)†

]

.

Then, the expressions of E and N are given by:






E = −D(CD)† +W (Ip − CD(CD)†)
N = (I + EC)A−KC

= PA−KC
(25)

Under the algebraic constraints (21), where the condition
PD = 0 allows one to cancel the unknown input ξ, the
observation errors (20) have the following dynamics:

{

ėz = TNT−1ez +H1(.)
ėz = TNT−1ez +H2(.)

(26)

Hypothesis 6 states that TNT−1 is Metzler and it is easy
to verify that H1(.) ≥ 0 and H2(.) ≥ 0. In addition, the
initial state z(0) verifies z(0) ≤ z(0) ≤ z(0). Thus, lemma
2 implies that property (16) holds.

Step 2: Interval observer stability
In the sequel, denote by Ez :

Ez =

[

ez
ez

]

. (27)

The differentiation of (27) leads to:

Ėz = JEz +H(.) (28)

where J is defined in Section 2 with J = TNT−1 and

H(.) =

[

H1(.)
H2(.)

]

.

Moreover, from the expressions of ζ1 and ζ2 in (9), there
exists a constant ζ ∈ Rp such that ζ1 ≤ ζ and ζ2 ≤ ζ,
with:

ζ = 2(δ̇ + µ1δ
1
2 ).

Then, we can build a function H(.) : R+ → Rn such that

H1(.) ≤ H(.)
H2(.) ≤ H(.)

(29)

with:
H(.) = ((TG)+ − (TG)−)(u− u) + 2((TP )+ − (TP )−)ω

+ 2((TK)+ − (TK)−)δ + ((−TE)+ − (−TE)−)ζ

Thus, since J is Metzler and Hurwitz stable and H(.) is

bounded by a positive vector H
∗
(.) =

[

H(.)
H(.)

]

, then, based

on theorem 2 in Gouzé et al. [2000], the total nonnegative
error ez − ez is asymptotically elementwise lower than the
nonnegative vector:

ρz = −J
−1
H

∗
(30)

Thus, property (17) holds with ρz defined in (30). 2

Corollary 8. Under the conditions of theorem 7, we have
x(t) ≤ x(t) ≤ x(t) where x is the solution of (1) and

{

x = S+z + S−z

x = S+z + S−z
(31)

with S = T−1.

Proof. Since Sz(t) = (S++S−)z(t), then, if z(t) ≤ z(t) ≤
z(t), we get:

S+z(t) + S−z(t) ≤ Sz(t) ≤ S+z(t) + S−z(t),

which means that x(t) ≤ x(t) ≤ x(t).

Furthermore, the boundedness of z(t) and z(t) implies the
boundedness of x(t) and x(t). 2

In the following, we denote by:






ex = x− x
ex = x− x

Ex =
[

eTx , e
T
x

]

, (32)

Therefore, from (31), (32) and (27), we have:

Ex = SEz (33)

with S =

[

S+ −S−

−S− S+

]

∈ M
+
2n×2n.

By using the upper bound in the observation error Ez

described by (30) and the relation (33), we deduce that
the total nonnegative error ex − ex is asymptotically
elementwise lower than the nonnegative vector:

ρx = −SJ
−1
H

∗
(34)

4.2 Unknown input estimation

The goal of this subsection is to estimate upper and lower
bounds of the unknown input ξ.

The differentiation of the output term of (13) leads to:

ẏ = CAT−1z + CBu + CDξ + Cω + δ̇ (35)

Then, under hypothesis 4, we have:

ξ = M0ẏ +M1z +M2u+M3ω +M4δ̇ (36)

where M0 = (CD)†, M1 = −(CD)†CAT−1, M2 =
−(CD)†CB, M3 = −(CD)†C, M4 = −M0.
Based on (36), the upper and lower bounds of ξ are given
by:



















ξ = M+
0 ẏ +M−

0 ẏ +M+
1 y +M−

1 y +M+
2 u

+M−
2 u+M+

3 ω −M−
3 ω +M+

4 δ̇ −M−
4 δ̇

ξ = M+
0 ẏ +M−

0 ẏ +M+
1 y +M−

1 y +M+
2 u

+M−
2 u−M+

3 ω +M−
3 ω −M+

4 δ̇ +M−
4 δ̇

(37)

where ẏ and ẏ are defined in (8).

With (37), we are in position to give a theorem ensuring
the estimation of the unknown input domain.

Theorem 9. Assume that the hypotheses of theorem 7 are
satisfied. Then, there exist a positive constant ρξ > 0 and
a time instant T , 0 ≤ T < +∞ such that:

ξ(t) ∈
[

ξ(t), ξ(t)
]

, ∀t ≥ T (38)
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lim
t→∞

|ξ(t)− ξ(t)| < ρξ (39)

where ξ(t) and ξ(t) are given by (37). 2

Proof.

