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Abstract: Classification methods with embedded feature selection capability are very appealing
for the analysis of complex processes since they allow the analysis of root causes even when
the number of input variables is high. In this work, we investigate the performance of three
techniques for classification within a Monte Carlo strategy with the aim of root cause analysis.
We consider the näıve bayes classifier and the logistic regression model with two different
implementations for controlling model complexity, namely, a LASSO-like implementation with a
`1 norm regularization and a fully Bayesian implementation of the logistic model, the so called
relevance vector machine. Several challenges can arise when estimating such models mainly
linked to the characteristics of the data: a large number of input variables, high correlation
among subsets of variables, the situation where the number of variables is higher than the
number of available data points and the case of unbalanced datasets. Using an ecological and
a semiconductor manufacturing dataset, we show advantages and drawbacks of each method,
highlighting the superior performance in term of classification accuracy for the relevance vector
machine with respect to the other classifiers. Moreover, we show how the combination of the
proposed techniques and the Monte Carlo approach can be used to get more robust insights
into the problem under analysis when faced with challenging modelling conditions.

Keywords: Logistic Regression, LASSO, Relevance Vector Machine, Näıve Bayes Classifier,
Semiconductor Manufacturing, Fault Detection.

1. INTRODUCTION

As computers and sensors advance rapidly, the amount of
data available is continuously increasing in all the major
fields of science and industry, from biomedics [Saeys et al.
(2007); Zanon et al. (2013)] to semiconductor manufac-
turing [Susto et al. (2012)], just to cite a couple. Two
factors contributing to this growth are the increasing di-
mensionality of the measurement space, due to the in-
creasing number of sensors and features used to describe
a particular problem, and the increasing capacity to store
large volumes of data. Dealing with high dimensionality
is a particularly challenging problem, when attempting
to estimate models that can be used to provide a better
understanding of underlying systems. A key requirement
here, is that some form of variable or feature selection
is undertaken as part of the modelling process. Previous
work [Inza et al. (2004); Saeys et al. (2007); Dash and
Liu (1997)] divided the techniques for variable selection
into three main categories: filter, wrapper and embedded
models. Filter methods generally consist of a two-steps
approach, where a pre-processing phase is used to identify
a smaller subset of variables which are subsequently used
as inputs in a standard modeling algorithm; examples of
? The financial support of the Irish Centre for Manufactur-
ing Research and Enterprise Ireland (grants CC/2010/1001 and
CC/2011/2001) are gratefully acknowledged.

these techniques are those based on correlation analysis.
Wrapper methods instead embed the model search pro-
cedure within the feature subset search. In practice, a
search procedure in the space of possible features subset
is defined, and various subsets of features are generated
and evaluated. Perhaps the best known example in this
category is the stepwise selection strategy, where variables
are added (or deleted) one at the time [Guyon and Elisseeff
(2003)]. Finally, embedded methods estimate at the same
time the model and select the most useful features. The
last class of techniques is the more appealing since the
variable selection procedure is embedded in the model es-
timation phase and does not require additional algorithm
steps [Bastani et al. (2012); Tibshirani (1996)].

Here, we consider the analysis of root causes in classifica-
tion tasks. Often, only poor quality data are available. For
example, the classification problem can be ill-conditioned
because the number of input variables is greater than the
number of data samples. For this reason, we embed sparse
classification techniques within a Monte Carlo framework
with the aim of dealing with the poor data and returning
a more robust analysis of the root causes.

The paper is organized as follows: Section 2 presents an
overview of the techniques considered in this work, namely
the näıve bayes (NB) classifier, the logistic regression
model with `1 norm regularization and the relevance vector
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machine (RVM), a fully Bayesian treatment of the logistic
regression model; Section 3 then describes the Monte Carlo
strategy for root cause analysis while in Section 4 the two
datasets are presented. Finally, Section 5 highlights the
results for the three models and in Section 6 some final
remarks are provided.

2. SPARSE CLASSIFICATION TECHNIQUES

In this work, we consider the following notation for the
data: input variables are collected in an (n× p) matrix X,
where p represents the number of variables (or features)
and n the number of observations. The symbol xi indicates
the (1 × p) vector collecting the p variables for the i-
th observation. The (n × 1) output vector Y collects the
class to which each observation belongs. All the datasets
described in Section 4 have two classes (k = 2), thus the
output variable can assume only two values, i.e. yi ∈ {0, 1}.

