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Abstract: This work presents a tube-based Robust Model Predictive Controller (RMPC) with an
application to the control of a mobile robot performing unmanned path tracking. In addition to
robustness against unknown but bounded uncertainties, the RMPC algorithm proposed in this work is
implementable (i.e. it imposes low complexity and conservativeness), thus making it highly amenable
to real-time applications. This is due to an improved formulation of the tube over previous works (here
a tube is sequence of sets) which is constructed by predicting the evolution of the difference between
the actual uncertain system under control and its respective nominal disturbance-free system. Moreover,
a feedback corrective controller formulated as a time-varying finite-time Linear Quadratic Regulator
(LQR) is proposed to regulate the uncertain system around its respective nominal uncertainty-free
system and thereby suppress the effect of uncertainties acting on the actual system. The proposed RMPC
algorithm is applied to a Pioneer P3−DX mobile robot platform performing unmanned path tracking.
Experimental results demonstrate robust and stable performance of the proposed RMPC algorithm.
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1. INTRODUCTION

Mobile robot unmanned path tracking is a problem of practical
importance in the field of robotics and autonomous vehicles.
The aim is to have a mobile robot (or an unmanned vehicle)
follow a given reference path autonomously. There are two key
issues to be taken into account. One is the physical constraints
imposed on robot’s control inputs. The other one is the scenario
of a mobile robot traveling in an unstructured environment (i.e.
an environment with sources of uncertainties/disturbances). To
develop a suitable control strategy, one needs to take these
issues into account.
Previously, different control approaches such as feedback lin-
earization (as in Shojaei et al. (2009)), sliding mode (as in
Eaton et al. (2009) and Fang et al. (2006)) and Model Pre-
dictive Control (MPC)(as in Lenain et al. (2005) and Xie and
Fierro (2008)) were applied to the mobile robot unmanned path
tracking problem. Our group has previously also contributed
considerably to the MPC literature relating to control of mobile
robots (see Bahadorian et al. (2011), Bahadorian et al. (2012)).
In this work, we are particularly interested in applying the MPC
control scheme to the problem of unmanned path tracking.
MPC is an optimal and predictive control methodology which
is capable of handling constraints of a system (i.e. constraints
on states and/or inputs) explicitly. To apply the MPC control
approach to unmanned path tracking problem, one possibility
is to form a linearized model of the mobile robot’s dynamics
to be used by MPC to predict the future behavior of the system
under control (see Klancar and Skrjanc (2007), Xie and Fierro
(2008)).
The key shortcoming of the conventional MPC paradigm per-
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tains to its inability to cope with disturbances and uncertainties
acting on a control system. Issues here relate to how to achieve
robustness while satisfying all the constraints. A summary of
these issues may be found in Bemporad and Morari (1999)
and Mayne et al. (2000). One of the key methods to robus-
tify MPC against uncertainties and disturbances is the tube-
based robustifying approach, the aim of which is to properly
restrict the constraints of a nominal disturbance-free system and
employ a form of auxiliary corrective feedback controller to
suppress the effects of uncertainty (see e.g. Mayne and Langson
(2001), Mayne et al. (2005), Mayne et al. (2006), Mayne et al
(2009), Richards (2005a), Richards (2005b) and Richards and
How (2006)). The key idea behind the method is to obtain an
optimized input for the nominal disturbance-free system which
is subject to more restricted (i.e. tighter) constraints than the
actual system. A linear feedback controller is then employed to
ensure that the actual system follows this nominal and optimal
trajectory, resulting in robustness despite uncertainty. The for-
mulation of the overall control law guarantees that the actual
system evolves around the disturbance-free system within the
designated tubes, while satisfying constraints of the actual sys-
tem.
In this work, the core idea is to extend the results from Mayne
and Langson (2001), Mayne et al. (2005), Mayne et al. (2006),
Mayne et al (2009) and Bahadorian et al. (2011) to develop
an implementable robust MPC (i.e. with low complexity and
conservativeness). We are interested in formulating a dynamic
(i.e. time-varying) corrective feedback controller (i.e. an auxil-
iary controller which ensures robust evolution of actual system
around MPC optimized trajectories as mentioned previously) as
a part of our RMPC development.
Previously our group has developed the theoretical and sim-
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ulation framework to address the problem of robust MPC for
mobile robots in Bahadorian et al. (2011) and Bahadorian et al.
(2012). In the present paper we extend our previous works and
apply the method to a real robotic platform which is a Pioneer
P3−DX mobile robot platform from ActiveMedia.
The contribution of this work is to develop an implementable
RMPC. The proposed RMPC control approach carries low con-
servativeness due to our particular formulation of tubes. Also,
the proposed formulation of the auxiliary feedback controller
as a time-varying finite-horizon Linear Quadratic Regulator
(LQR) is very light in terms of complexity and may be easily
computed online. These two improved features make the pro-
posed RMPC control paradigm a fast low complexity controller,
therefore a highly promising control candidate for mobile robot
control in real time. As stated previously, our group has previ-
ously developed a version of such an approach for mobile robot
unmanned path tracking employing a different linearized model
(see Bahadorian et al. (2011) and Bahadorian et al. (2012)).
The rest of this work is organized as follows: in section II,
the motion dynamics of wheeled mobile robots as well as the
trajectory tracking problem are introduced. Section III presents
the main result of this work, the new Robust MPC (RMPC)
algorithm to be applied to mobile robot unmanned path tracking
problem. In section IV, the performance of the proposed control
approach is verified by presenting experiential results obtained
by applying our RMPC algorithm to a Pioneer P3−DX mobile
robot platform. Finally in section V concluding remarks are
presented.
Notations used in this paper:
Let S1 and S2 represent two sets where S1,S2 ⊆ Rn. Then the
Minkowski sum of S1 and S2 is denoted by S1 ⊕ S2 = {a +
b : a ∈ S1, b ∈ S2} and Minkowski difference between S1 and
S2 is denoted by S1 ⊖S2 = {z : ∀b ∈ S2, (z+b) ∈ S1}.
Vectors are written in bold font in this paper, e.g. x is a vector,
but x is a scalar.