Define the upper and lower observation errors relative to
the unknown input ξ as follows:

{

eξ = ξ − ξ
eξ = ξ − ξ

(40)

which are given under a developed form:


















































eξ = F1(q1, ẏ) +M+
1 ez −M−

1 ez
+M+

2 (u− u)−M−
2 (u − u)

+M+
3 (ω − ω)−M−

3 (ω + ω)

+M+
4 (δ̇ − δ̇)−M−

4 (δ̇ + δ̇)
eξ = F2(q1, ẏ) +M+

1 ez −M−
1 ez

+M+
2 (u− u)−M−

2 (u − u)
+M+

3 (ω + ω)−M−
3 (ω − ω)

+M+
4 (δ̇ + δ̇)−M−

4 (δ̇ − δ̇)

(41)

where F1(q1, ẏ) = M0(q1 − ẏ) + (M+
0 − M−

0 )β and
F2(q1, ẏ) =M0(ẏ − q1) + (M+

0 −M−
0 )β.

Replacing the term β defined in (8) into F1(.) and F2(.)
leads to the following equalities

F1(q1, ẏ) = M+
0 (µ1δ

1
2 + (q1 − ψ̇))

−M−
0 (µ1δ

1
2 − (q1 − ψ̇))

+M+
0 (δ̇ − δ̇)−M−

0 (δ̇ + δ̇)

(42)

and

F2(q1, ẏ) = M+
0 (µ1δ

1
2 − (q1 − ψ̇))

−M−
0 (µ1δ

1
2 + (q1 − ψ̇))

+M+
0 (δ̇ + δ̇)−M−

0 (δ̇ − δ̇)

(43)

According to (4), it is deduced that ∀t ≥ T ,

µ1δ
1
2 − (q1 − ψ̇) ≤ 2µ1δ

1
2 ,

µ1δ
1
2 + (q1 − ψ̇) ≤ 2µ1δ

1
2

(44)

and also that
F1(q1, ẏ) ≥ 0,
F2(q1, ẏ) ≥ 0

(45)

Now, let’s define the unknown input observation error

Eξ =

[

eξ
eξ

]

(46)

and let’s introduce the following notations for clarity of
presentation:

∆ =

[

δ

δ

]

, ∆̇ =

[

δ̇

δ̇,

]

, U =

[

u− u
u− u

]

,

Ω =

[

ω
ω

]

,Θ =

[

µ1δ
1
2

µ1δ
1
2

]

.

Then, (41) can be rewritten under a compact form as:

Eξ≤N1Ez + 2(N2U +N3Ω+N4∆̇ +N5Θ) (47)

where

N1 =

[

M+
1 −M−

1

−M−
1 M+

1

]

, N2 =M+
2 −M−

2 ,

N3 = M+
3 −M−

3 , N4 =M+
0 −M−

0 +M+
4 −M−

4 ,

N5 = M+
0 −M−

0

By construction, the matrices Ni, i = 1, . . . , 5 are nonneg-
ative elementwise. Then, based on (18) and on theorem 3,
it follows from (47) that Eξ ≥ 0 and property (38) holds.

Using the expression (30) with (47), we deduce that
the boundedness of Ez implies the boundedness of Eξ.
Then, the total nonnegative error eξ−eξ is asymptotically
elementwise lower than the nonnegative vector:

ρξ=−N1J
−1
H

∗
+ 2(N2U +N3Ω +N4∆̇ +N5Θ) (48)

Then, property (39) holds. 2

5. ILLUSTRATIVE EXAMPLE : FIXED-WING
AIRCRAFT MODEL

In this section, some simulation results are presented to
illustrate the proposed methodology. The case study cor-
responds to a 5th-order lateral axis model of a fixed-wing
aircraft at cruise flight conditions taken from Edwards and
Spurgeon [1998]. The actuator dynamics are neglected in
this example. Moreover, it is assumed that the inputs are
all unknown (no known inputs).

5.1 Observer design

Given the system (1) with:

A =











0 0 1 0 0
0 −0.154 −0.0042 1.54 0
0 0.249 −1 −5.2 0

0.0386 −0.996 −0.0003 −0.117 0
0 0.5 0 0 −0.5











,

D =











0 0
−0.744 −0.0320
0.337 −1.12
0.02 0
0 0











, C =







0 1 0 0 −1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0






.

The initial state is

x0 = [0.342 0.32 0.0178 −0.287 −0.9497]
T
.

