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Abstract: A control design approach for the autonomous crosswind flight of tethered wings,
to be used in airborne wind energy systems, is described. The proposed technique aims to
learn the behavior of a human pilot, by exploiting a finite number of data collected during
manual operation of the system, hence avoiding the need for an explicit model of the system
dynamics. Along with the design technique, experimental data showing its successful application
are presented.

1. INTRODUCTION

Airborne wind energy technologies aim to produce power
exploiting the aerodynamic forces generated by a wing
tethered to the ground, hence realizing a wind generator
capable of reaching higher altitudes with respect to the
current wind turbines, see e.g. Ahrens et al. (2013); Fa-
giano and Milanese (2012) for details. In particular, the
lift force developed by the wing is large enough to sustain
its weight and that of the tethers, and to produce power.
In the configuration considered in this work, such a power
is extracted at ground level by executing a two-phase
(“pumping”) cycle consisting of reeling-out the lines under
large traction forces and subsequently reeling-in under low
forces, thus realizing a positive net energy balance. The
automatic control of the wing is a key aspect of this tech-
nology, since the optimal trajectories that the wing should
fly are unstable in open loop and the system is subject to
external disturbances like wind turbulence. In particular,
one of the main control tasks is to make the wing fly
along figure-of-eight patterns in the so-called crosswind
conditions, i.e. roughly perpendicularly to the wind. This
problem has been addressed by several researchers in the
last years, leading to a number of contributions, Canale
et al. (2007); Williams et al. (2008); Baayen and Ockels
(2012); Houska and Diehl (2007); Ilzhöfer et al. (2007);
Fagiano et al. (2013a,b); Canale et al. (2010); Fagiano et al.
(2010). Most of these techniques employ a standard two-
phase approach where a dynamical model of the system is
firstly derived and then a feedback controller is designed
on the basis of such a model. One of the main potential
difficulties in such approaches is that the derivation of a
dynamical model suited for control design might be not
easy, due to the mentioned open-loop instability and the
presence of disturbances which make the use of model
identification techniques hard. In this paper, we show how
this control problem can be tackled effectively with a
direct technique, i.e. an approach that aims to design a
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feedback controller directly from measured data, without
the need for an explicit model of the system’s dynamics. In
particular, we present an approach to learn the behavior
of a human operator (or more in general of an existing,
unknown feedback controller) using a finite number of data
collected in an initial experiment. We present a theoretical
analysis showing that the approach provides stability guar-
antees as the number of employed data-points increases,
and we present the successful experimental application
of the approach on a small-scale prototype built at the
University of California, Santa Barbara.

2. SYSTEM DESCRIPTION

We consider a flexible wing connected by three lines to a
ground unit (GU), as shown in Fig. 1.

The wing’s trajectory evolves downwind with respect to
the GU. For simplicity, we assume that the nominal wind
direction (i.e. neglecting turbulence and small, zero-mean
deviations) is aligned with the longitudinal symmetry axis
of the GU, denoted by X. The latter, together with the
Z axis being perpendicular to the ground and pointing
upwards and with the Y axis to complete a right-handed
system, forms the inertial frame G

.
= (X,Y, Z), centered

at the GU (see Fig. 2). By considering a fixed length of the
lines, denoted by r, the wing’s trajectory is confined on a
quarter sphere, commonly named “wind window”, see Fig.
2 (dashed lines).