2. APPLICATION

2.1 Dynamics of wheeled mobile robot

The system under control is a wheeled mobile robot (WMR)
performing trajectory tracking. Under the nonholomonic con-
straints and with no slip assumption, the kinematic model of
the robot can be described as:

ẋc = vc cosθc

ẏc = vc sinθc

θ̇c = ωc (1)

where the pair (xc,yc) denotes the position of the robot in a
Carthesian frame and θc denotes the orientation of the robot.
Also vc and ωc denote the linear and angular velocity of the
robot respectively. The compact form of the system (1) can be
presented as follows:

ẋc = f (xc,uc) (2)

where xc = [xc,yc,θc]
′ ∈ R3 denotes the state of the mobile

robot and uc = [vc,ωc]
′ ∈ R2 represents the input to the robot.

It is notable that both state and input of the robot are time-
dependant, i.e. for example by xc we mean xc(k) (where k de-
notes a time step), however for the sake of brevity we suppress
the time-dependency notation.

2.2 Path Tracking Problem

To describe the path tracking problem, let us introduce a virtual
mobile robot moving on the desired reference track. This latter
virtual robot is referred to as the reference robot. The dynamics
of the reference robot are the same as the actual robot, i.e.:

ẋr = f (xr,ur) (3)
where xr = [xr,yr,θr]

′ denotes the reference state and ur =
[vr,ωr]

′ represents the corresponding reference input. With the
assumption of the reference robot moving on the reference
track, the path tracking problem consists of finding a control
law uc = [vc,ωc]

′ to enforce the difference between the refer-
ence and actual robots (i.e. xe = xr −xc) to zero, i.e.:

lim
t→∞

xe = lim
t→∞

(xr −xc) = 0 (4)

To this aim, by attaching the center of coordinate frame to
the tracking robot (i.e. using a local coordinate frame), the
difference between the reference robot and actual robot’s state
can be described as Kanayama et al. (1990):[ xe

ye
θe

]
=

[ cosθc sinθc 0
−sinθc cosθc 0

0 0 1

]
(xr −xc) (5)

