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Abstract: In France, buildings account for a large part of the energy consumption and carbon
emissions. Both are mainly due to Heating, Ventilation and Air-Conditioning (HVAC) systems.
So, the present work deals with the predictive control of multizone HVAC systems in non-
residential buildings. We used the PMV (Predicted Mean Vote) index as a thermal comfort
indicator and developed low-order ANN-based models to be used as controller’s internal models.
A genetic algorithm allowed the optimization problem to be solved. The proposed strategy allows
the operation time of each HVAC sub-system to be optimized (and, as a result, electrical power
consumption) and thermal comfort requirements to be met. In order to test this approach, a
real non-residential building located in Perpignan (south of France) has been modelled using
the EnergyPlus software. The results we obtained in simulation allows the pertinence of the
predicitive strategy to be highlighted.

Keywords: Multizone HVAC system, non-residential buildings, predicted mean vote, predictive
control, optimization problems, feedforward neural networks, genetic algorithms.

1. INTRODUCTION

Within non-residential buildings, almost half of the en-
ergy consumption is due to Heating, Ventilation and
Air-Conditioning (HVAC) systems (Pérez-Lombard et al.,
2008). Older, oversized or poorly maintained systems may
be using more energy and costing more to operate than
necessary. As a result, new approaches dealing with energy
ressources management are needed to make HVAC systems
more efficient. First, energy efficiency can be improved in
central heating and cooling systems by introducing zoned
operation. This allows a more granular application of heat
and HVAC sub-systems can be controlled independently.
Another key point is thermal comfort. Thermal comfort is
mainly related to indoor conditions and impacted by both
the effectiveness of the building envelope and the way the
centralized or zoned HVAC system is used.

Many works focusing on both the control of HVAC sys-
tems and the management of thermal comfort have been
conducted over the last few years. Bermejo et al. (2012)
used artificial intelligence tools to develop interesting ap-
proaches. However, these approaches require to turn the
HVAC systems on at a fixed time and, as a result, this
can impact thermal comfort negatively if these systems
are started too late, or energy consumption if triggering
happens too soon. As it has been highlighted by many
studies, predictive control can take advantage of the inter-
mittent use of non-residential buildings and allows the be-
haviour of the considered system to be anticipated (Paris
et al., 2010) In this sense, we proposed a new approach

allowing energy consumption to be significantly reduced
and the HVAC sub-systems of a non-residential building
to be turned on and off at the right time (Garnier et al.,
2013). Only heating has been considered. We used the
PMV (Predicted Mean Vote) index as a thermal comfort
indicator and focused on satisfying constraints. The al-
gorithm we developed offers very good performance and
does not require on-line optimization. As a result, it is
computationnaly tractable and can be implemented in an
embedded system whose resource is limited. Its main draw-
back lies in the simultaneous engaging and stop of all of the
HVAC sub-systems. That is why the present paper focuses
on improving this predicitive approach by optimizing for
each room the operation time of its HVAC sub-system.
Both heating and cooling operation modes are now con-
sidered. We decided for a Genetic Algorithm (GA) in order
to solve the optimization problem (Holland, 1975) and
used artificial neural networks to develop the controller’s
internal models. Such algorithms are commonly used in
energy resources and thermal comfort management (Attia
et al., 2013). Berthou et al. (2013) used a GA to manage
thermal comfort into a unique room of a building, without
considering interaction (i.e. heat transfer) with the other
rooms. Thermal comfort has been defined on the basis of
temperature thresholds. Liu et al. (2013) also used a GA to
optimize the operation of HVAC systems by searching for
optimal control settings. The controllable variables include
supply air and chilled water temperatures.

The paper is organized as follows: section 2 is about the
non-residential building we modelled using the EnergyPlus
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Fig. 1. Topology of the non-residential building.

software. Section 3 deals with the Predicted Mean Vote
(PMV) we used as a thermal comfort indicator. Next, the
predictive strategy as well as the low-order ANN-based
models we developed and used as controller’s internal
models are described (section 4). Finally, the management
results are analyzed and compared with the results given
by standard strategies (section 5). The paper ends with a
conclusion and an outlook to future work.