2.1 Näıve Bayes Classifier

Optimal classification for a data point (xi, yi) with the
näıve bayes (NB) classifier is done by calculating the class
posterior for that point p(yi|xi), namely, the probability
that an observation belongs to one of the two classes given
the data [Hastie et al. (2009)]. The class posterior for the
k-th class is calculated by applying Bayes’ theorem:

p(yi|xi) =
fk(xi, θk)πk∑K
k=1 fk(xi, θk)πk

(1)

where πk is the prior probability of each class and is defined
as πk = nk/n where nk is the number of observations in
the k-th class. For continuous input variables, fk(xi, θk)
can be modeled as a Gaussian distribution parametrized
by θk = (µk,Σk), where µk and Σk are the sample mean
and the covariance matrix calculated from the portion of
data matrix X corresponding to the two classes. fk(xi, θk)
represents the class-conditional density of the data point
xi in one of the two classes k and is also known as the
likelihood:

fk(xi, θk) = p(xi|yi) =

=
1

(2π)p/2|Σk|1/2
e−

1
2 (xi−µk)T Σ−1

k
(xi−µk) (2)

The NB model assumes that the input variables are
conditionally independent in each class. This is a strong
assumption, not always satisfied, but found to work well
in practical applications [Hastie et al. (2009)]). The data
point (xi, yi) is assigned to the class giving the highest
value of the posterior calculated in (1).

The NB model formulation does not include an implicit
methodology to perform variable selection. Instead, a step-
wise (forward or backward [Guyon and Elisseeff (2003)])
strategy can be used. For sake of space, we refer the reader
to [Guyon and Elisseeff (2003); Hastie et al. (2009)]. This
procedure is performed at step 7 of Algorithm 1.

2.2 Logistic Regression and `1 Norm Regularization

A linear regression model is a model where a set of input
variables are linearly combined through a set of coefficients
with the aim of estimating one (or more) quantitative
output variable. In logistic regression, the model output

is constrained to assume only a limited number of values,
transforming it into a classification problem. In order to
constrain the output of the logistic regression model to
only two values (since we have two classes), a logistic
sigmoid function is considered. This function links the
probability of an outcome to the linear combination of
the input variables. As an example, if the model output
σ(xiβ+ β0) assumes values lower than 0.5, than the point
xi is assigned to class 1, otherwise it belongs to class 2:

σ(xiβ + β0) =
e(xiβ+β0)

e(xiβ+β0) + 1
=

1
e−xiβ + 1

(3)

Hereafter we assume, for convenience, that the intercept
coefficient β0 is incorporated into the vector β. The output
variable yi can be regarded as being Bernoulli distributed,
since it can only assume two values. The outcome yi is
thus determined by a probability pi if yi = 1 or 1 − pi if
yi = 0. In a more compact form this can be written as:

Pr(yi|xi) =
{
pi if yi = 1
1− pi if yi = 0 (4)

or as:
Pr(yi|xi) = pyi

i (1− pi)1−yi (5)

The parameter vector β of the logistic model is estimated
in such a way that the probability in (5) is maximized for
each data point. This is better known as the maximum
likelihood estimate, namely, find the β that is most likely
to have generated the data. Formally, the likelihood is
given by the product of (5) for each data point i = 1, . . . , n:

l(β|X,Y ) =
n∏
i=1

pyi

i (1− pi)1−yi . (6)

Substituting (3) in (6) and taking the logarithm we obtain
the log-likelihood:

logl(β|X,Y ) =
n∑
i=1

yilog(σ(xiβ))+

+ (1− yi)log(1− σ(xiβ)) (7)
that is maximized to obtain an estimate of the parameter
vector β̂. As mentioned in Section 1, we are seeking a
model with a sparse vector β with few non-zero coefficients
in order to improve interpretability and identify only
important variables. For this purpose, a term can be added
to the likelihood function that has the role of penalizing
complex models. In particular we consider an `1 term
that penalizes the sum of the absolute values of the
model coefficients. In the literature, this type of model
regularization approach is known as the Least Absolute
Shrinkage and Selection Operator (LASSO) [Tibshirani
(1996)]. The trade-off between likelihood maximization
and model complexity is governed by the regularization
parameter λ(≥ 0) [Friedman et al. (2010)]:

logl(β|X,Y ) =
n∑
i=1

{yilog(σ(xiβ))+

+ (1− yi)log(1− σ(xiβ))} − λ
p∑
j=1

|βj | (8)