The error dynamics can be obtained by differentiating (5) along
both (2) and (3) and rearranging the terms, therefore:

ẋe = ωeye − ve + vr cosθe

ẏe =−ωexe + vr sinθe

θ̇e = ωr −ωe (6)
Let us define the input term uc as following:

uc := ur −ue =

[
vr cosθe − ve

ωr −ωe

]
(7)

Note that in expression (7), the terms vr cosθe and ωr relate
to the feed-forward linear and angular velocities respectively.
Also, ue is defined as:

ue := [ve,ωe]
′ (8)

By linearizing the system from expression (6) around the equi-
librium point (i.e. xe = 0 and ue = 0), the following error-based
dynamics will be obtained:

ẋe =

[ 0 ωr 0
−ωr 0 vr

0 0 0

]
xe +

[ 1 0
0 0
0 1

]
ue (9)

Using a sufficiently short sampling time Ts to discretize the sys-
tem (9), the subsequent discrete time system can be obtained:

xe(k+1) =

[ 1 ωrTs 0
−ωrTs 1 vrTs

0 0 1

]
xe(k)+

[ Ts 0
0 0
0 Ts

]
ue(k) (10)

A compact form of the discrete time system from expression
(10) can be defined as:

xe(k+1) = A(k)xe(k)+Bue(k) (11)
with A(k) denoting the error-based state matrix and B denoting
the error-based input matrix. Note that without loss of general-
ity, by substituting B(k) = B in expression (11), the following
formulation for the discretized error dynamics of mobile robot
may be achieved:

xe(k+1) = A(k)xe(k)+B(k)ue(k) (12)
By making the tracking error xe bounded with sufficiently small
bounds, it is ensured that the mobile robot always stays close to
the reference track and does not deviate beyond the designated
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bounds. Therefore, the following constraints are imposed on the
tracking error xe:

xe(k) ∈ Xe ⊆ R3 (13)
where Xe denotes a compact convex set. Due to physical
constraints, the input to the mobile robot is also limited, i.e.
uc(k) ∈ Uc ⊆ R2 where Uc denotes a compact convex set.
Employing expression (7), the bounds on the error-based input
ue(k) can be derived as:

ue(k) ∈ Ue ⊆−Uc ⊕ur(k) (14)
To establish a more realistic model, the effect of linearization
and also uncertainties (such as noisy sensory readings or any
occurring delays in the system) are modelled by an unknown
but bounded uncertainty term w(k) ∈ W ⊆ R3. Note that the
set W denotes a a-priori defined convex set which contains the
origin. Therefore, the error-based model from expression (12)
can be rewritten as:

xe(k+1) = A(k)xe(k)+B(k)ue(k)+w(k) (15)
The system from expression (15) is now defined in the frame-
work of a constrained time-varying system subject to uncer-
tainty. In the next section of this paper, we are going to present
a robust MPC algorithm to control system (15).

3. CONTROLLER

The aim is to develop a RMPC control scheme for the error-
based discretized linear time-varying system, with n states and
m inputs, of the form:

xe(k+1) = A(k)xe(k)+B(k)ue(k)+w(k) (16)
where xe(k) ∈ Rn and ue(k) ∈ Rm denote the error-based state
and the error-based input of the system (16) and w(k) ∈ Rn

denotes an unknown but bounded uncertainty acting on the
system. The state xe(k) and input ue(k) of the system (16) are
subject to the following constraints:

xe(k) ∈ Xe ⊆ Rm (17)
ue(k) ∈ Ue(k)⊆ Rn (18)

with description of Xe and Ue(k) from section before. The
unknown uncertainty w(k) modelling model-plant mismatch
and/or noisy sensory readings is also assumed to be bounded,
i.e.:

w(k) ∈W⊆ Rn (19)
The system from (16) may be converted to a nominal disturbance-
free system, to be used in the subsequent section, of the form:

xe(k+1) = A(k)xe(k)+B(k)ue(k) (20)
where

xe(k) ∈ Xe ⊆ Rm (21)

ue(k) ∈ Ue(k)⊆ Rn (22)
with xe(k) and ue(k) denoting the nominal error-based state
and the nominal error-based input respectively. The sets Xe
and Ue(k) represent suitably-defined nominal state and input
constraints sets respectively. The formulation of these sets will
be presented later on.

