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Abstract: Two-string fuzzy inference consists of two separate inference mechanisms: One
conventional fuzzy inference system that processes recommending rules, as well as a mechanism
for processing negative rules, which prevent the system from outputting their associated
values when their premise is fulfilled. Two-string inference has valuable applications in pattern
recognition and control tasks. We present a method rendering two-string inference applicable
and computationally feasible in recurrent fuzzy systems, i.e. Mamdami-type fuzzy inference
systems equipped with defuzzified state feedback. We show the efficiency of our approach by
means of an illustrative example from biological systems modelling and suggest application areas
for recurrent two-string fuzzy systems.
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1. INTRODUCTION

Function approximators are often employed to design con-
trollers, classificators, or system models. When analyti-
cal process models are nonexistent or too expensive to
obtain, function approximators supply at least approx-
imate models that are often satisfactory for practical
applications. Besides neural networks, which are trained
by machine learning algorithms from scratch to minimize
approximation error, fuzzy inference systems allow for an
interactive design stage, where human expert knowledge
can be combined with automated parameter or structure
optimization. Basically, such systems operate as rule-based
transition systems on symbols, where the underlying ap-
proximation is achieved by linear interpolation between
set points to which aforementioned symbols refer. The
advantage of fuzzy methodology is that such rule-based
transition systems can in principle be directly interpreted
by humans and thus offer a possibility to create transparent
systems. System transparency, on the other hand, affords
an upper bound on the number of symbols on which the
rules are based. This point bears difficulties, as the uni-
versal approximator property of fuzzy systems was derived
under the condition of an unbounded rule base, as was
emphasized in Klement et al. [1999].

Moreover, the design stage of fuzzy systems is often not
fully interactive, as it is generally difficult to achieve
locally limited effects by tuning from hand, since tuning
parameters or structure often, due to interlocking effects,
results in completely different behavior. These problems
can be adressed by trading size for internal complexity
through the establishment of more complex inner semantic
structure, provided that said structure reflects the way a
human expert would think about the system to model. To
this end, two-string fuzzy inference has been introduced.

Conventional fuzzy systems have one inference string
which processes rules that can be considered as produc-
tion rules. They are constructive, in the sense that they
recommend the system to produce a certain output value,
given a certain input value. Two-string fuzzy systems are
augmented with a second, separate inference string that
processes negative rules. This inference mechanism can be
thought of as destructive, its effect is to prevent the system
from outputting a certain output value when a certain
input value occurs.

Two different approaches to two-string inference have been
developed independently from another around 1995: (i)
Hyperinference and -defuzzification, presented for example
in Kiendl [1997], and (ii) p/n fuzzy systems, which have
been developed in Branson and Lilly [2001]. While there
are technical differences, both approaches rest on a similar
conceptual basis. Also, both have been successfully applied
to real world applications: p/n fuzzy systems for control of
an omnidirectional mobile robot in Lilly [2007] and image
classification in Ngyuen and Wu [2008], Hyperinference
and -defuzzification for pattern recognition in Guarracino
et al. [2013], different control engineering problems in
Kiendl [1998] and Krause [1999], and control of an indus-
trial robot in Schwane et al. [1997]. The Hyperinference ap-
proach allows for flexible combination of recommendations
and warnings through the use of different veto strategies,
leading to variations of two-string inference that differ in
the underlying interpretation of warnings and how they
should influence the system output. Therefore, we consider
this approach.

Hyperinference and -defuzzification has been designed for
the application in static fuzzy systems. However, in the
past years there has been growing interest in dynami-
cal fuzzy systems, i.e. systems with internal states that
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are taken into account when producing a new output
value. Besides the well known Takagi-Sugeno fuzzy sys-
tems, which are not further discussed here for the sake
of brevity, recurrent fuzzy systems have been developed.
Recurrent fuzzy systems achieve dynamic modelling ca-
pabilities through a defuzzified state feedback. Since a
Mamdami-type inference scheme is employed, this system
class offers means for transparent and interpretable system
design.