The wing’s position p(t) can be expressed in the inertial
frame G by using the spherical coordinates θ(t), φ(t)
(see Fig. 2), where t is the continuous time variable.
We also consider a non-inertial coordinate system, L

.
=

(LN , LE , LD), centered at the wing’s position (depicted
in Fig. 2). The LN axis, or local north, is tangent to the
sphere of radius r, on which the wing’s trajectory evolves,
and points towards its zenith. The LD axis, called local
down, points the center of the sphere (i.e. the GU), hence
it is perpendicular to the tangent plane to the sphere at
the wing’s location. The LE axis, named local east, forms a
right-handed system and spans the tangent plane together
with LN . The system L is a function of the wing’s position
only, see Fagiano et al. (2013b) for a complete derivation.
The wing velocity vector can be expressed in the L frame
as

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4927



Fig. 1. Small-scale prototype built at the University of
California, Santa Barbara, to study the control of
tethered wings for airborne wind energy.
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Fig. 2. Reference system G = (X,Y, Z), wind window
(dashed lines), variables θ, φ, and local north, east
and down (LN , LE , LD) axes.

d

dt
p(t) = r

 θ̇
cos (θ)φ̇

0

 . (1)

Finally, the velocity angle γ(t) of the wing is defined as:

γ(t)
.
= arctan2

(
cos (θ(t))φ̇, θ̇

)
, (2)

where arctan2 is the four-quadrant arc-tangent function.
γ(t) is the angle between the local north, LN (t), and
the wing velocity vector, v(t), and it provides a good
description of the heading of the wing while flying on the
surface of the wind window.

The two lateral lines linking the wing to the GU, named
steering lines, are attached to the back tips of the wing
(see Fig. 1) and they are used to influence its trajectory:
a shorter left steering line with respect to the right
one impresses a left turn to the wing (i.e. a counter-
clockwise turn as seen from the GU), and vice-versa. In

the considered prototype, a single motor, together with a
linear motion system (visible in the lower-left corner of
Fig. 1), is able to change the difference of length of the
steering lines. In particular, a linear controller modulates
the motor current in order to track a desired position of
the actuators: such a position reference is the manipulated
variable u and it can be set either by a human operator
through an analog joystick, or by an automatic controller.

The wing is equipped with inertial onboard sensors and
a radio transmitter; the receiver and other sensors are
installed on the GU, including a line angle measurement
system, load cells, and an anemometer. The available
sensors, together with suitable filtering algorithms, provide
real-time measurements of the wing’s position, velocity,
and velocity angle, which can then be used for feedback
control (see Fagiano et al. (2013a) for details on the
filtering and sensor fusion aspects).

The aim of the control system is to obtain crosswind tra-
jectories, i.e. flight paths that are symmetric and roughly
perpendicular with respect to the X axis (i.e. the wind
direction), whose shape is a that of an eight. This kind
of patterns has been shown to be optimal for power gen-
eration, see e.g. Houska and Diehl (2007); Canale et al.
(2010); Fagiano and Milanese (2012).

The described control problem involves open-loop unsta-
ble, nonlinear and time-varying dynamics. Mathematical
models for this kind of system have been derived for the
design of predictive control approaches, which have been
used in numerical simulations, Houska and Diehl (2007);
Williams et al. (2008); Canale et al. (2010). However, in a
real-world experimental setup it is not easy to employ such
approaches, due to difficulty of identifying the model pa-
rameters from experimental data, the absence of accurate
measurements of the wind speed at the wing’s location,
finally the need to solve a nonlinear program in real-time
at each time step. However, a human operator is able,
after some training, to obtain the desired flying paths by
issuing a suitable course of the actuator position reference
u, adapting to different wind conditions and counteract-
ing the effects of turbulence and gusts: hence, a possible
approach is to design a feedback controller by learning
the behavior of such a human operator from experimental
data. In the next section, we present a technique able to
achieve this goal.

3. LEARNING A CONTROLLER FROM DATA

3.1 Problem setting

The setting we consider in this work is the following. A
single-input, discrete time, nonlinear dynamical system of
interest operates in closed loop with an existing controller.
Both the system and the controller are not known. The
system’s input variable u(t), i.e. the controller’s output, is
known and it can be measured at discrete time instants
t ∈ Z. Moreover, u is limited in a compact U = [u, u].
The system’s output variable y(t), i.e. the controller’s
input, is not known a priori but the control designer
can rely on sensors to acquire measurements of different
“candidate” feedback variables, based on her/his intuition
and experience with the physical process under study. The
output y is assumed to belong to a compact set Y ⊂ Rny .
After a choice of y(t) has been made, we assume that the
controller is a static function of this variable:

u(t) = κ(y(t))
κ : Y → U (3)

where κ is Lipschitz continuous with respect to y. More-
over, we assume that a disturbance variable es(t) is acting
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on the dynamical system. The variable es accounts for (a)
exogenous disturbances, (b) neglected and time-varying
dynamics, and (c) the approximation error induced by
choosing the input of the controller to be equal to y. The
value of es(t) is also assumed to belong to a compact set
Es ⊂ Rne . We then assume that the chosen output variable
evolves in time as follows:

y(t+ 1) = f(y(t), u(t), es(t))
f : Y × U × Es → Y. (4)

where f is Lipschitz continuous with respect to y, u and
es. Lipschitz continuity of f and imply that the closed
loop system:

y(t+ 1) = g(y(t), es(t))
.
= f(y(t), κ(y(t)), es(t))

g : Y × Es → Y (5)

is also described by a Lipschitz continuous function g.

In this work, we suppose that a set of N input-output
measurements is available, indicated as ũ(k), ỹ(k), k =
0, . . . , N−1, collected from the system operating in closed
loop with the unknown controller κ. These data points
are assumed to be affected by additive noise variables,
indicated as eu(t) and ey(t), respectively:

ũ(t) = u(t) + eu(t)
ỹ(t) = y(t) + ey(t). (6)

Note that eu(t) may include both measurement noise and
errors arising in the application of the control law. The
signals eu(t) and ey(t) are assumed to be bounded in `∞
norm.

3.2 Learning algorithm

In this section, we present an approach to learn a controller
κ̂ ≈ κ from the available experimental data. A parametric
representation is considered for this controller:

κ̂ (y) =

M∑
i=1

âiϕi (y) (7)

where ϕi : Y → U are Lipschitz continuous basis func-
tions. The coefficients âi ∈ R are identified by means of
the following Algorithm 1.

Algorithm 1. Controller learning.

(1) Take a set of basis functions {ϕi}Mi=1. The choice of
this set can be carried out by means of the procedure
in Fagiano and Novara (2013).

(2) Using the data set DN .
= {ũ(k), ỹ(k)}N−1

k=0 and the
basis functions chosen at step 1), define the following
quantities:

Φ
.
=

 ϕ1 (ỹ(0)) · · · ϕM (ỹ(0))
...

. . .
...

ϕ1 (ỹ(N − 1)) · · · ϕM (ỹ(N − 1))

 ∈ RN×M

ũ
.
= (ũ(0), . . . , ũ(N − 1)) ∈ RN×1.

(3) Using the procedure in Fagiano and Novara (2013),
estimate ε̂, γ̂f and γ̂g,y (ε̂ is a bound on the overall
noise affecting the measurements, γ̂f is the Lipschitz
constant of f and γ̂g,y is the Lipschitz constant of
g w.r.t. y). Choose γ′∆ ' (1− γ̂g,y) /γ̂f such that
γ′∆ < (1− γ̂g,y) /γ̂f .

(4) Solve the following convex optimization problem:

a1 = arg min
a∈RM

‖a‖1
subject to
(a) ‖ũ− Φa‖∞ ≤ αε̂
(b) |ũ(l)− ũ(k) + (Φrk − Φrl ) a| ≤

γ′∆ ‖ỹ(l)− ỹ(k)‖∞ + 2ε̂,

{
l = 0, . . . , N − 1
k = l + 1, . . . , N − 1

(8)
where Φrk

.
= [ ϕ1 (ỹ(k)) · · · ϕM (ỹ(k)) ] and α ≥ 1 is

a number slightly larger than the minimum value for
which the constraint (a) is feasible.