The logistic regression solution with `1 regularization
penalty is given by the argument that maximize the
cost function (8), which can be found using a coordinate
descent-based algorithm [Friedman et al. (2010)], while
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the parameter λ in (8) is usually chosen through a cross-
validation procedure. This step is performed at point 7 of
Algorithm 1. For further details see [Hastie et al. (2009)].

2.3 Relevance Vector Machine

The relevance vector machine (RVM) is a fully Bayesian
treatment of the logistic regression model [Tipping (2001)].
The model is obtained by combining the logistic linking
function (3) and the Bernoulli distribution (5) to obtain
the likelihood function of eq. (6). It is well known in the
literature that estimating β to maximize the likelihood
can lead to severe overfitting [Hastie et al. (2009)]. To
avoid this, a ”complexity“ penalty term was added to the
likelihood function for estimating the previous model. The
`1 norm controls complexity inducing sparseness on the
parameter vector coefficients, shrinking many coefficient
of the logistic model to zero. In the RVM model, a fully
Bayesian perspective is considered instead. The param-
eters of the logistic model are constrained by defining
a prior probability distribution over the coefficients. A
popular choice is the zero-mean Gaussian prior:

p(β|α) =
p∏
j=1

N
(
βj |0, α−1

j

)
(9)

where α is a vector of hyperparameters. Note how there
is an individual hyperparameter associated with each
coefficient βj . In order to complete the specification of
the hierarchical prior we should define hyperpriors over
the vector α. For the purpose of this work, we do not
report them here and refer to [Tipping (2001)] for further
details. The above formulation of the prior distributions is
also known as automatic relevance determination (ARD)
[MacKay (1992b); Neal (1996)]. The basic idea is that only
important variables are selected if there is enough evidence
in the data. The priors over the model coefficients are
initialized with large values (small αj ’s), in such a way that
all variables are considered important at the beginning.
The evidence from the data will then concentrate the
posterior probability at very large values for some of the
αj , with the consequence that the posterior probability
of the associated weights will be concentrated to zero,
effectively “switching off” the corresponding variables. A
practical advantage of this formulation is that the model
complexity is automatically determined from the data
and thus the RVM model does not need cross-validation
for model order selection. Estimation of the quantities
of interest in a Bayesian framework (i.e., inference) is
obtained by computing the posterior over all unknowns
given the data following the Bayes’ rule:

p(β, α|Y ) =
p(Y |α, β)p(α, β)

p(Y )
(10)

The posterior (10) cannot be computed directly, thus an
approximation procedure based on Laplace’s method can
be used [MacKay (1992a); Tipping et al. (2003)].

3. MONTE CARLO SIMULATIONS FOR ROOT
CAUSE ANALYSIS

In statistical modeling, several issues can arise mainly
related to the high number of features. In particular, the
situation where the number of variables is high compared

to the number of available data points (p > n) leads to
ill-conditioned problems, calling for techniques able to si-
multaneously handle input selection and model coefficient
estimation. Then, from a classification point of view, there
is also often the necessity to handle unbalanced datasets
(skewed data), where the difference between the number
of samples in the two classes can reach one or two orders
of magnitude. In this section, we describe a Monte Carlo
(MC) strategy to handle the aforementioned issues in order
to perform a robust root cause analysis.

3.1 Model Setting

Assessing the quality of the model on a set of observations
of the phenomena that has not being used for model con-
struction is essential for a fair evaluation of the prediction
performance of the proposed model; for this reason, usually
the available dataset of n samples is split into two parts:

• a training dataset (qn samples, where 0 < q < 1),
which is used to construct the model;

• a test dataset ((1 − q)n samples), which is used to
assess the quality of the built model.