Recurrent fuzzy systems (RFS) were introduced indepen-
dently by Gorrini and Bersini [1994] and Adamy [1995].
The latter mentioned work has been motivated by their
characterization as fuzzy automata. Therein, RFS have
been used as a fault detection system in an industrial
steel casting system. In the former mentioned work, RFS
have been studied as fuzzy counterparts to recurrent neural
networks. The system class has then further been devel-
oped in Kempf and Adamy [2003] In Adamy and Kempf
[2003], the dynamic behavior of discrete-time RFS has
been studied and conditions for chaotic behavior, as well
as for automatonlike-ness and stability have been derived.
Furthermore, based on the original application of RFS
as pattern recognition automata, a general method for
sequential pattern recognition employing RFS has been
developed in Kempf and Adamy [2004]. Later, RFS were
independently used for dynamical systems modelling and
process fault detection on the basis of a gradient-based
learning method in Schwung [2011], and mobile robot
control in Surmann and Peters [2000], using a genetic
learning algorithm which has been presented in more detail
in Surmann and Maniadakis [2001]. In Flemming [2008],
the system class was extended to continuous-time models,
which have been shown to be well suited for approximating
quantitative dynamics of a system.

Since the prevailing application areas of recurrent fuzzy
systems and two-string inference, respectively, are largely
congruent, equipping this system class with two-string
inference could increase its application potential in these
areas. Kiendl [1997] mainly considers complex output
membership functions, where the actual output value of
the system depends on membership function values on
a whole interval of possible output values. This, as the
author ackknowledges, is suboptimal concerning compu-
tational practicabillity. To achieve computational feasibil-
ity in recurrent fuzzy systems, Center-of-Singleton (CoS)
defuzzification is employed, allowing for efficient computa-
tion of the output value as a weighted sum. Unfortunately,
Hyperdefuzzification does not apply well to singleton out-
put membership functions, as ackknowledged by Schwane
et al. [1997]. The main problem is that in any gravity-
based defuzzification scheme, a ’best compromise’ in form
of a medium value with respect to the output membership
function is found, which can result in output values which
the negative inference string strongly forbids.

The contribution of this paper is twofold: On one hand,
we present a method to overcome this problem, therefore
rendering singleton-based two-string inference feasible for
use in recurrent fuzzy systems. On the other hand, we
outline the benefits of augmenting RFS with two-string
inference for applications in control engineering, pattern
recognition and dynamical systems modelling. This paper
is organized as follows: After recapturing the method of

Hyperinference and -defuzzification, we recall the basic
definitions of recurrent fuzzy systems. Then, the proposed
method is described, followed by a simulation example of
a biological systems model to illustrate the efficiency of
our approach. Eventually, we give a final discussion and
present further work.

2. PRELIMINARIES

2.1 Hyperinference and -defuzzification

In standard fuzzy systems, the inference mechanism is
considered to work constructive in the sense that the rule

R+
r : IF Lu

k AND Lx
l THEN Ly

m (1)

recommends the output in the conclusion to the extent to
which the premise of the rule is satisfied. Negative rules
have the form:

R−r : IF Lu
k AND Lx

l THEN Ly
m FORBIDDEN. (2)

In the remainder of this paper, we will omit the ’FORBID-
DEN’ statement, for the label of a rule already indicates
whether it is positive or negative.

Three different mechanisms for combining the outputs of
both inference strings were proposed: strong veto, weak
veto and fuzzy veto. Strong and weak veto inference cal-
culates the resulting output membership values only on
the basis of the recommendations, while the inhibitions
are employed to nullify the resulting output membership
function whenever a certain warning level is exceeded. For
every x ∈ X, strong veto means

µ(x) =

{
µ+(x), if µ−(x) = 0

0, else,
(3)

while weak veto is defined as

µ(x) =

{
µ+(x), if µ+(x) ≥ µ−(x)

0, else.
(4)

Fuzzy veto, however, is based on a gradually destructive
inference, where a fuzzy AND-operator is used to combine
recommendations with ’not-inhibitions’. The rationale be-
hind this is to reduce the recommendation of an output
value according to the strength with which this value is
inhibited. Kiendl [1997] studies three different versions of
fuzzy veto:

µ(x) = µ+(x) ∧ ¬µ−(x)

=


µ+(x) · (1− µ−(x)) prod-veto

min(µ+(x), (1− µ−(x))) min-veto

max(0, µ+(x)− µ−(x)) diff-veto,

(5)

all of which show distinctly different behavior.

