
Car Sequencing with respect to Regular
Expressions and Linear Bounds

Márton Drótos ∗ Tamás Kis ∗∗

∗ Institute for Computer Science and Control, Budapest, Hungary;
e-mail: marton.drotos@sztaki.mta.hu).

∗∗ Institute for Computer Science and Control, Budapest, Hungary;
e-mail: tamas.kis@sztaki.mta.hu).

Abstract: In this paper we introduce a new model and a computational approach for sequencing
assembly lines with two types of constraints: (i) patterns described by regular expressions and
(ii) linear bounds on the number of certain products that may occur in pre-specified intervals.
If we restrict the problem to the second type of constraints only we obtain a generalization
of the familiar car sequencing problem, whereas constraints of type (i) may be useful to add
extra structure. Constraints of both types may have priorities and can be violated, and a Pareto
optimal solution is sought minimizing the violation of constraints in the given priority order. We
describe a computational method based on mathematical programming and genetic algorithms
for finding suboptimal solutions.

Keywords: Sequences, Multiobjective optimization, Manufacturing systems

1. INTRODUCTION

One way to express the capacity of assembly lines is to
impose constraints on the sequence of products of the
following form: in every subsequence of length `i there can
be at most qi products with option oi (so-called among
constraint). This is the familiar Car Sequencing Problem,
see Parello et al. [1986] for the original definition, and
Solnon et al. [2007] for an overview of the state-of-the-art
methods. The current best exact method was proposed by
Fliedner and Boysen [2008]. For a complexity analysis, see
Kis [2004].

In this paper we want to present a different model in
which instead of the above rules, the structure of sequences
is described by regular expressions, such as ”every 5
consecutive occurrences of products of type A must be
followed by 3 consecutive products of type ”B”. This rule
applies locally, and only if products of type A occur at least
5 times consecutively. In addition we also allow constraints
of the following form: the subsequence from position p1 to
position p2 may contain only (or at least) q products of
type B or C. Here, p1 and p2 are fixed integers. So, this
is a generalization of the car sequencing problem, where
we use regular expressions to describe allowable patterns
in the sequence. Thus, in contrast to the method of Van
Hoeve et al. [2006], instead of using regular expressions to
express the ”among” constraint, we use them to describe
patterns, and at the same time we also use the among
constraint to express global properties as indicated above.

? This work has been supported by the NFU grant No. ED 13-2-
2013-0002.
??The second named author is grateful for the support of the János
Bolyai research grant BO/00412/12/3 of the Hungarian Acedemy of
Sciences.

With this model, we can express a large variety of con-
straints, such as, for example:

• the sequence should be built of repeating blocks in the
form A+ → B+ → C+ (regular expression constraint
(A+B+C+)+)

• product A should be produced in batches not smaller
than 5 units and not larger than 10 units (regular ex-
pression constraint ((¬A)+A[5 − 10](¬A)+)+, where
¬A means any product except A)

• due date: at least 10 units of product A should be
produced until position p (linear bound constraint
specifying a lower bound)

• capacity: at most 8 units of product A or product B
should be produced from position p1 to position p2

(linear bound constraint specifying an upper bound)
• material availability: product A requires 4 units of

some material m, product B and C requires 6 units
of m, the initial amount of m is 15 units, and
an additional 30 units will be delivered at position
p (linear bound constraint with additional weights,
specifying an upper bound)

Another major difference to car sequencing problems is
that we do not only search feasible sequences, but try to
minimize the violation of the various constraints. This is
a very important property, because in realistic production
environments it is quite common that no sequence exists
that fulfills all of the constraints, but a good sequence
should be given nevertheless.

2. THE MODEL

The input of our problem can be defined as follows.
There is a set Σ of product types, and for product type
σ ∈ Σ we have to produce nσ pieces. The length of the
sequence is defined as n =

∑
σ∈Σ nσ. There are two types

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6174

of constraints: regular expression constraints and linear
bound constraints, and an input specifies a set of each
type Cr and Cb respectively. Each constraint c ∈ Cr ∪ Cb
has a priority Pc.