The state and measurement errors are given by some uni-
formly bounded noises such that δ(t) ∈

[

−δ, δ
]

with δ =
[

1e−2, 1e−2, 1e−2, 1e−2
]T

and ω(t) ∈ [−ω, ω] with ω =
[

1e−2, 1e−2, 1e−2, 1e−2, 1e−2
]T

, ∀t ≥ 0. Assume also

that δ̇(t) ∈
[

−δ̇, δ̇
]

with δ̇ =
[

1e−2, 1e−2, 1e−2, 1e−2
]T

.

The unknown inputs are simulated by ξ1 = cos(t) and
ξ2 = sin(t).
We consider here the same inputs as in Edwards and Spur-
geon [1998], but here, to illustrate the proposed method-
ology, the input (deterministic) signals are assumed to be
unknown. This assumption is made just to illustrate the
mechanisation equations illustrative context. Note that,
generally, the unknown inputs are not deterministic in
nature, the only deterministic knowledge that can be avail-
able is on their bounds. Note also that in some situations,
the unknown input could be harmonic signals which should
be detected, for example the Oscillatory Failure Case in
aircraft control surface servoloops Zolghadri et al. [2013].

The constants of the HOSM differentiator (3) are taken
as s = 1, λij = 100 with i = 1, . . . , 4 and j = 0, 1 and
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the parameter µ used in (8) is chosen as µ1 = 1.1. In
Levant [2003], some numerical values are presented for the
parameters of the HOSM differentiator that should work
for the 6 first derivatives. In our work, only the µi can be
obtained from experiments.

Hypothesis 4 is verified since rank(CD) = rank(D) = 2
and the output vector dimension is lower than the un-
known input vector dimension. The matrices in hypothesis
5 are given by

W = 05,4, E =











0 0 0 0
9.993e−1 −2.011e−2 2.652e−2 0
−2.011e−5 −1 −7.577e−4 0
2.652e−2 −7.577e−4 −7.044e−4 0

0 0 0 0











and P =











1 0 0 0 0
0 7.038e−4 2.011e−5 2.652e−2 9.993e−1

0 −2.011e−5 5.745e−7 7.577e−4 2.011e−5

0 2.652e−2 −7.577e−4 9.993e−1 −2.652e−2

0 0 0 0 1











.

The pair (PA,C) is observable, hence, hypothesis 5 is
verified.

Based on hypothesis 6, a pole placement {−5, −6, −4,
−3, −2, −1} is chosen that leads to :

K =









−6.30e−1 3.23 −6.42e−4 −8.46e−1 −6.86e−1

1 6.37e−3 6 2.08e−4 6.29e−3

−1.70e−1 −8.40 −8.41e−5 6.11 −8.29
3.88 2.66 6.33e−4 −8.35e−1 1.40









.

The state transformation (12) ensuring the cooperativity
property is given by

T =













4.02e−1 1.35 4.18e−3 −5.51 −1.42
−7.90e−1 5.07e−1 8.13e−5 −1.07e−1 −5.38e−1

−1.97e−1 −1.24 −8.24e−4 1.09 1.45
1.18 2.06 −3.56e−3 4.70 −8.73e−1

0 0 1 7.58e−4 0













.

The matrices in (14) are deduced and the interval ob-
server described by (15) is designed. It is assumed that

x0 = [1 1 1 1 1]
T
, x0 = [−1 −1 −1 −1 −1]

T
. The ini-

tial observer state is given by z0 = T+x0 + T−x0 and
z0 = T+x0 + T−x0. Finally, the unknown inputs bounds
are deduced from (37).

5.2 Simulation results

The simulation results are presented with a sampling time
Te = 1e−4s. The lower and upper state bounds are de-
picted in figures 1, 2, 3, 4 and 5. Furthermore, lower and
upper unknown inputs bounds are illustrated in figures 6
and 7. The proposed interval observer converges asymptot-
ically and gives accurate system state and unknown input
bounds even under disturbances and noises presence.

6. CONCLUDING REMARKS

The problem studied in this paper is that of interval
estimation of state and unknown input for LTI continuous-
time systems. Set membership unknown input estimation
can be very useful for instance in model-based prognosis. It
enables to compute system fault evolution and to manage
model uncertainties and environmental disturbances and
their propagations. Basically, this can be achieved if the
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Fig. 1. Lower and upper bounds of state x1
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Fig. 2. Lower and upper bounds of state x2
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Fig. 3. Lower and upper bounds of state x3
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Fig. 4. Lower and upper bounds of state x4

slow dynamic behaviour state representing the damage
model can be predicted. The latter can be modelled as
additional unknown inputs to the system. In this context,
interval unknown input estimation can be an interesting
solution to this problem.
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