When only a limited number of observations are available,
the quality of the model strongly depends on the split
of the data. To avoid data related bias when evaluating
the performance of models, repeated random sub-sampling
validation [Picard and Cook (1984)], also known as Monte
Carlo cross-validation (MCCV), can be used. Briefly, as
described in Algorithm 1, this involves performing an
analysis on K1 different random splits of the available
observations into training/test datasets. Thus, K1 differ-
ent models are built and the performance of the models
are assessed as the average model performance over K1

simulations. For consistent results, K1 needs to be a large
number (of the order of hundreds/thousands). Moreover,
in a classification problem, the dataset can be unbalanced,
with one class having a much lower number of instances
than the other one. To handle this problem, an undersam-
pling strategy can be used where at each MC iteration
a new dataset is built randomly undersampling the most
numerous class. The cross-validation procedure at step 7
of Algorithm 1 is required in order to estimate the number
of variables entering the model for the NB model and the
complexity parameter λ for logistic regression (see Section
2). Step 7 is repeated K2 times and the median among
the K2 complexity values is considered for estimating the
model during the i-th MC iteration.

Classification accuracy at each MC simulation on the test
dataset for the models under consideration is measured
in terms of misclassification error (MCE). The MCE
is calculated as the number of errors in predicting the
outcome variables over the test dataset (e) normalized by
the number of points in the test dataset ((1− q)n):

MCEk =
e

(1− q)n
k = 1, . . . ,K1 (11)

Accuracy of the models is also measured by the Receiver
Operating Characteristic (ROC) curves, showing the True
Positive Rate (fraction of true positives out of the total
actual positives) vs. the False Positive Rate (fraction of
false positives out of the total actual negatives) for various
threshold values. The Area Under the Curve (AUC) can
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Algorithm 1: Monte Carlo cross-validation with un-
dersampling for handling unbalanced datasets.

Data: Input matrix X, class labels vector y
Result: Misclassification error (MCE), Frequency

vector F of ranked variables
1 Set K1 and K2 ;
2 Set F = 0p;
3 for i = 1 to K1 do
4 Build a balanced dataset, randomly

undersampling the most numerous class;
5 Split the balanced dataset into training and test

datasets;
6 for j = 1 to K2 do
7 Cross-validation for complexity parameter

estimation;
8 Choose the complexity parameter as the median

among the K2;
9 Identify models using the training dataset;

10 Test algorithms on test dataset;
11 Let A be the set of parameters selected by the

model with non-null coefficients;
12 for jj = 1 to p do
13 Set F (jj) = F (jj) + 1 if the j-th variable xjj

is in A;

be calculated from the ROC curves, and is considered here
to summarize the results obtained with Algorithm 1, since
it would be infeasible to plot ROC curves for each K1

MC simulation. The AUC ∈ [0, 1] where “1” indicates
the “perfect” model, while “0.5” indicates a completely
random guess.

3.2 Ranking

The techniques illustrated in Section 2 return sparse mod-
els that can be used to identify important variables for the
current classification problem: only those variables whose
coefficients are not shrunk to zero may be considered as the
ones that really affect the output, and therefore marked
as “important”. Variables are thus ranked according to
their importance: a “1” or a “0” is assigned to a variable
if its coefficient is either different from zero or not. As
can be seen in lines 11-13 of Algorithm 1, this is done
for each of the K1 MC iterations, providing a count of
the number of times a variable enters the model. In this
way, a more robust computation of the root causes for the
current problem can be obtained. However, when subsets
of the input data are highly correlated, a more robust root
cause procedure for identifying significant variables can
be obtained by counting the frequency with which groups
of highly correlated variables are selected, as opposed to
individual variables. This strategy compensates for the
so-called grouping effect affecting techniques based on `1
norm regularization [Zou and Hastie (2005); Zanon et al.
(2013)]: if there is a group of highly correlated variables
then the algorithm tends to select only one of them from
the group and does not care which one is selected. Conse-
quently, the procedure in Algorithm 1 may not correctly
identify a significant contribution from such groups be-
cause the frequency of selection will be spread across the
different variables from the group that are selected in each
MC model. Thus, variables presenting correlation greater

than a certain threshold are first grouped into clusters.
The ranking of groups is then obtained by assigning during
each MC iteration a “1” to those groups presenting at least
one variable in the model.