A regular expression constraint is given as the graph repre-
sentation of a finite state automaton with input alphabet
Σ. A sequence satisfies a regular expression constraint
if the corresponding automaton accepts it. Note that it
would be possible to merge multiple regular expression
constraints as the intersection of the corresponding au-
tomata, eliminating the need to allow more than one of
this constraint type. However this way we couldn’t handle
constraints with different priorities.

A linear bound constraint is defined as (p1, p2,a, b), where
1 ≤ p1 ≤ p2 ≤ n are two positions, a is a weight vector of
dimension |Σ|, and b is a bound. A constraint of this type
is satisfied if

∑
σ∈Σ aσsσ ≤ b, where sσ is the number of

occurrences of product σ in the closed interval [p1, p2]. aσ
and b may be positive or negative (or 0), meaning that it
is possible to specify both lower and upper bounds with
these constraints.

The goal is to provide a sequence π of the input prod-
ucts that minimizes the violation of the constraints in a
lexicographic order according to the constraint priorities.
Defining this measure is straightforward for the linear
bounds as the amount of violation, but it is harder for the
regular expressions. We have chosen the edit distance as a
measure, i.e. the minimal number of products that have to
be inserted, deleted or changed in a sequence π to obtain
a sequence π′ that is accepted by the given automaton.

Calculating the edit distance for a given sequence π =
(σ1, . . . , σn) and a regular expression constraint c ∈ Cr
can be formulated as a shortest path problem in a directed
graph (Van Hoeve et al. [2006]). Assuming that Gc is the
graph representation of c with m nodes q1, . . . , qm, we
construct a layered graph G′c with (n + 1)m + 2 nodes
as follows: a source and a terminal node s and t will
be introduced, respectively, along with n + 1 copies of
q1, . . . , qn. qi,j will represent the ith copy of node qj . An
arc of the graph will have a label le ∈ Σ∪{∗} and a weight
wl ∈ {0, 1}. The arcs of G′c are defined as follows:

• e = (s, q1,1) ∈ E(G′c), le = ∗, we = 0, assuming that
q1 is the initial state of Gc
• ∀i = 1, . . . , n + 1 : e = (qi,j1 , qi,j2) ∈ E(G′c) ⇐

(qj1 , qj2) ∈ E(Gc), j1 6= j2; le = ∗, we = 1 (deletion
arcs)
• ∀i = 1, . . . , n, j = 1, . . . , n, σ ∈ Σ : e = (qi,j , qi+1,j) ∈
E(G′c); le = σ, we = 1 (insertion arcs)
• ∀i = 1, . . . , n, σ ∈ Σ : e = (qi,j1 , qi+1,j2) ∈ E(G′c) ⇐
e0 = qj1,j2 ∈ E(Gc); le = σ, we = 0 if σ = le0 , we = 1
otherwise (normal and substitution arcs)
• e = (qn+1,j , t) ∈ E(G′c), le = ∗, we = 0, if qj

represents an accepting state in Gc

The construction of G′c is illustrated on Figure 1.

Van Hoeve et al. [2006] showed that the weight of a
shortest path from s to t in G′c is equal to the edit distance
of π if only arcs with the following properties may be used:
(i) arc e has label le = ∗ (ii) arc e = (qi1,j1 , qi2,j2) has label

q1 q2 q3

a

a

b

a

a

q1,1s q2,1 q3,1 q4,1

q1,2 q2,2 q3,2 q4,2

q1,3 q2,3 q3,3 q4,3 t

∗

∗

∗

∗

∗

∗

∗

∗

∗

a

b

a

b
b

a

a

b
a

b

a

b

a

b
b

a

a

b
a

b

a

b

a

b
b

a

a

b
a

b

∗

∗

σ1 σ2 σ3

Graph Gc of the automaton of constraint c:

Graph G′c:

Fig. 1. Example of constructing the graph G′c from the
graph Gc of the automaton of constraint c, in order
to calculate the edit distance. In this example, the
length of the sequence (n) is 3. Thin arcs have weight
0, while thick arcs have weight 1.

le = σi1 (i.e. the arc has the same label as the product in
the position corresponding to its source node).