(5) Obtain the coefficient vector â = (â1, . . . , âM ) from
the following convex optimization problem:

(â, γs∆) = arg min
a∈RM , γ′′

∆
∈R+

γ′′∆

subject to
(a) ‖ũ− Φa‖∞ ≤ αε̂
(b) |ũ(l)− ũ(k) + (Φrk − Φrl ) a| ≤

γ′′∆ ‖ỹ(l)− ỹ(k)‖∞ + 2ε̂,

{
l = 0, . . . , N − 1
k = l + 1, . . . , N − 1

(c) ai = 0, ∀i /∈ supp
(
a1
)

(9)
where supp

(
a1
)

is the support of a1, i.e. the set of

indices at which a1 is not null. �

It can be proven that, under mild conditions, the controller
κ̂ derived by this algorithm stabilizes the closed-loop
system (in an input-output sense) when the number of
data used for design tends to infinity.

4. EXPERIMENTAL RESULTS

4.1 Data collection and controller learning

We have considered θ, φ, θ̇, φ̇, and γ as candidates feed-
back variables, since they can be measured or estimated
with good accuracy and they provide a representation of
the quantities that the human operator observes when
controlling the wing. In particular, we present here the
results obtained by considering four different combinations
of these signals to form the feedback variable y, and we
indicate the corresponding controllers as κ̂i, i = 1, . . . , 4.
Table 1 shows the choice of output vector y for these
four cases. The employed sampling time is Ts = 0.02 s.
Albeit also the line forces and the ground wind speed and
direction are measured, we do not consider such variables
for feedback control, since the human operator does not
exploit this information.

We have collected experimental data from a flight session
of 12 minutes, i.e. about 3.5 104 data points, where the
wing was controlled by a human operator. Fig. 3 shows a
typical full cycle, i.e. a single 8-shaped trajectory, in the
φ, θ plane, together with the related courses of φ̇, θ̇, of the
velocity angle γ, and of the control input u. As it can be
noted, the period of a single cycle is about 5 s, hence a
total of about 130 cycles has been used for the design of
the four controllers. Fig. 4 shows the course of the wind
speed during the time when the identification data were
collected. The average wind speed was 5.44 m/s.

We have chosen polynomial basis functions of the following
form:

ϕi(y) = yαj1y
β
j2

; j1, j2 = 1, . . . , ny; α, β = 0, . . . , 3. (10)

For each combination of j1 , j2, α , β in (10), we assigned
a progressive index i = 1, . . . ,M to the corresponding

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4929



Table 1. Characteristics of the learned con-
trollers.

Controller
Feedback

variables y
N. of optim.

variables
N. of non-zero

terms
Comp.

time (s)

κ̂1

θ(t)
φ(t)

θ̇(t)

φ̇(t)
γ(t)

θ(t− 50)
φ(t− 50)

θ̇(t− 50)

φ̇(t− 50)
γ(t− 50)

496 38 1025

κ̂2

θ(t)
φ(t)

θ̇(t)

φ̇(t)
γ(t)

136 41 458

κ̂3

θ(t)
φ(t)

θ̇(t)

φ̇(t)

91 36 90

κ̂4

θ(t)
φ(t)

θ̇(t)

φ̇(t)

θ(t− 50)
φ(t− 50)

θ̇(t− 50)

φ̇(t− 50)

325 45 505

polynomial, where M = (q ny + 1)(q ny + 2)/2. We es-
timated the values of the design parameters ε̂, γ̂g,y andγ̂f ,
involved in Algorithm (1), by means of the algorithms
presented in Subsection 3.2. The corresponding number
of optimization variables in problems (8)-(9) is indicated
in Table 1, too, together with the times required for the
learning algorithm to derive the different controllers and
the related numbers of resulting non-zero components. It
can be noted that, starting from a quite large number of
decision variables, the approach yields control laws with
few non-zero terms, which we implemented on a real-time
machine using the xPC Targetr toolbox of Matlabr. The
computational times for the learning phase (referred to a
laptop with 2.8 Ghz core i7 processor, 8 GB RAM and the
CVX tool, Grant and Boyd (2010)) are quite low. Indeed,
a considerable number of data have been used for design:
N = 10501. The data with indexes l = 1, 30, 60, . . . , N − 1
have been used to form the constraints (b) in (8) and in (9)
(we did not use all the data due to memory saturation).
The total number of constraints in (8)-(b) and (9)-(b)
resulted to be 61075. As regards the times required for
the on-line control computation, these were of the order
of 10−5 s (including the time required to condition the
measured signals and to log the test results on a hard-
drive), far below the employed sampling time of 0.02 s.