In each case, the support of the resulting admissible out-
puts membership function may not be connected on its
whole domain. This raises the question, how to produce
a reasonable compromise between the recommendations
and warnings produced by positive and negative inference,
respectively. When using naive CoS-defuzzification, output
values in strongly forbidden regions can occur as output
values due to the calculation of output by linear inter-
polation between allowed core positions. An exemplary
situation for this problem is depicted in Figure 1.

The method of Hyperdefuzzification considers each con-
nected component of the support of the admissible output
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Fig. 1. An example where every Hyperinference strategy
leads to an output membership function that can not
reasonably be processed by CoS-defuzzification

region separately, e.g. by Center-of-Gravity or Mean-of-
Maximum defuzzification, and outputs a value with respect
to some criterion, for example largest-area or maximum-
membership-value. This yields considerable computational
effort in larger systems. Therefore, Kiendl [1997] also has
introduced simplified methods for fast computation, which
are based on a generalized defuzzification scheme called
inference filter. The approach presented in the following
section can be conceived as a pure singleton-based alter-
native to these methods, which we do not discuss in greater
detail at the moment due to space restrictions.

2.2 Recurrent Fuzzy Systems

In the following, the definition of RFS as given in Kempf
[2004] is revisited. Note that we omit the time-continuous
case, for which we refer to Flemming [2008], since extend-
ing our approach to this situation is completely straight-
forward. A recurrent fuzzy system is characterized through
the state space equation

x(k + 1) = f(u(k), x(k)). (6)

The function f in (1) consists of a complete fuzzy system
with fuzzification, inference and defuzzification. In the case
of multiple input/output systems, f is a vector function.
The algebraic product is used as implication and AND-
operator, for the OR-operator the normal sum is used,
which allows for efficient computation. In principle, the
definition of RFS also encompasses a dedicated output y,
which is realized by means of a separate fuzzy system,
but since this output does not contribute to the system
dynamics and may not even exist in some cases, it will be
omitted. Later, we in fact use y as a placeholder-variable
to refer to possible system outputs at time k, in contrast
to x(k) which is an input variable to the system. This
is necessary because the explicit time-dependence of the
components of u, x will in further be omitted to save space.

Let the input space U = [umin, umax] ⊂ Rm and the
state space X = [xmin, xmax] ⊂ Rn. Then, for each
j ∈ {1, . . . ,m}, the set L

uj

Ij
= {Luj

1 , . . . , L
uj

kj
} is a finite set

of linguistic values. Considering the state space, for each

i ∈ {1, . . . , n} there is also a finite set Lxi

Ii
= {Lxi

1 , . . . , L
xi

ki
}

of linguistic values.

To each linguistic value Lx (Lu), a corresponding member-
ship function µLx : X → [0, 1] (µLu : U → [0, 1]) together
with a maximum point at c(L) called core position, is asso-
ciated, which also have to fulfill the following conditions:

• (Convexity of support)
µx
L(x) monotonically increasing for x < cx(Lx)
µx
L(x) monotonically decreasing for x > cx(Lx)

• (Partitioning)
For Lx = {Lx

1 , . . . , L
x
k} and every x ∈ X, it holds that

k∑
j=1

µLx
j
(x) > 0

• (Feedback Correspondence)
µLx

i
(cx(Lx

i )) > 0 and µLx
i
(cx(Lx

j )) = 0 for j 6= i.

While they are written down for state variables only, to
save space, the first two conditions have to hold also for in-
put variables. The requirement of feedback correspondence
is made only for time-discrete systems and ensures that a
RFS behaves like a finite automaton on its core position
vectors, where the transition relation of the automaton is
given by the rule base of the system.

Usually, in standardized RFS, triangular and ramp-shaped
membership functions are employed, where the core po-
sitions of ramp-shaped membership functions are at the
intersection point of the constant part with the triangu-
lar part of the membership function. Thus, the following
condition holds for standardized RFS:

∀x ∈ X,
∑

Lx
i
∈Lx

µLx
i
(x) = 1. (7)

In the case of MIMO-systems, the above granulation of the
input/state-space is carried out component-wise.