2. NON-RESIDENTIAL BUILDING

In order to evaluate the proposed strategy, a reference
building has been modelled using the EnergyPlus software,
which is able to perform accurate building simulations.
The considered building is a real two-storey building of
1000 m2, built in 2008 and located in Perpignan (south
of France). It is facing south and agrees with the French
Thermal Regulation of year 2005. This non-residential
building is divided into 3 main areas of 340 m2 each (Fig.
1), with different uses. About a dozen employees work in
offices at the ground and first floors (green and yellow
areas). The red area in the first floor is a manufacturing
room where about 6 persons work seated or in a standing
position. The last room of the ground floor is a warehouse
(blue area) that is not heated. For both the warehouse and
the manufacturing area, ceiling is 3.90 m. In the offices, a
suspended ceiling stands at 2.70 m. The materials used
in the building are listed in table 1: l is the thickness
(cm), λ is the conductivity (W·m−1·K−1), ρ is the density
(kg·m−3) and, finally, C is the specific heat (J·kg−1·K−1).
The exterior walls consist of several layers. From the
outside to the inside are juxtaposed a brick layer, heavy
weight concrete, an insulation board, and finally a gypsum
board. The interior walls are composed of two gypsum
boards, for a total thermal resistivity of 2.2 m2·K·W−1.
The south face and a part of the west face of the building
are made from glass. Glass has been treated to filter
infrared radiation and avoid overheating in summer. The
other glasses consist in 3 mm double glazed bays.

Table 1. Properties of the materials used in the
exterior walls.

Layer l λ ρ C

Brick 10 0.89 1920 790
Heavy weight concrete 20 1.45 2000 1000

Insulation board 5 0.03 43 1210
Gypsum board 2 0.16 800 1090

The present study focuses on the three following (occupied
and equipped with sensors) rooms: the offices on both
floors (R1 and R2) and the manufacturing area (R3), that
is composed of an open space of 230 m2 and three storage
rooms of 110 m2 (not heated). Heating is handled in the
building by a zoned electrical HVAC system consisting
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Fig. 2. The three considered rooms (R1, R2 and R3)
equipped with sensors and HVAC sub-systems.

in several sub-systems, one for each area, where only the
temperature set-point can be adjusted. Each sub-system
is managed by a local controller. The characteristics of
the different HVAC sub-systems for each area are listed
by table 2. All units have a coefficient of performance
(CoP) equal to 3.8. As previously stated, the management
approach is based on a model predictive controller that
will supervise the HVAC sub-systems (Fig. 2).

Table 2. Characteristics of the three considered
rooms.

Characteristic R1 R2 R3

Surface (m2) 165 155 230
Volume (m3) 450 420 900

Heating power (kW) 5 5 10
Number of occupants 8 5 6

Metabolic activity (W·m−2) 70 70 116
Lighting power (kW) 1 1 1.4

3. THERMAL COMFORT

The Predicted Mean Vote (PMV) index is used as a
thermal comfort indicator. This indicator was developed
by Fanger (1973), before to be standardized by interna-
tional organizations. The PMV index quantifies the ther-
mal sensation felt by people in a room. This sensation is
described by a scale ranging from -3 (cold) to +3 (hot).
The exchange of heat between the human body and its
environment strongly governs thermal comfort. It is highly
subjective and can be considered as perfect when the sum
of exchanges is zero. Equation 1 depicts the way one can
compute the PMV index, for the room j, ∀j ∈ J1; 3K:

PMVj = [0.303exp−0.036Mj + 0.028]× Lj (1)

with Lj the difference between the heat produced and the
heat lost:

Lj = Mj−Wj−Hj,1−Hj,2−Hj,3−Hj,4−Hj,5−Hj,6 (2)

Mj is the metabolism (described below).Wj is the external
work. Hj,1, ...,Hj,6 are the heat loss coefficients (W·m−2).
Hj,1 is the heat loss by diffusion through the skin and
Hj,2 is the heat loss by sweating. Hj,3 and Hj,4 are the
losses by latent and dry respiration, respectively. Finally,
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Hj,5 is the heat loss by radiance and Hj,6 is the heat loss
by convection. To calculate these heat loss coefficients,
several parameters about environment and occupants are
taken into account: indoor air temperature (T a

j ), radiative
temperature (T r

j ), relative humidity (HRj), air speed (vaj ),
metabolic activity, as well as clothing thermal insulation
(ICLj). Let us note that air speed is not calculated by the
EnergyPlus software. However, this missing information is
not critical at all because air speed has no influence on the
PMV index as long as it remains below 0.1 m·s−1. This
is mostly the case within the non residential building we
considered. Moreover, metabolic activity is supposed to
be constant and only depends on the considered area. In
offices (R1 and R2), people work in a sitting position most
of the time and, as a result, Mj is set to 70 W·m−2 (i.e.
1.2 met). Activity in the manufacturing area (R3) is more
dynamic and Mj is set higher to 116 W·m−2 (i.e. 2 met).
Moreover, depending on climatic conditions, people dress
differently. So, clothing thermal insulation in the room j
(ICLj) varies over time and is defined from the outdoor
temperature observed at 6 a.m. (Schiavon and Lee, 2013).