Now we define the integer linear programming formulation
(IP) of the constraints separately for each type. For a
regular expression constraint c ∈ Cre, we formulate the
following problem:

min
∑

e∈E(G′
c)

wexe (1)

s.t. ∑
e=(,qi,j)

xe =
∑

e=(qi,j ,)

xe
∀i = 1, . . . , n+ 1,
∀j = 1, . . . ,m

(2)

∑
e=(s,)

xe = 1 (3)

∑
e=(,t)

xe = 1 (4)

∑
e:le=σ

xe = nσ ∀σ ∈ Σ (5)

xe ∈ {0, 1} ∀e ∈ E(G′c) (6)

A decision variable xe is 1 iff the shortest path from s
to t in the optimal sequence uses arc e. Constraints (2)-
(4) ensure that the selected arcs form a path from s to t,
while constraint (5) prescribes that exactly the required
amount of products are present in the sequence for each
product type. Note that in a feasible solution arcs having
their source and terminal nodes in different layers must
have a label from Σ, and exactly one arc is on the path
between each layer. This ensures that a sequence can be
easily determined from a feasible solution of this IP. For

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6175

the sake of the easier description we didn’t include the
variables and constraints that could be used to directly
retrieve the actual solution.

A linear bound constraint c ∈ Cb can be formulated as
an assignment problem: we define a complete bipartite
graph with n vertices in each class; one of the classes
represents the positions i = 1, . . . , n, the other represents
the products to be sequenced j = 1, . . . , n. The notation
σ(j) is used to represent the product type of the jth

product. We can now formulate the IP describing this
problem:

min z (7)

s.t.

n∑
j=1

yi,j = 1 ∀i = 1, . . . , n (8)

n∑
i=1

yi,j = 1 ∀j = 1, . . . , n (9)

p2∑
i=p1

aσ(j)yi,j − b≤ z (10)

0≤ z (11)

yi,j ∈ {0, 1} ∀i, j = 1, . . . , n (12)

A decision variable yi,j is 1 iff product j is assigned
to position i, while the slack variable z represents the
violation of c. Constraints (8)-(9) ensure that we find
a perfect matching, while constraint (10) calculates the
actual violation. Note that this problem is trivial to solve,
but we will need this formulation to use it as a building
block later.

In the following, for a constraint c ∈ Cr ∪Cb, we will refer
to the corresponding objective function expression and the
IP constraints as OBJc and CNSTRc, respectively.

2.1 Measuring Solution Quality

Given a sequence π, let the violation of constraint c be
fc(π). The violation of constraints that share the same
priority P is defined as fP (π) =

∑
c∈Cr∪Cb,Pc=P fc(π).

Assuming that the priorities are from a totally ordered
set P, we say that sequence π1 is better than sequence
π2 if ∃P ∈ P : ∀P ′ < P : fP ′(π1) = fP ′(π2) and
fP (π1) < fP (π2).

In cases where we need to describe the quality of a
sequence with one number, we calculate weights WP for
each priority to ensure that f(π) =

∑
P∈PWP fP (π)

provide the same ordering as the lexicographic comparison
described previously. We try to avoid this representation
when possible because (depending on the input) it requires
performing calculations with arbitrary precision.

2.2 Complexity

Solving a regular expression problem without the linear
bound constraints is already NP-hard: a reduction from
the directed s-t-Hamilton path problem can be given.
Solving a set of the linear bound constraints is also NP-
hard, as a reduction from 3-Partition can be shown.

3. MULTIOBJECTIVE OPTIMIZATION BY
INTEGER PROGRAMMING AND GENETIC

ALGORITHM

We have devised a three-phase method to solve the prob-
lem, as follows.

Algorithm:

(1) The regular expression constraint problems are solved
independently, resulting in a set of solutions.

(2) Using these solutions as the initial population, an
optimization by a genetic algorithm is performed.

(3) Finally, the best individual is improved further by a
tabu search method. The best solution found in this
phase will be the resulting sequence.

In the following, we provide the details of each phase.

3.1 Phase 1: Finding Initial Solutions

In this phase we solve |Cr|+ 1 problems using the models
described in Section 2 as building blocks. Namely, for each
cr ∈ Cr we create the following IP:

minWcrOBJcr +
∑
c′∈Cb

Wc′OBJc′ (13)

s.t.