The rules have the form:

IF ur1 = L
ur1

k1
AND . . . AND urj = L

urj

kj

AND xr1 = L
xr1

k1
AND . . . AND xri = L

xri

ki

THEN xp1 = L
xp1

k1
AND . . . AND xpl

= L
xpl

ki
.

(8)

For the rest of this paper, we will omit the explicit
statement of the variables within the rules, as the linguistic
values themselves already note to which variable they
belong.

The linguistic values and core position values can each be
combined to vectors q, p with m and n components, for
the input and state space respectively, so that rules can be
written in a more compact form:

Rr : IF Lu
Iq AND Lx

Ip THEN Lx
Ip . (9)

Using this form, a rule can also be interpreted as a mapping

w :

m∏
i=1

Ii ×
n∏

j=1

Ij →
n∏

k=1

Ik, (10)

which maps the index vectors representing the linguistic
value for each input and state variable in the premise of
a rule onto the index vectors that represent the recom-
mended values in each conclusion.

After fuzzification of the input values xi and uj yields
membership functions
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µxi

L
xi
1

(xi), . . . , µ
xi

L
xi
ki

(xi)

µ
uj

L
uj
1

(uj), . . . , µ
uj

L
uj
kj

(uj),
(11)

the activation of each rule, that is the extent to which the
input and state values fulfill the respective rule premise, is
calculated in the aggregation step to

µq,p(x, u) =
∏
i

µxi
qi (xi)

∏
j

µuj
pj

(uj). (12)

In the implication step of the inference procedure, the
membership function of every possible output value y, i.e.
its singleton membership function, is weighted with the
activations of the rules that contain the output value in
their conclusion:

µw(q,p)(x, u, y) = µq,p(x, u) · µSingleton
w(q,p) (y). (13)

Thereafter, the contribution of each rule Rk to the activa-
tion of every possible output value y is accumulated:

µacc(x, u, y) =
∑

w(q,p)

µw(q,p)(x, u, y)

=
∑

w(q,p)

µq,p(x, u) · µSingleton
w(q,p) (y).

(14)

Finally, a crisp output value is produced from the CoS-
defuzzification method. Summarizingly, this yields:

x(k + 1) =

∑
q,p
cx(Lx

w(q,p)) · µw(q,p)(x, u)∑
q,p
µw(q,p)(x, u)

. (15)

It was demonstrated in Kempf [2004], that if condition (7)
holds, (15) can be simplified to:

x(k + 1) =
∑
q,p

cx(Lx
w(q,p))

∏
i

µxi
qi (xi)

∏
j

µuj
pj

(uj). (16)

This is the standard computational framework for RFS
which is based on classical fuzzy inference. The remainder
of this paper is devoted to the extension of this framework
to two-string RFS that process classical, as well as negative
fuzzy rules.

3. RECURRENT TWO-STRING FUZZY SYSTEMS

3.1 Singleton-Based Hyperinference and -defuzzification

For simplicity we assume at first that the configuration
of membership functions in both inference strings are
equal (this assumption will be relaxed in the end of this
section). First, the inference result of both strings have
to be combined according to a Hyperinference strategy.
While strong and weak veto strategy lead to an output
calculated only by positive activations, which are nullified
when negative activation exceeds a certain level (zero for
strong and positive activation value for weak veto), fuzzy
veto is calculated by combining activation and inhibition
tendencies with a fuzzy AND-operator, for example alge-
braic product, minimum or bounded difference.

In this work, we consider strong, weak and fuzzy-difference
veto. The support of the admissible output membership
function that results from a given veto strategy can be
characterized by:

x∈supp(µ(X))⇔


µ−(x) = 0 strong

µ+(x)− µ−(x) ≥ 0 weak

µ+(x) ∧ ¬µ−(x) ≥ 0 fuzzy.

(17)

Only output values which are contained in this set are
admissible output values according to the Hyperinference
strategy. That implies that the activation value of single-
tons, which are contained in the support of this function,
can simply be scaled according to the value of the neg-
ative output membership function value at the singleton
position and the chosen Hyperinference strategy.