4. DATASETS

Table 1 shows the characteristics of the two datasets
considered in this work.

Table 1. Datasets summary. The last col-
umn indicates the number of observations and
the relative percentage belonging to the two

classes.

Dataset name Observations Variables Samples distribution
(n) (p) (k = 1, 2) [ratio]

Abalone 4174 8 32/4132 [0.8/99.2 %]
Semiconductor 2194 1988 410/1784 [18.6/81.4 %]

4.1 Abalone Dataset

The age of abalone (a sea snail) is usually determined by
cutting the shell, staining it, and counting the number of
rings through a microscope. Other measurements, like shell
weight, diameter and others can instead be collected with
the aim of estimating the age [Warwick et al. (1994)]. In
this dataset the age is divided into two classes, namely
older than or younger than 19 months. This dataset is
particularly skewed, with 99.2% of the data corresponding
to the second class (< 19 months).

4.2 Semiconductor Dataset

In the semiconductor manufacturing industry, virtual
metrology refers to the use of models to predict “costly to
measure” key physical variables from more accessible in-
line measurements [Susto and Beghi (2013); Susto et al.
(2013)]. In this work, we consider the problem of pre-
dicting the plasma etch rate (ER) during the production
of silicon wafers. The in-line measurements are obtained
from optical emission spectroscopy (OES) data consist-
ing of 2048 wavelengths from which statistical moments
(mean, variance, skewness, etc.) are calculated. We recast
the prediction of ER into a classification problems with
the aim of classify out-of-spec ER measurements (outside
reference values) and identify input variables that help to
identify these events. In order to deal with the potentially
high number of features extracted from the data (each
statistical moment is calculated for each wavelength), only
features presenting a reasonably good correlation with
ER are used as candidate variables to build the models
[Guyon and Elisseeff (2003)]. This dataset presents high
collinearity among subsets of variables, whose number is
also substantially greater than the number of out-of-spec
measurements, leading to a situation where p > n when
we consider the undersampling strategy for dealing with
the unbalance between the two classes.

5. RESULTS

Each dataset presented in Section 4 underwent the MC
analysis reported in Section 3. In order to have statistically
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reliable results we chose to perform K1 = 1000 MC
simulations. Moreover, the training set dimension was set
to 70% of the total data available with the remaining
30% used for testing. The results are reported in terms
of: (a) Distribution of the MCE and AUC as defined in
Section 3 over the K1 MC simulations. Table 2 and Table
3 summarizes the results for each model on each dataset
in terms of the mean and standard deviation of the MCE
and AUC respectively; (b) Ranking of the variables for the
purpose of root cause analysis.

Table 2. Mean and standard deviation of the
misclassification error distribution obtained

from the MC analysis.

NB-SF NB-SB LASSO RVM

Abalone .327 .325 .283 .244
(.13) (.128) (.129) (.119)

Semiconductor - - .24 .218
(-) (-) (.029) (.028)

Table 3. Mean and standard deviation of the
AUC distribution obtained from the MC anal-

ysis.

NB-SF NB-SB LASSO RVM

Abalone .746 .745 .813 .824
(.133) (.133) (.123) (.125)

Semiconductor - - .822 .873
(-) (-) (.053) (.025)

i) Abalone dataset: Subsets of input variables are
highly correlated, causing the NB methods to suffer the
greedy nature of the stepwise strategy. This results in
higher error distributions with respect to both LASSO
and RVM models (see Table 2 and Table 3). Moreover,
RVM outperforms the LASSO in term of classification
accuracy. Table 4 shows that LASSO and RVM still agree
on the selection of the top four most ranked variables
(i.e. shell weight, shucked weight, height and sex ), while
the NB models do not consider shucked weight. The
stepwise forward strategy returns a more parsimonious
model than the backward one, where in general variables
are selected less often. ii) Semiconductor dataset:
For this dataset, the NB models cannot be computed
since the balanced dataset built at each MC iteration
has p > n and hence the estimate of the covariance
matrix Σk is singular and cannot be inverted (see eq. (2)).
Thus, for this dataset, only the results for the LASSO
and RVM models will be presented. Table 2 highlights
how RVM slightly outperforms the LASSO model in term
of classification accuracy. An MCE of 22% is achieved
when classifying out-of-spec ER measurements. Moreover,
Table 3 shows that RVM has a significantly higher AUC
calculated from the ROC curves. In order to analyze the
root causes in terms of the parameters that can predict
these faulty measurements, ranking of the input variables
is required. Given the high level of correlation between
subsets of the input variables, we do not consider the
ranking of the single variables since they are present in the
ranking several times without bringing additional useful
information. A better strategy is to consider the ranking
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Fig. 1. ROC curves for the LASSO (blue) and RVM (red)
models obtained during a MC itaration.