3.1 Formulation of tube-based RMPC

To control the system from equation (16), we propose the fol-
lowing RMPC control law:

RMPC Controller:
ue(k) = ue(k)+ucor(k) (23)
xe(0) = xe(0) (24)
ue(k) = u∗

e(0|k) (25)

{u∗
e(i|k)}N−1

i=0 = arg min{ue(i|k)}N−1
i=0

Jk(xe(k)) (26)

where ucor(k) is a localized corrective feedback control term
to suppress and correct for the effect of uncertainties acting on
the system. The term Jk(xe(k)) denotes the cost function of the
following finite horizon optimization problem:

Finite Horizon Optimization Problem Pk(xe(k))

Jk(xe(k)) =
N−1

∑
i=0

||xe(i|k)||2Q + ||ue(i|k)||2R (27)

+(1/2)||xe(N|k)||2Q f

subject to the following constraints on xe(i|k) and ue(i|k):
xe(i|k) ∈ Xe(i|k) (28)

ue(i|k) ∈ Ue(i|k) (29)

xe(N|k) ∈ X f (30)
xe(0|k) = xe(k) (31)

where N denotes the prediction horizon of the MPC optimiza-
tion problem and with 0 ≤ i ≤ N−1. The notation (i|k) denotes
the prediction at i ≥ 0 steps ahead from current time k ≥ 1.
Furthermore we have:

• Matrices Q ∈ Rn×n and R ∈ Rm×m are both symmetric
positive definite matrices denoting the weight matrices on
nominal error-based state and nominal error-based input
respectively.

• The notation ||.||R denotes the weighted Euclidian norm
defined by ||x||R =

√
x′Rx.

• The set X f ∈ Rn and matrix Q f ∈ Rn×n represent the
terminal set of optimization problem Pk(xe(k)) and the
terminal weight matrix respectively.

3.2 Formulation of the localized feedback controller

In this section, formulation of the corrective feedback input
ucor(k) from equation (23) is presented. Let us define δ (k) as
the difference between the actual error-based state xe(k) and the
nominal disturbance-free error-based state xe(k), i.e.:

δ (k), xe(k)−xe(k) (32)
To achieve corrective action for this difference, by employing a
time-varying finite-horizon LQR with state weighting matrix
QLQR, input weighting matrix RLQR and terminal weighting
matrix Q f f , we propose a corrective input term ucor(k) of the
form:

ucor(k) = G(k)δ (k) (33)
where:

G(k) =−(RLQR +BT (k)P1B(k))−1BT (k)P1A(k) (34)
with notation T denoting matrix transposition. The term P1 is
determined by the following recursive ”Riccatti” equation:
PN = Q f f

Pz−1 = QLQR +AT (z−1|k)PzA(z−1|k)
−AT (z−1|k)PzB(z−1|k)(RLQR +BT (z−1|k)PzB(z−1|k))−1

.BT (z−1|k)PzA(z−1|k) (35)
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where 2 ≤ z ≤ N. Also later on in the subsequent section we
will need the formulation of G(i|k) as follows:

G(i|k) = (−RLQR +BT (i|k)P1B(i|k))−1BT (i|k)P1A(i|k) (36)
Using expressions (16), (20) and (23) by employing analogous
arguments to the ones used in Mayne and Langson (2001),
evolution of δ (k) is governed by a linear difference equation
of the form:

δ (k+1) = AG(k)δ (k)+w(k) (37)
where AG(k) = A(k)+B(k)G(k). Note that a controller G(k) of
the form (34) keeps δ (k) bounded.