However, output singletons not contained in this set have
to be deactivated, and additionally it is to be ensured
that the defuzzified output value must be contained in
the support of the combined output membership function.
The idea to solve this problem and still be able to use
the convenient CoS-defuzzification method is to calculate
an output value for each admissible region, i.e. connected
subset of the support of the output membership function,
and then apply a choice function, selecting, for example,
the output with maximum output membership value.

More precise, if we let the range of admissible outputs
be denoted X = [xmin, xmax] and the associated linguistic
values be denoted Lx(X) = {Lx

1 , . . . , L
x
p}, we can write for

the support of µ on X:

I = supp(µ(X))

= {I1, . . . , Ij}
(18)

where Ik, Il are mutually disjoint subintervals ofX for k 6=l.
First, the partitioning I = {I1, . . . , Ij} of supp(µ(X)) has
to be calculated. In the case of strong veto Hyperinference,
supp(µ(X)) consists of compact intervals with endpoints
contained in cx(Lx(X)), i.e. core positions, and can be
calculated for each variable separately using Algorithm 1.

Algorithm 1 Calculating I for strong veto Hyperinference

j = 1, i = 1
while i < |cx(Lx(X))| do

if µ−(cx(Lx
i )) == 0 then

put cx(Lx
i ) in ILj

else
if ILj ! = ∅ then

j = j + 1
end if

end if
i = i+ 1

end while
for l ∈ {1, . . . , j} do

set Il
xmin

= (ILl )1
set Il

xmax

= (ILl )|IL
l
|

set Il = [Il
xmin

, Il
xmax

]
end for

However, when employing weak or fuzzy veto Hyperinfer-
ence, the endpoints of a subinterval Ik might not be core
positions anymore. In the case of weak veto and difference
veto, these endpoints are given by the intersection points of
µ+(X) and µ−(X). Thus, we have to create virtual single-
tons c∗ at these boundary points. The activation of these
singletons, i.e. their output membership values, can be cal-
culated by interpolating the positive output membership
function linearly between neighboring singleton positions.
This has the advantage that some local information about
the recommendations in the forbidden region is used for
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calculation of the output. In this situation, Algorithm 2
is employed to calculate the partitioning of the admissible
region in the output space, again separately for each state
variable. The virtual corepositions are calculated as the in-

Algorithm 2 Calculating I for weak and fuzzy veto
Hyperinference

j=1,i=1
while i < |cx(Lx(X))| do

if µ(cx(Lx
i )) == 0 then

if ILj ! = ∅ then

calculate cright
IL
j

put cright
IL
j

in ILj
j = j + 1

end if
else

if ILj == ∅ then

calculate cleft
IL
j

put cleft
IL
j

in ILj

end if
put cx(Lx

i ) in ILj
end if
i = i+ 1

end while
for l ∈ {1, . . . , j} do

set Il
xmin

= (ILl )1
set Il

xmax

= (ILl )|IL
l
|

set Il = [Il
xmin

, Il
xmax

]
end for

tersection point between µ+(X) and µ−(X) on a compact
interval bounded by two corepositions c1, c2 according to

xic =
c1 · δµ(c2)− c2 · δµ(c1)

δµ(c2)− δµ(c1)
, (19)

where
δµ(x) = µ+(x)− µ−(x). (20)

The output membership value at this point is then calcu-
lated by interpolating µ+(X) between neighboring corepo-
sitions:

µ+(xic) =
c1 − xic
c1 − c2

· µ+(c1) + (1− c1 − xic
c1 − c2

) · µ+(c2). (21)

Then, the system output can be calculated as:

xres = Ψ(xresI1 , . . . , x
res
Ij ), (22)

with some choice function Ψ, and

xresIk
=

∑
cxp∈Lx

Ik

cxp · µx
agg(cxp)∑

cxp∈Lx
Ik

µx
agg(cxp)

. (23)

Reasonable choices for Ψ would be selecting the subinter-
val that contains the largest membership function value or
the largest area under the membership function.

Now it is easy to see why assuming equal output mem-
bership function configurations in both inference strings
was unnecessary. It suffices to assume that, for each state
variable, the largest and the smallest coreposition of the
negative inference string are enclosed by corepositions of
the positive string. Since it is possible to interpolate the

output membership functions linearly between neighbor-
ing core positions, every value that is a coreposition in
one inference string but not the other can, in the other
inference string, be represented by a virtual coreposition
during Hyperinference. Input membership functions, on
the other hand, can be selected completely independent
from another in each inference string to achieve even
greater flexibility in the implementation of warnings.