CNSTRcr (14)

CNSTRc ∀c ∈ Cb (15)

µcri,j = µci,j ∀c ∈ Cb,∀i, j = 1, . . . , n (16)

Constants Wc are weights calculated in a way to ensure
the lexicographic ordering of the objective function values
according to the priorities Pc, and µci,j are the appropriate
decision variables in the IP model of constraint c ∈ Cr∪Cb
that describe the assignment of product j to position i. In
other words, the objective function values are summarized
for the given regular expression constraint and all of the
linear bound constraints, their IP constraints are merged,
and the corresponding variables are connected to enforce
the same solution in all of the problems.

Furthermore, an additional IP is created with only the
linear bound constraints, similarly as above. This can be
useful in cases where the solution of regular expression
problems may be terminated prematurely because of a
time limit, but the solution of the linear bound constraints
alone may be fast enough.

This approach could be generalized as to select k suitable
constraint sets from Cr ∪Cb that seem to be tractable de-
pending on the actual input, and create k initial solutions
using the same idea as described above.

3.2 Phase 2: Optimization with a Genetic Algorithm

The sequences are represented by string genomes, where
the alleles of the genes are the elements of Σ. We re-
strict the population to feasible solutions of our problems,
i.e. only individuals of length n are considered with the
appropriate number of occurrences of each σ ∈ Σ. To
this end, we start from an initial population that satisfies

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6176

these assumptions and we use such genetic operators that
preserve the required properties.

The initial population consists of the solutions of the
previous phase, and some randomly generated individuals
if needed. The latter ensures that we can handle problems
where the solution of the IP-s are intractable as well as
problems with fewer constraints than the desired size of
the initial population.

We use the Generalized Order Crossover operator (Gold-
berg [1989]) for the crossover and a simple Swap Mutator
for mutation. The evolution process is performed by a
Steady State Genetic Algorithm that uses overlapping
populations (De Jong [1975]). The selection of the in-
dividuals for crossover is performed by the Roulettewheel
Method (Goldberg [1989]).

3.3 Phase 3: Tabu Search

In the last phase we try to improve the best individual
found by the genetic algorithm by a local search method.
The neighborhood of a sequence π = (σ1, . . . , σn) is
defined as all the sequences obtained by swapping two non-
identical elements in π, i.e. for all pairs i 6= j a neighbor π′

is generated by swapping σi and σj if σi 6= σj . As a result,
the size of the neighborhood is O(n2).

Because of the large neighborhood, evaluating all neigh-
bors would be too time consuming. To overcome this
problem, we evaluate a neighbor only with a probability
0 < p ≤ 1. On the one hand, this can speed up the
search considerably, and on the other hand, this can help
to diversify the solutions if the search space contains a
large amount of similar solutions.

To avoid trapping in locally optimal solutions, we guide
the search by tabu list control. We maintain a tabu list
that consists of pairs (i, σ) of positions and product types,
forbidding the insertion of product type σ to position i.
When selecting a neighbor in an iteration by swapping σi
and σj in positions i and j, the pairs (i, σi) and (j, σj)
are introduced to the tabu list. The neighborhood in each
iteration is restricted to neighbors that are accessible by
non-tabu operations. However the tabu status does not
affect the choice of a neighbor that is better than the best
sequence found so far.

Using this method ensures that the final solution will
be locally optimal (if given enough time), hence a user
of a system implementing this method can’t improve
the solution by applying small changes. This property
is very important to help the acceptance of automated
optimization systems.

4. IMPLEMENTATION AND COMPUTATIONAL
RESULTS

We have implemented our method as a part of a larger
industrial information system. For solving the Integer
Programming problems, we use the COIN-OR Branch and
Cut library, while the genetic algorithm is implemented
using the open source GAlib library of Matthew Wall.