3.3 Formulation of the nominal constraint sets

While the corrective input term ucor(k) from expressions (23)
and (33) relates to keeping the actual error-based state xe(k)
close to the nominal state xe(k), it is also required to formulate
restricted constraint sets Xe(i|k) and Ue(i|k) (from equations
(28) and (29)), such that the error-based state xe(k) and the
error-based input ue(k) satisfy the constraints Xe and Ue(k)
from expressions (21) and (22) respectively. To this aim, we
formulate nominal constraint sets Xe(i|k) and Ue(i|k) as follow:

Xe(i|k) = Xe ⊖T(i|k) (38)

Ue(i|k) = Ue(k)⊖G(i|k)T(i|k) (39)
where k ≥ 1 and 0 ≤ i ≤ N − 1 and where G(i|k) is defined
by expression (36). By unrolling expression (37) for N steps
into the future time, we propose the following formulation for
T(i|k):
T(i|k) ={ {δ (k)} , if i = 0

(A(i−1|k)+B(i−1|k)G(i−1|k))T(i−1|k)⊕W, if i ≥ 1
(40)

The set T(i|k) is the set of all possible deviations of actual error-
based state xe(i+ k) from nominal error-based state xe(i+ k)
(i.e. δ (i + k))) over the prediction horizon N. This is based
on the known fact that the deviation of xe(i+ k) from xe(i+
k) evolves according to the linear difference equation from
expression (37).

3.4 Remarks on robustness, stability and feasibility properties
of of the proposed RMPC

Remark 1. Robustness of the proposed RMPC
Robustness of the proposed RMPC is guaranteed, if there exists
a scalar ε > 0, such that ∀t, ||δ (k)||< ε . This may be achieved
by following the approach from Richards (2005b) by picking
receding horizon LQR terminal weight Q f f as a matrix with
large eigenvalues to ensure that the terminal prediction δ (N|k)
of the difference between actual error-based state xe(k) and
nominal error-based state xe(k) is practically zero. Then δ (k)
is ensured to be bounded as proved in section 2.4 page 43 of
Richards (2005a). This is ensured here, since G(k) may be seen
as an unconstrained MPC controller, driven by disturbance term
w(k) from expression (37). Thus the corrective input ucor(k)
keeps the actual error-based state xe(k) within a bounded set
around the nominal error-based state xe(k), i.e. keeps δ (k)
bounded. This is a tube-like controller as in Mayne and Lang-
son (2001)- Mayne et al (2009). However in the present case
the tubes and feedback matrices G(i|k) are time-varying.

Remark 2. Stability of the proposed RMPC
The formulation of the constraint restrictions from equations
(38) and (39) imposes suitable restrictions to account for the ef-
fect of uncertainties by leaving sufficient space for system per-
turbations so as to avoid constraint violations (see e.g. Mayne
et al. (2005)- Mayne et al (2009)). However in order to achieve
stability, further conditions must be imposed. While restrictions
imposed in equations (38) and (39) are sufficient if the feedback
matrices G(i|k) are constant and time-invariant (see e.g. Mayne
et al (2009)), further conditions must be imposed in the present
case in order to ensure stability. This may be achieved by im-
posing the condition that the constraint restrictions for Xe(i|k)
and Ue(i|k) from equations (38) and (39) are only imposed if
{u∗

e(1|k − 1),u∗
e(2|k − 1), ...,u∗

e(N − 1|k − 1),0} is a feasible
solution for the optimization problem Pk(xe(k)) at time k, i.e. if
the optimal prediction trajectory from time k− 1 starting with
u∗

e(1|k − 1) is a feasible trajectory at time k. With this condi-
tion, then by standard MPC stability arguments, it immediately
follows that V k(xe(k)) = minJk(xe(k)) is a Lyapunov function
satisfying V k(xe(k))−V k−1(xe(k− 1)) < −||xe(k− 1)||Q (see
e.g. Goodwin et al. (2005) or Mayne et al. (2000)). If however
{u∗

e(1|k−1),u∗
e(2|k−1), ...,u∗

e(i−1|k−1),0} is not a feasible
solution to optimization problem Pk(xe(k)) at time k, then we
replace the constraints from equations (38) and (39) at time k
by the following :

Xe(i|k) = Xe(i+1|k−1) (41)