4.2 Experimental results and discussion

We tested the controllers in 15-minutes-long experiment
batches (including take-off and landing phases), each one
corresponding to roughly 140 full cycles of autonomous
flight. We denote with θk, φk the average position, in
spherical coordinates, of the k−th full cycle, and with K
the total number of cycles carried out in a test. In order to
evaluate the results obtained with the different controllers,
we computed the following quantities:

φ
.
=

1

K

K∑
k=1

φk, θ
.
=

1

K

K∑
k=1

θk,

∆φ
.
=

√√√√ 1

K − 1

K∑
k=1

(φk − φ)2,

∆θ
.
=

√√√√ 1

K − 1

K∑
k=1

(θk − θ)2,

∆φ
.
= max
k=1,...,K

|φk − φ|, ∆θ
.
= max
k=1,...,K

|θk − θ|.

(11)

551 552 553 554 555 556
−0.1

−0.05

0

0.05

time (s)

u 
(m

)

551 552 553 554 555 556
−1

0

1

time (s)

dφ
/d

t, 
dθ

/d
t (

ra
d/

s)
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Fig. 3. Sample figure-eight trajectory during manual flight.
From top: wing’s path in φ, θ coordinates and related
gradient estimated by the velocity angle γ (arrows);

angular velocities φ̇ (solid) and θ̇ (dash-dot); control
input u.
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Fig. 4. Wind speed measured at 4 m above the ground
during the manual flight.

The variables (11) provide the average position of the
trajectories flown during each test, as well as an indication
on the average and maximal deviation of each single
flown trajectory from the overall average. The choice of
these quantities as performance indicators is motivated
by the fact that theoretical, numerical and experimental
results show that, within quite slack limits, the most
important aspect for the sake of power generation is the
average position of a flown path, rather than its shape,
Zgraggen et al. (2013). Hence, the flight control system
shall achieve flying paths with consistent average position,
and a flight controller can be considered to be “better”
than another if it is able to obtain trajectories whose
average position is less variable, i.e. with smaller values
of ∆φ, ∆θ, ∆φ, ∆φ. The task of regulating the power
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Table 2. Experimental results of 15-minutes
test batches: average position and related de-
viations (rad), and average wind speed at 4 m

above the ground (m/s).

θ φ ∆θ ∆φ ∆θ ∆φ W
κ̂1 0.61 0.02 0.03 0.03 0.09 0.1 2.9
κ̂2 0.62 0.01 0.06 0.02 0.13 0.06 3.2
κ̂3 not stable 2.9
κ̂4 0.54 -0.02 0.14 0.11 0.25 0.17 3.5
κ 0.79 0.02 0.08 0.08 0.33 0.35 5.5

output, i.e. of setting the average flown position according
to the desired corresponding average power, can then be
carried out by a supervisory control approach, like the
adaptive strategy proposed in Zgraggen et al. (2013).