The actual parameters of the algorithm are summarized
in Table 1. In order to balance between slow exhaustive

Genetic algorithm

Population size 90
Replacement of population
between generations

80%

Mutation probability 5%

Tabu search

Tabu list length n/4
Probability p of evaluating
a neighbor

1 or 0.4, depending on the
status of the search

Table 1. Parameters of the optimization
method.

evaluation and probabilistic evaluation, we use different
parameters during different states of the tabu search
method. Initially the probability of evaluating a neighbor
is 1, i.e. we evaluate all neighbors. During the search, if
the best known sequence was found in one of the last
10 iterations, this probability is set to 1 (exploring the
search space around our best solution), otherwise to 0.4
(diversifying the search while traversing the search space
rapidly).

4.1 A Numerical Example

In this section we provide an example that shows a
small, realistic problem setting, for which we provide a
description using our framework, and we demonstrate the
best solution found by our method. In our example, there
are 10 product types, Σ = {a, . . . , j}. For the easier
presentation, these products are partitioned into product
families, namely A = {a, b, c}, D = {d, e, f, g, h}, and
I = {i, j}. This isn’t a generalization of the problem, as
these families are used only for conveniently referring to
a set of products. When referring to a product family, we
mean any of its products. In the description of regular
expression constraints, we refer to products not in a family
F as ¬F = Σ \ F .

A sequence should satisfy the following requirements:

c1: No more than 2 pieces of product family A should be
processed consecutively.

c2: If the previous constraint is violated, no more than
4 pieces of product family A should be processed
consecutively.

c3: After processing products from family A consecutively,
at least 2 products from family D should be processed
consecutively.

c4: After processing products from family A consecutively,
the next 3 products can’t be from family A.

c5: Products from family I should be produced in batches
of size 2 or 3.

c6: After processing products from family I consecutively,
the next 3 products should be from family D.

c7: At least 2 pieces of product a should occur in the first
12 positions.

c8: At least 1 piece of product b should occur in the first
20 positions.

c9: At least 3 pieces of product e should occur in the first
10 positions.

c10: At least 2 pieces of product i should occur in the first
15 positions.

c11: At least 1 piece of product j should occur in the first
12 positions.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6177

c1

¬A

A A

¬A

¬A

c2

¬A

A A A A

¬A¬A¬A¬A

c3

¬A

A

A

D

D

c4

¬A

A

A

¬A ¬A

¬A

c5

¬I

I I

I
¬I

¬I

c6

¬I I

I D D

D

Fig. 2. The automata corresponding to the numerical ex-
ample. The initial states are labeled with the numbers
of the corresponding regular expression constraints.

p1 p2 aa ab ac ad ae af ag ah ai aj b

c7 1 12 -1 -2
c8 1 20 -1 -1
c9 1 10 -1 -3
c10 1 15 -1 -2
c11 1 12 -1 -1
c12 1 24 6 4 4 5 24
c13 1 15 2 1 1 6
c14 1 10 1 1 1 3
c15 11 20 1 1 1 3
c16 21 30 1 1 1 3

Table 2. Parameters of the linear bound con-
straints of the numerical example. Zero weights

are not displayed.

c12: Products a, e, f and j require the amount 6, 4, 4 and
5 units of material m1, respectively, which is on stock
in a limited amount of 24 units until position 10.

c13: Products b, h and i require the amount 2, 1 and 1
units of material m2, respectively, which is on stock in
a limited amount of 6 units until position 15.

c14: Products from product family A should occur at most
3 times from position 1 to position 10.

c15: Products from product family A should occur at most
3 times from position 11 to position 20.

c16: Products from product family A should occur at most
3 times from position 21 to position 30.

Constraints c1-c6 describe the structural requirements
of the sequence, c7-c11 are due date constraints, c12-
c13 are material constraints, and c15-c16 are capacity
constraints. We have formulated requirements c1-c6 as
regular expression constraints, and the others as linear
bound constraints. The finite state automata of Cr =
{c1, . . . , c6}, and the parameters of Cb = {c7, . . . , c16} are
shown on Figure 2 and Table 2, respectively.