Ue(i|k) = Ue(i+1|k−1) (42)

i.e. we employ the constrains from time k−1 with a prediction
i+ 1 (from time k − 1) as the constrains at time k for predic-
tions i times ahead (from time k). This choice, by construction,
ensures that {u∗

e(1|k − 1),u∗
e(2|k − 1), ...,u∗

e(N − 1|k − 1),0}
is a feasible trajectory for optimization problem Pk(xe(k)) at
time k (this follows since {u∗

e(1|k− 1),u∗
e(2|k− 1), ...,u∗

e(N −
1|k − 1),0} is the optimal solution to optimization problem
Pk−1(xe(k− 1)) from previous time step k− 1, however under
the constrains given by equations (41) and (42) (as opposed to
equations (38) and (39)). Thus because {u∗

e(1|k− 1),u∗
e(2|k−

1), ...,u∗
e(N − 1|k− 1),0} is feasible for optimization problem

Pk(xe(k)) at time k, it immediately follows that V k(xe(k))−
V k−1(xe(k− 1)) < −||xe(k− 1)||Q again. This way stability is
achieved in any case. An intuitive explanation of the robus-
tifications employed here is that we first check if an optimal
solution (subject to the constrains in equations (38) and (39))
may be achieved. If this solution may not be guaranteed to
give stability, then we revert to the ”safe” constrains from
equations (41) and (42). Thus our controller first attempts op-
timality under constraints from equations (38) and (39), and if
the resulting optimization does not guarantee stability, then a
”safe” control (from an extension from the previous time step
k − 1) is employed, employing the constrains from equations
(41) and (42). This way stability is ensured. Note that if the
second case from above occurs, then the corrective control input
ucor(k) = G(1|k−1)δ (k) is applied instead of the control input
ucor(k)=G(k)δ (k)=G(0|k)δ (k) from equation (34). This way
the one-stead ahead prediction from time k−1 (i.e. G(1|k−1))
is used at time k due to reversion to the ”safe” case that is
required for ensuring stability of the nominal dynamics.
Remark 3. Feasibility of the proposed RMPC
Employing the robustification, the argument in the previous
paragraph also ensures recursive feasibility, i.e. if the optimiza-
tion problem Pk(xe(k)) is feasible at time k = 1, then it will be
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feasible for all k > 1. This follows by standard MPC arguments,
see e.g. Goodwin et al. (2005) and Mayne et al. (2000).

4. EXPERIMENTAL RESULTS

A series of experiments has been carried out on a Pioneer
P3−DX mobile robot platform from ActiveMedia to validate
the robust performance of the proposed RMPC algorithm. The
position and orientation of the robot were obtained from on-
board odometry encoders of the Pioneer robot. Prior to running
the main experiments, the odometry readings of the robot were
calibrated by performing a series of well-known UMB-Mark
calibrating tests (see Borenstein and Feng (1994)). The refer-
ence trajectory was defined as an inverted S-shape track, as
shown in a dark solid line in Fig. (1), starting at initial position
and orientation [0,0,0]′.
To keep the robot close to the reference track, the bounds on Xe
from equation (13) were chosen as:
Xe = {[xe,ye,θe]

′ : |xe| ≤ 0.3(m), |ye| ≤ 0.3(m), |θe| ≤ π/6(rad)}
(43)

The input constraints were set to be:
Uc = {[vc,ωc]

′ : |vc| ≤ 0.5(m/s), |ωc| ≤ 0.9(rad/s)} (44)
The bounds on the uncertainty set W were identified by run-
ning a series of experiments and taking the worse-case sce-
nario into account. This experimental method of determining
W is in line with previous works by Richards (2005a) and
Richards (2005b). In short, we recorded the deviation from the
undisturbed (assuming zero disturbance) and actual dynamics,
thereby giving us a range of values of w(k). The set W was
then selected to be sufficiently large so as to encompass all such
observed values w(k). The main sources of uncertainty were
identified as limited acceleration of the robot as well as a delay
of around 0.4s in the system. We found the following choice of
the set W to capture the size of the uncertainty/disturbances:

W= {[w1,w2,w3]
′ : |w1| ≤ 0.05(m), |w2| ≤ 0.05(m),

|w3| ≤ 0.05(rad)} (45)
The prediction horizon N was chosen to be N = 5. The state and
input weighting matrices were chosen as:

Q = QLQR =

[ 15 0 0
0 10 0
0 0 1

]
and

R = RLQR =

[
0.1 0
0 0.01

]
with LQR terminal weighting matrix Q f f chosen as Q f f = 10Q.