4. APPLICATION

4.1 Simulations

We consider a biologically-inspired system, namely the
population dynamics of a given species. This example was
also used for illustrative purposes in Kempf [2004] and
Adamy and Kempf [2003]. Therein, the dynamic change of
the size of an insect population in every year is modelled
with respect to the amount of nutrition available to mem-
bers of this particular species, as well as the population
size, in the preceding year. This results in a model with
non-overlapping generations. By employing a recurrent
fuzzy system for modelling, it is possible to convert known
ecological effects, e.g. intraspecific concurrence, into rules
which describe the behavior of the system in different
regions of the state space.

In Kempf [2004], this model serves as a recurring, illustra-
tive example, which is instanciated with different parame-
ters or rule combinations to illustrate different effects, for
example chaos, which can occur in recurrent fuzzy systems.
However, the basic structure of the model is as following:
The size of the population x as well as the amount of
nutrition u, which is available each year, are modelled
on a logarithmic scale reaching from 104 to 108, implying
that the corresponding variables take values in the interval
[4, 8]. For each variable, three different linguistic values
are used: Lx = Lu = {small,medium, large}, which are
associated to core positions cx(Lx) = cu(Lu) = {4, 6, 8}. A
complete rulebase for this system thus consists of 9 rules.
We use a triangular membership function for ’medium’,
and ramp-shaped membership function for ’small’ and
’large’, respectively.
Moreover, the following rulebase is employed:

R+
1 : IF x sm AND u sm THEN x sm

R+
2 : IF x sm AND u med THEN x sm

R+
3 : IF x sm AND u lar THEN x med

R+
4 : IF x med AND u sm THEN x med

R+
5 : IF x med AND u med THEN x lar

R+
6 : IF x med AND u lar THEN x sm

R+
7 : IF x lar AND u sm THEN x med

R+
8 : IF x lar AND u med THEN x lar

R+
9 : IF x lar AND u lar THEN x med.

(24)

For the simulations, the input, i.e. amount of food, is kept
at a constant level and the system dynamics is simulated
for 25 cycles.

Suppose the described system overall resembles the sought
dynamics well, except for locally constrained effects that
are known to have been missed, e.g. not covered by
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Fig. 2. Different system responses to a small amount of
food with small initial population size.

available training data or influences that have not been
modelled explicitely.

When the original rule base is altered, the overall behavior
of the system will change, which may be unfavorable. In
this case, the system can be fine tuned through negative
rules. This is illustrated in the following two examples.

In the first example, we are concerned with the behavior of
the system for rather low input and initial values. Amount
of food is moderately higher than low and initial popu-
lation size only slightly higher than low. This causes the
system dynamics to be attracted towards an equilibrium
where amount of available nutrition equals population size.
Suppose we know the original system to behave differently
in this region of the state space, for example there is an
additional source of nutrition that is available only to
small populations causes population size to increase for
small initial values, regardless of the modelled amount of
available food. On the other hand, when the population
size exceeds a certain level, intraspecific concurrence will
cause the freshly increased population to decrease again.
To this end, the following negative rules are introduced in
a separate, negative inference string which is parametrized
in the same way as the original system:

R−1 : IF x sm AND u sm THEN x sm

R−2 : IF x med AND u sm THEN x med
(25)

Note, that both negative rules directly contradict their
positive counterparts. The resulting response dynamics for
u0 = 4.669, x0 = 5.082 of the original system, as well as
the different veto strategies are depicted in Figure 1. While
weak veto changes the systems response only slightly, in
that it slows convergence to the equilibrium down, system
behavior is changed qualitatively for strong and fuzzy veto.
Strong veto actually behaves pathological, as a forbidden
output value is produced. However, this is due to the
contradicting rules which cause the combined membership
function to be identically zero on the whole output space.
Since this problem is fundamentally unsolvable without an
additional conflict resolution mechanism, the defuzzifica-
tion procedure was designed such that in this case, the
output is kept constant. While we have included this case
for the sake of completeness, it is unlikely that such a rule

Fig. 3. Different system responses to a high amount of food
with large initial population size.

base combination would be employed in practice. However,
fuzzy veto is able to produce a reasonable output, but this
comes at the cost of possibly chaotic behavior.