of groups of variables, or clusters, obtained according to
the procedure explained in Section 3. Table 5 shows that
there is a good agreement among the first ranked clusters
for the two models. The ranked clusters with the LASSO
model tend to have a lower frequency of selection compared
to the RVM model. This is consequence of the fact that
LASSO generates more parsimonious models than RVM,
with a mean of 8 variables selected compared to 52 with
RVM over the MC simulations. This suggests that the
RVM model is less prone to the grouping effect than the
LASSO model.

Table 5. Variables ranking for the LASSO and
RVM models for the semiconductor dataset.

LASSO RVM
cluster name rank [%] cluster name rank [%]

1 100 1 99.3
11 86.4 11 99
31 68 2 96.5
5 57.9 15 68.5
2 52.3 20 65.4
6 49.2 12 63.1
15 28.3 33 48

6. CONCLUSIONS

Increasingly high dimensional datasets are being encoun-
tered in different fields of study from biomedics to manu-
facturing. To handle such datasets effectively techniques
are required that can integrate variable selection with
model building in a robust and efficient manner. In par-
ticular, there is a requirement to have sparse models to
facilitate root cause analysis. Here, three different sparse
classification techniques have been investigated and a MC
approach proposed as a means of robustly identifying root
cause variables when faced with challenging modelling
scenarios. The scenarios in question are: (1) a large num-
ber of candidate input variables p; (2) strong correlation
among subsets of input variables; (3) samples distributed
unevenly between classes (i.e. skewed datasets). While the
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Table 4. Variables ranking for the NB (Stepwise forward and backward), LASSO and RVM
models for the abalone dataset.

NB-SF NB-SB LASSO RVM
var name rank [%] var name rank [%] var name rank [%] var name rank [%]

height 69.3 shell weight 70.8 shell weight 82 shucked weight 86.2
shell weight 41.6 height 55.3 shucked weight 80.1 shell weight 63.2

sex 32.3 sex 37.8 height 75.1 height 61.3
length 9.3 viscera weight 21.5 sex 57.3 sex 33.9

whole weight 5.5 diameter 13.5 viscera weight 19.8 whole weight 30.6
diameter 5 shucked weight 12.7 diameter 16.1 viscera weight 30.4

shucked weight 3.1 whole weight 10 whole weight 14.1 diameter 20.5
viscera weight 1.2 length 6.7 length 12.7 length 16.4

first two scenarios cause the problem to be ill-conditioned
or singular (as was the case with the NB model applied
to the semiconductor dataset), the third one is more
subtle and must be handled though a suitable sampling
strategy. Here, a new dataset is generated at each MC
iteration with an equal number of samples in each class
by randomly under-sampling the most numerous class.
While this approach does exacerbate the numerical issues
with model estimation (since the situation p > n is more
likely to happen) it ensures unbiased results. Results for
two benchmark problems suggest that among the different
models, the RVM is the more appealing one for several
reasons. First, it shows better classification accuracy with
respect to the other models. In particular, the NB models
seem to suffer from the greedy nature of the stepwise
framework and cannot be computed when p > n, as was
the case with the semiconductor dataset. Moreover, this
model was the worst of the 3 methods (NB, LASSO and
RVM) for the ecological dataset. Classification accuracy
and ranking of the LASSO model is comparable with that
of RVM, but the latter is more appealing for computational
reasons since the fully Bayesian treatment obviates the
need for cross-validation procedures. Finally, in order to
deal with the grouping effect when there is high correlation
among variables, as evident in the semiconductor dataset,
a cluster ranking algorithm has been proposed which
focuses on analysing clusters of similar variables rather
than individual variables. This ensures that important root
cause patterns distributed over a group of variables are not
overlooked.
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