4. MULTIZONE PREDICTIVE CONTROL

As previously stated, each room has its own HVAC sub-
system, handled by a local controller (Fig. 2). Simulation
is carried out using the EnergyPlus building model we de-
veloped and the predictive control strategy is implemented
thanks to Matlab R©. The MLE + interface enables both
tools to communicate in real time (Nghiem, 2010).

4.1 Low-order ANN-based models

We used a total of six feedforward (multi-layer) artificial
neural networks with only one hidden layer in order to
model at time step k + 1 (∀j, l,m ∈ J1; 3K such as j 6= l 6=
m) the air (T a

j ) and radiative (T r
j ) temperatures as well as

the electrical power consumed by the HVAC sub-systems
(Pj) for both operation modes (heating and cooling) and
the three considered rooms in the non-residential building
(the offices on both floors and the manufacturing area).
Estimation is carried out from several inputs: outdoor
temperature (Tout), solar radiation (SR), room occupancy
(Oj), T

a
j , T r

j , T sp
j and, finally, the HVAC temperature

set-points in the two adjacent rooms (T sp
l and T sp

m ) of
room j at time step k (Fig. 3). These ANN-based models
(used as controller’s internal models) perform a one-step-
ahead forecast and their outputs are reinjected as inputs,
along the horizon. We identified their parameters through
a training phase, thanks to the Levenberg-Marquardt Al-
gorithm (LMA) (Hagan and Menhaj, 1994) as well as
data generated by the EnergyPlus model. The LMA is
accurate, very fast and uses matrix decomposition. We
optimized the topology of the feedforward artificial neural
networks and considered from 18 to 24 hidden neurons.
Validation has been carried out using a 2-month database
and we obtained correlation coefficients higher than 0.9
and mean relative errors lower than 5%, whatever the op-
eration mode. Using equation 1 (section 3), PMVj(k + 1),
∀j ∈ J1; 3K, is computed among others from T a

j (k + 1) and
T r
j (k + 1). Let us note that Mj do not change over the

simulation period (i.e. from June 1 to September 30 then
from November 1 to March 31, 2011) while HRj is sup-
posed to be constant over the forecast horizon and equal
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Fig. 3. ANN-based model for the room j, ∀j, l,m ∈ J1; 3K
such as j 6= l 6= m (heating and cooling modes).

to the value measured at the beginning of the optimization
process. Indeed, changes in relative humidity are low and
such a parameter has a limited impact on the PMV index.
ICLj is considered as constant from 6 a.m. (day d) to 6
a.m. (day d+ 1). vaj and Wj are considered to be null.

4.2 Control strategy

Fig. 4 depicts the predictive control strategy we developed
first to search for the right time tj to turn the HVAC sub-
system on then off in the room j, ∀j ∈ J1; 3K, with the aim
of minimizing the total consumption of electrical power
(equation 3). The strategy deals also with the temperature
set-point T̃ sp

j (its value is fixed over the forecast horizon)
allowing thermal comfort constraints to be met during
periods of occupancy (i.e. leading to PMV sp

j = 0). t̄ is
about the optimal switching times (integer values) for
the three HVAC sub-systems we consider (equation 4). In
addition, outdoor temperature (Tout) and solar radiation
(SR) have been forecasted over an horizon (N) set to
8 hours, using previous day values corrected by current
values. Room occupancy (Oj) is regular and, as a result,
known in advance. Finally, T sp

j is chosen by the decision
block (Fig. 4), according to tj and T̃ sp

j :

J(t̄) = min
t̄∈N

 N∑
k=1

3∑
j=1

(Pj(tj , k))

 (3)


t̄ = [tj , tl, tm],∀j, l,m ∈ J1; 3K s.a. j 6= l 6= m

t̄0 < t̄ < t̄N , with N the forecast horizon

PMV min
j < PMVj(k) < PMV max

j ,∀Oj(k) 6= 0

(4)

PMV min
j and PMV max

j are thermal comfort thresholds
defined for the room j, ∀j ∈ J1; 3K. These thresholds can
be adapted to users’ preference. For the simulations we
decided for PMV min

j = −0.5 and PMV max
j = 0.5.
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Fig. 4. Block diagram of the predictive control strategy.