The priorities of the constraints and the amounts of the
products are shown on Table 3. The idea behind assigning
the priorities is the following: material constraints are the
most important, as material shortage makes the produc-
tion physically impossible. In order of importance, next are
the due dates, as serving the customers is typically more
important than internal preferences. Assigning priorities
to the structural requirements was following the idea of

σ a b c d e f g h i j

nσ 3 3 2 3 3 4 2 1 5 4

c c1 c2 c3 c4 c5 c6 c7 c8
Pc 6 3 5 4 6 5 2 2

c c9 c10 c11 c12 c13 c14 c15 c16
Pc 2 2 2 1 1 7 7 7

Table 3. Amount of the products to be pro-
cessed, and priorities of the constraints. Lower

numbers represent higher priorities.

products of family A being “hard” to produce, products of
family D being the “easy” ones, while products of family I
are moderately hard to produce. In this example, capacity
constraints represent the desire not to overload any part
of the sequence with products of family A.

We have run our algorithm on the input described above
for 2 minutes, divided equally among the three phases. The
genetic algorithm generated ∼4000 generations, and the
tabu search performed ∼4500 iterations. The best result
was the following sequence:

AADDI I IDDDAAAADDI I IDDDAADDDI I I
c c g g i i j e e e a a a b f f i i i h f f b b d d d j j j

For the sake of the easier overview, both the products
and the corresponding product families are shown. The
intervals [p1, p2] of the linear bound constraints are drawn
with light gray lines for reference, in the order of their
definition.

The only violations of this sequence are the following, each
having a low priority:

• c1: the violation is marked with bold in the sequence:
there are more than 2 products from family A sched-
uled consecutively.

• c15: between positions 11 and 20, there are 4 products
from family A, however there should be at most 3.

All other constraints are perfectly satisfied.

4.2 Experiments on Industrial Data

We have performed preliminary testing on actual indus-
trial data. The typical size of the problems is summarized
in Table 4. We have set the time limit of the test runs to
10 minutes, which was divided equally among the phases.
On average, the genetic algorithm has generated ∼4000
generations, and the tabu search algorithm performed
∼2500 iterations on a personal computer with Intel Core2
Quad CPU running on 2.33GHz. Results have shown that
only some low priority constraints were violated, and the
quality of the solutions overperformed the ones made by
the planning personnel with hours of work. Only 2-3 con-
straints with the lowest priorities were violated, and the
violations were due to typically one, rarely two products
being in a wrong position. This amounted to sequences
of ∼80 products of which only 2-5 weren’t in a perfect
position.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6178

Parameter Value

n ∼80
|Σ| ∼10
|Cr| ∼10
|Cb| ∼5
Number of states in regular expression
constraints

2-10

Average number of states in regular ex-
pression constraints

5.5

Table 4. Typical parameters of the industrial
data.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have defined a model that generalizes
the well known car sequencing problem by introducing
regular expression constraints and general linear bound
constraints, and we have also proposed a solution method
that can be used in practical applications. To assess the
performance of our algorithm, a systematic evaluation is
still needed. As our method is capable of describing car
sequencing problems, it would be interesting to test it on
standard benchmark problems. Furthermore, the quality of
the solutions should be investigated for different constraint
settings, regular expressions, and problem sizes.

REFERENCES

K. A. De Jong. Analysis of the behavior of a class of
genetic adaptive systems. PhD thesis, 1975. Department
of Computer and Communication Sciences, University
of Michigan, Ann Arbor.

M. Fliedner, N. Boysen. Solving the car sequencing
problem via Branch & Bound. European Journal of
Operational Research, 191(3): 1023-1042, 2008.

D. E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley, 1989.
Reading, MA.

T. Kis. On the complexity of the car sequencing problem.
Operations Research Letters, 32(4), 331–335, 2004.

D. Parello, W.C. Kabat, and L. Wos. Job-shop scheduling
using automated reasoning: a case study of the car
sequencing problem. Journal of Automated Reasoning,
2: 1–42, 1986.

C. Solnon, V.D. Cung, A. Nguyen, C. Artigues, The
car sequencing problem: overview of state-of-the-art
methods and industrial case-study of the ROADEF2005
challenge problem, European Journal of Operational
Research, 191: 912–927, 2008.

W.-J. Van Hoeve, G. Pesant, L.-M. Rousseau, Sabharwal,
Revisiting the cart sequencing problem, CP 2006,
LNCS, 4204: pp. 620–634, 2006.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6179