The results obtained with the four designed controllers are
reported in Table 2. The table also shows the performance
achieved by the human operator, indicated as κ, in the
test whose data have been used to learn the controllers.
The learned controllers κ̂1, κ̂2 were able to keep the
wing’s path inside the wind window and to stabilize the
system, achieving a good consistency of average position
of the flown paths. The differences in average position
achieved by these controllers with respect to κ are due
to the difference in wind speed during the tests, whose
average value W measured at 4 m above the ground is
shown in Table 2. The wind speed can be considered
as an exogenous, unmeasured disturbance, which can be
embedded in the variable es(t) of (4). Different wind
speeds induce a change in the position of the closed loop
trajectories in the φ, θ plane. In particular, the lower was
the wind speed, the closer were the flight paths to the
ground. This result is consistent both with the theoretical
results of Subsection 3.2 and with physical considerations
on the system. The controller κ̂4 was able to achieve figure-
eight trajectories, however with quite poor repeatability
as evidenced by the high average and maximal deviations.
Finally, the controller κ̂3 was not able to keep the wing
airborne and the closed loop trajectories gradually neared
the ground until the wing crashed. Considering that the
same data set and the same form of the basis functions
were used to design all the controllers, the main reason
for such differences in performance lie in the choice of
the feedback variables. The ones used by κ̂3, namely
the current position and velocity of the wing, were not
sufficient to extrapolate with high enough accuracy the
behavior of the human operator. The use of the same
values at the current time and 1 second in the past,
adopted by κ̂4, yielded a controller able to stabilize the
plant, but whose performance in terms of variability of
the flown paths were the worst.

The use of the current position plus the velocity angle
in controller κ̂2 provided much better results (a movie
of the experimental tests with the controllers κ̂2 and
κ̂4 is available online, Fagiano (2012)). It has to be
noted that the velocity angle is determined by the wing’s
position and velocity, so in principle the feedback variables
used by controller κ̂3 provide the same information as
those used by κ̂2. However such a relationship, given by
(2), is not described exactly by the polynomials (10),
hence the learning algorithm was not able to extract
this information. The controller κ̂1, which uses the same
feedback variables as κ̂2 both at the current time and
with 1 second delay, gives performance similar to κ̂2,
hence indicating that these additional variables do not
provide significant new information. We remark that the
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Fig. 5. Experimental results for the learned controller κ̂2

and. From top: wing’s path in φ, θ coordinates and
related gradient estimated by the velocity angle γ
(arrows); angular velocities φ̇ (solid) and θ̇ (dash-dot);
control input u.

controllers κ̂1 and κ̂2 have similar complexity in terms of
number of non-zero terms, despite the fact that κ̂1 uses
twice as many variables as κ̂2: this effect is due to the
use of the `1-norm cost function in (8), which encourages
sparsity and hence the automatic selection of the terms
(hence also of the feedback variables) whose importance is
higher.

In summary, the obtained results highlight that 1) with the
proposed approach, the control design effort lies mainly
in the choice of the feedback variables and of the basis
functions, 2) physical insight still plays an important
role in selecting the most appropriate variables (like the
velocity angle in this specific case), 3) the use of `1-norm
minimization allows the control designer to start with a
relatively large number of candidate feedback variables,
leaving to the algorithm the task to identify the most
relevant ones. Finally, we comment on the comparison
between the performance obtained by κ̂1 and κ̂2, which
gave the best results among the learned controllers, and
those of the human operator κ. From Table 2, it can
be noted that the learned controllers were able to obtain
less erratic flight trajectories than those pertaining to the
identification data collected during manual flight, which
are affected by larger deviations in the average trajectory
position. The relatively poor performance of the human
operator can be due to inexperience but also fatigue and
loss of concentration. These aspects can be regarded to
as disturbances acting on the input variable, and their
effect is accounted for by the design parameter ε̂. The
experimental results indicate that the proposed approach
is able to cope effectively with outliers and dispersed data
sets caused by such disturbances.
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5. CONCLUSIONS

We presented an approach to design a feedback controller
that stabilizes crosswind flight patterns of a tethered wing.
The proposed technique is able to derive a controller
directly from the data measured on an existing feedback
control system, where both the controller and the plant are
not known. The learning algorithm involves the solution
of convex optimization problems only, and converges to
a stabilizing controller as the number of employed data
points tends to infinity. We presented the experimental
application of the approach on a small-scale prototype,
showing promising results.
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