4.3 Genetic algorithm for problem resolution

In order to solve the problem we formulated, we decided for
a numerical optimizer able to deal with integer values and
known to be efficient in the search for the optimal solution,
by testing a reasonable number of possible solutions. As a
result, we used the Genetic Algorithm from the Matlab R©

Global Optimization Toolbox (Palonen et al., 2013). At
each step of the process, the best individuals are selected
from the current population (the initial population is gen-
erated randomly) and serve as parents in order to produce
the children for the next generation. Each individual is
a vector t̄ = [tj , tl, tm], ∀j, l,m ∈ J1; 3K such as j 6= l 6= m.
Selection is based on performance (typically, the genetic
algorithm is more likely to select parents with better fitness
values), that is why the thermal behaviour of the three
considered rooms (R1, R2 and R3) in the non-residential
building is simulated for each individual in the current
population. Over successive generations, this population
evolves toward an optimal solution t̄opt allowing electri-
cal power consumption in the room j of the building to
be minimized (Pj , ∀j ∈ J1; 3K) and thermal constraints
to be met (equation 4). As a key point, we performed
crossover (recombinations of individuals) and mutation
(random alterations of individuals) operations during the
optimization process. We decided for a crossover fraction
equal to 0.8 and a rate at which the average amount of
mutation decreases equal to 1. The process ends if the
maximum number of generations is reached or the solution
found is not improved for 10 successive generations. The
parametric analysis we performed also allowed the impact
on performance of both the population size and the num-
ber of successive generations to be highlighted. Taking a
look at Figure 5, one can observe that the higher both the
number of individuals in the population and the number
of generations, the higher the percentage of optimal solu-
tions related to the minimization of Pj , ∀j ∈ J1; 3K, while
meeting thermal constraints. Figure 6 shows how a given
solution is related to overconsumption of electrical power
(reference is the optimal solution). One can clearly observe
that with a too low number of individuals, the search

for an acceptable solution is not successful. In opposition,
starting from 10 individuals and with a sufficient number
of successive generations, a solution in the neighbourhood
of the optimal one can be found. So, we decided for 15
individuals and 40 successive generations. In this case,
overconsumption of electrical power is insignificant and
the number of tested solutions is reduced.

Fig. 5. Optimal responses percentage.

Fig. 6. Overconsumption of electrical power.

5. RESULTS

5.1 Non-predictive strategies

We considered two non-predictive strategies in order to
highlight the benefits of the predictive approach we pro-
pose for multizone HVAC systems in non-residential build-
ings. The first strategy (S1) is basic: all the sub-systems
operate all the time. The second strategy (S2) is a sched-
uler used to stop the sub-systems during periods of non-
occupancy and to turn them on in the morning, two hours
before people arrive at the building (i.e. at 6 a.m.). The
sub-systems are turned off when people leave (i.e. at 6
p.m.). S2 is the strategy currently used in the real non-
residential building located in Perpignan (south of France)
we modelled. For both strategies, heating and cooling set-
points are set to 22◦C (only during occupancy periods for
S2) and the PMV is near zero, whatever the room. Let us
remember that the predictive strategy we propose allows
the right time to turn the HVAC sub-systems on then off
to be found in each of the considered rooms of the building
while meeting with thermal comfort requirements (S3). As
a result, energy consumption can be significantly reduced.
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Table 3. Performance of the different strate-
gies, ∀j ∈ J1; 3K. The simulation period is from
November 1 to March 31, 2011 (heating mode).

Occupancy Non-occup. Consumption Discomfort

period period (Wh/day·m2) criterion

S1 T sp
j = 22◦C T sp

j = 22◦C 209.5 19.4%

S2 T sp
j = 22◦C Off 80.9 14.4%

S3 PMV sp
j = 0 Off 69.0 6.4%

Table 4. Performance of the different strate-
gies, ∀j ∈ J1; 3K. The simulation period is from
June 1 to September 30, 2011 (cooling mode).

Occupancy Non-occup. Consumption Discomfort

period period (Wh/day·m2) criterion

S1 T sp
j = 22◦C T sp

j = 22◦C 198.5 0.1%

S2 T sp
j = 22◦C Off 122.6 0.2%

S3 PMV sp
j = 0 Off 116.2 0.1%

Table 5. On/off switching times using strategy
S3. The simulation period is from January 6 to

January 12, 2011 (heating mode).

Day Jan. 6 Jan. 7 Jan. 8-9

R1

Starting time 6:15 a.m. 7:15 a.m. n.a.

Stopping time 2:00 p.m. 2:30 p.m. n.a.

Time saved (h) 4:15 4:45 n.a.

R2

Starting time 5:15 a.m. 6:15 a.m. n.a.