In the second example, we milden the effects of intraspe-
cific concurrence for rather high population sizes, for ex-
ample because of decreased population or food density.
Therefore, we modify the system dynamics for relatively
high nutrition amounts and population sizes by means of
the following negative rules:

R−1 : IF x lar AND u med THEN x sm

R−2 : IF x lar AND u lar THEN x sm

R−3 : IF x med AND u lar THEN x med.

(26)

The different response dynamics of the system were simu-
lated for the initial values u0 = 7.029, x0 = 6.993. Simula-
tion results are presented in Figure 2. In this situation, the
original model harmonically oscillates in [6, 7]. Processing
the proposed negative rules with strong veto increases the
area that is spanned by the oscillation to [6, 8]. This is
due to the effect of R−3 , which forbids medium population
sizes when the amount of available food is high and the
population is already medium-sized. Weak and fuzzy veto
show distinctly different behavior. Their effect of the sys-
tem dynamics apparently establishes a stable equilibrium
around x = 6.5, to which both systems converge at slightly
different rates.

5. CONCLUSION

5.1 Discussion

We found that unrestricted combinations of recommenda-
tions and warnings can cause pathological effects. Con-
tradicting rules, especially for strong veto, can cause the
output membership function to vanish identically on the
whole range of output variables. In this case, it is not clear
what the system is supposed to do, so if one wants to
keep the possibility of designing contradicting rulebases,
there is a need to introduce conflict resolution strategies
which, if hard-wired into the system, may in turn also
cause pathological behavior.
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However, simulations have shown that our singleton-based
approach to Hyperinference offers a flexible and convenient
way of realizing two-string inference in recurrent fuzzy
systems (or, more generally, fuzzy inference systems work-
ing with CoS-defuzzification), rendering two-string RFS
feasible in practical applications, on which we give a brief
overview in the remainder of this section.

Control Engineers are often interested in enforcing addi-
tional constraints upon their controllers, e.g. cancelling
steady-state-error or realizing anti-windup mechanisms.
Two-string inference makes it possible to realize such
mechanisms conveniently without altering the existing sys-
tem (see Kiendl [1997], or Krause [1999]).

When fuzzy inference systems are applied to pattern recog-
nition tasks, pattern primitives are encoded as fuzzy sets
in the input space, which then can be combined to more
complex patterns. RFS are successfully applied to sequen-
tial pattern recognition tasks, where a specific, temporally
ordered sequence of patterns is to be recognized. For the
additional complexity of considering patterns appearing
in specific order, generally, robust systems are necessary.
Guarracino et al. [2013] have employed two-string fuzzy
systems to encode false positives, i.e. prominent ’non-
examples’ of specific patterns, in a separate rule base. This
increases system performance while retaining the inter-
pretable representation of the original pattern, since the
positive rule base is not altered. This suggests exploiting
the same idea in RFS-based sequential pattern recognition
systems.

5.2 Future Work

We based our method on techniques described in Kiendl
[1997]. Another approach to inference with positive as well
as negative rules are the p/n fuzzy systems, introduced
in Branson and Lilly [2001]. These methods have not
been directly compared yet. While both methods share
some similarities, they are based on slightly different
requirements to negative inference, which may result in
different results, especially in some special cases.

Furthermore, since we demonstrated the different Hy-
perinference strategies to affect the systems behavior in
distinctly different ways, it would be convenient to have
means to combine the positive and negative activations to
a combined output membership function in a more flexible
way than it is possible with Hyperinference veto strategies.

Since we have shown two-string inference to be useful
for modelling complex systems, another possibility lies in
automated design of complete two-string systems, e.g. by
genetic optimization methods. Since humans are accus-
tomed to rule systems which also encompass prohibitions,
e.g. “If traffic light is red, do not cross the street”, such
system models would be capable of modelling highly non-
linear local effects with a fewer number of rules than a
conventional system would have required.
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