Three experiments were carried out by setting the initial error
of the robot with respect to the reference track (solid black
line from Fig. (1)) to three different values x01,x02 and x03
such that x01 = [−0.15,0.05,π/12]′, x02 = [0.10,−0.15,0]′ and
x03 = [0,0.2,0]′. The nominal (red/green/blue dashed lines) and
actual trajectory (red/green/blue solid lines) of the robot were
obtained from the planar plot of the states xc,yc and xc,yc re-
spectively. It can be seen that in Fig. (1), regardless of the initial
position of the robot, the nominal trajectories (red/green/blue
dashed lines) which are derived from the ideal model of the
system, always converge to the reference track (solid black
line). Due to the effect of uncertainties acting on the ac-
tual system (e.g. delays), the actual trajectories (ref/green/blue
solid lines) wobble around the respective nominal trajectories

(red/green/blue dashed lines) without getting too far away from
them, thereby validating robust performance of the proposed
algorithm.
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Fig. 1. Plot of the reference (solid black line), the ac-
tual (solid red/green/blue line) and the nominal (dashed
red/green/blue line) trajectories of the Pioneer P3 − DX
mobile robot, for all three experiments.
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Fig. 2. Plot of the reference (solid black line), the ac-
tual (solid red/green/blue line) and the nominal (dashed
red/green/blue line) input vc to the Pioneer P3−DX mo-
bile robot, for all three experiments

Figures (2) and (3) depict the reference (solid black line),
the nominal (dashed red/green/blue line) and the actual (solid
red/green/blue line) linear velocity vc and angular velocity ωc,
which are the control inputs to the mobile robot. When the
nominal input is applied to the disturbance-free system, the
actual input which is formulated as uc + ucor ensures that de-
spite the uncertainty w, the robot performs robust reference
tracking. Also, for all three experiments, the nominal inputs
(dashed red/green/blue line) vc and ωc are active over an in-
terval at the beginning of the experiment thereby steering the
disturbance-free trajectories (dashed red/green/blue line) from
Fig. (1) to the reference track. The actual inputs vc and ωc wob-
ble around vc and ωc respectively, due to the action of ucor(k)
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Fig. 3. Plot of reference (solid black line), actual (solid
red/green/blue line) and nominal (dashed red/green/blue
line) input ωc to the Pioneer P3−DX mobile robot, for all
three experiments.

from expression (33), which corrects/suppresses the effect of
uncertainty w(k) on the system, therefore ensuring system ro-
bustness. Moreover, it can be seen that the actual inputs (i.e.
[vc,ωc]

′) to the robot stay within the assigned constrain sets Uc
from expression (44), illustrating robust constraint satisfaction.

5. CONCLUSION

This paper presented a tube-based robust MPC (RMPC) control
algorithm with an application to the problem of mobile robot
unmanned path tracking. The improved formulation of the tube
in this work over previous robust MPC methods employing
tubes, is based on the prediction of the difference between
the actual uncertain system and the nominal disturbance-free
system. Also, a corrective feedback controller (formulated as
a time-varying finite-horizon LQR) ensures regulation of the
actual system around the nominal system within the desig-
nated tubes, guaranteeing robust performance. The proposed
formulation of the corrective feedback controller is very light
in terms of computational complexity, thereby making the pro-
posed algorithm applicable within a real-time setting. To verify
robust performance of the proposed RMPC algorithm, a series
of experiments were conducted employing a Pioneer P3−DX
mobile robot. The proposed RMPC algorithm was applied to a
Pioneer P3−DX robot to perform unmanned path tracking. The
experimental results illustrate robust and stable performance of
the proposed RMPC control algorithm.
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