Stopping time 5:00 p.m. 2:00 p.m. n.a.

Time saved (h) 0:15 4:15 n.a.

R3

Starting time 6:15 a.m. 7:00 a.m. n.a.

Stopping time 2:00 p.m. 2:00 p.m. n.a.

Time saved (h) 4:15 5:00 n.a.

Day Jan. 10 Jan. 11 Jan. 12

R1

Starting time 6:30 a.m. 6:15 a.m. 7:00 a.m.

Stopping time 2:15 p.m. 2:00 p.m. 1:45 p.m.

Time saved (h) 4:15 4:15 5:15

R2

Starting time 5:00 a.m. 5:45 a.m. 6:15 a.m.

Stopping time 6:00 p.m. 2:00 p.m. 1:00 p.m.

Time saved (h) -1:00 3:45 5:15

R3

Starting time 6:30 a.m. 6:15 a.m. 7:00

Stopping time 2:15 p.m. 2:00 p.m. 2:00 p.m.

Time saved (h) 4:15 4:15 5:00

5.2 Analysis of the results

In order to evaluate performance regarding thermal com-
fort, we considered the percentage of time for which the
PMV value is out of the desired interval during occupancy
periods [−0.5; +0.5]. Moreover, an average value (per day
and square meter) is used for energy consumption. Tables
3 and 4 summarize the results we obtained for two simula-
tion periods, from November 1 to March 31 (heating mode)
and from June 1 to September 30, 2011 (cooling mode).
Taking a look at these results, one can clearly observe that
the predictive strategy (S3) allows energy consumption
to be significantly reduced, whatever the operation mode
and the period of the year, in comparison to what can
be observed with the non-predictive strategies (S1 and
S2). In addition, thermal comfort is better (heating mode)
or similar (cooling mode) with S3 than when using S1
or S2. Considering the results we obtained using S2 as
reference results, energy consumption and thermal dis-

comfort are reduced from 80.9 to 69 Wh/day·m2 (-15%)
and from 14.4% to 6.4% (-56%), respectively (heating
mode). In cooling mode, energy consumption and thermal
discomfort are reduced from 122.6 to 116.2 Wh/day·m2 (-
5%) and from 0.2% to 0.1% (-50%), respectively. Table 5
gives the optimal on/off switching times computed by the
predicitive controller (S3) in heating mode. The simula-
tion period is from January 6 to January 12, 2011. One
can highlight that the operation time of the HVAC sub-
systems is most of the time significantly reduced, whatever
the room (comparison is between S2 and S3). The daily
time saved can reach up to 5 hours. Fig. 7(a), 7(b) and 7(c)
describe the way energy consumption and thermal comfort
evolve from January 6 to January 12, 2011, whatever
the strategy. With S1, overheating may happen during
the afternoon and alters thermal comfort (heating mode).
Using the scheduler (S2), overheating is delayed or even
avoided, whatever the mode. As a result, thermal comfort
is improved during cold periods. In cooling mode, thermal
comfort is slightly worse (0.2 % vs. 0.1%) because of HVAC
sub-systems being turned on later in the morning than
with S1 when outdoor temperature is high. In addition,
turning the HVAC systems off during non-occupancy peri-
ods allows energy consumption to be significantly reduced.
With S3, heating is stopped sooner and overheating is
completely avoided (heating mode). During hot periods,
the benefits of using S3 are less important. Indeed, in
cooling mode, the HVAC sub-systems can not be turned
off as soon as during cold periods.

6. CONCLUSION

The present work deals with the predictive control of mul-
tizone Heating, Ventilation and Air-Conditioning (HVAC)
systems in non-residential buildings. Such systems account
for a large part of the energy consumption. Heating and
cooling modes have been considered. In order to test the
proposed approach, a real non-residential building located
in Perpignan (south of France) has been modelled using
the EnergyPlus software. We used the PMV (Predicted
Mean Vote) index as a thermal comfort indicator and
developed low-order ANN-based models to be used as
controller’s internal models. The optimization problem
has been solved using a genetic algorithm. The proposed
strategy allows the operation time of each HVAC sub-
system to be optimized (i.e. the right time to turn the
HVAC sub-systems on and off to be found) and thermal
comfort requirements to be met. In comparison to what is
observed when using a standard (non-predicitive) strategy,
energy consumption is significantly reduced and thermal
comfort is improved, whatever the operation mode and the
period of the year. Future work will focus on implementing
and validating the predictive strategy in the real building.
Finally, natural ventilation will be considered in cooling
mode with the aim of reducing energy consumption.
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