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Abstract: The paper proposes a new method for a kind of parametric fault online diagnosis
with state estimation jointly. The considered fault affects not only the deterministic part of the
system but also the random circumstance. The proposed method first applies Kalman Filter
(KF) and Maximum Likelihood (ML) technique to identify the fault parameter and employs
the result to make fault decision based on the predefined threshold. Then this estimated fault
parameter value is substituted into parameterized state estimation of KF to obtain the state
estimation. Finally, a robot case study with two different fault scenarios shows this method can
lead to a good performance in terms of fast and accurate fault detection and state estimation.
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Fault Detection.

1. INTRODUCTION

During the last two decades, the so called model-based
Fault Detection and Diagnosis (FDD) approaches have
been received increasing attention from both academic
and industry societies ( Frank et al. (2000), Isermann
(2005)). One important fault category is parametric fault.
Generally, for the system with possible parametric fault,
if the FDD procedure can identify the parameter related
to fault, it can be easily claimed whether the fault hap-
pened based on the procedure of parameter identification.
Sometimes in order to deal with the fault and maintain the
system running, the information of the state is also quite
important. For this reason, the fault parameter identifica-
tion often accompanies with state estimation ( Isermann
(2005)). Thereby, the Joint Parameter Identification and
State Estimation (JPISE) technique is widely applied for
the FDD purpose.

In JPISE technique, one popular method is to directly
apply Kalman Filter (KF) technique (Zhang et al. (1994)),
which can be named as state estimation approach. This
kind of approach firstly takes both the state variable
and the unknown parameter(s) as an augmented new
system state. Then, corresponding KF technique, such as
Kalman Filter, Extended Kalman Filter (EKF) or Un-
scented Kalman Filter (UKF), is used to estimate this new
state, thereby the estimation of fault(s) and state can be
simultaneously obtained. However, this kind of approach
gives rise to explicit multiplication of state by adding the
unknown parameter into state variable, meanwhile it is
well known that there is no guarantee for global conver-
gency (Hopkins and Vanlandingham (1988)). Moreover, if
a fault leads changes not only regrading to the determin-
istic description of the system but also possibly regarding
the random feature, the state estimation approach may
not provide a good performance to estimate unknown

parameter in random part. From another point of view,
the KF itself only applies the means and covariances of the
variables in the system, not all the information of system
such as the distribution of the noise (in most situation,
it is assumed Gaussian distribution). It is reasonable to
believe that if both the state and noise information are
employed to make the estimation of system, the result
could be much more precise. For these reasons, another
kind of method based on KF is developed, which is named
as ”bootstrap” method by Hopkins and Vanlandingham
(1988). Within this type of method, the parameter iden-
tification and state estimation are carried out sequently.
The approach combines KF technique with some statistic
methods. The scheme generally consists of two sequential
stages. The first stage conducts the state estimation using
KF technique, in which the estimated state, including
mean and covariance, is a function of unknown parameters.
Then, a statistic criterion, such as Maximum Likelihood
(ML) or Least Mean Square (LMS), is set up in the
second stage based on the estimated parameterized state.
Thereby, the fault detection problem can be converted to
an optimization of parameterized statistic problem and
it can be numerically solved by some optimization algo-
rithms (Dennis and Schnabel (1983)). In this category,
the Kalman Filter with Maximum Likelihood (KF-ML)
method (Kristensen et al. (2004), Sun and Yang (2010)) is
a typical approach, which applies KF technique plus ML
method to identify the parameters in stochastic systems.
This kind of bootstrap method may be more flexible than
the state estimation methods, e.g., being able to directly
deal with identification of some nonlinear systems with
unknown stochastic characteristics and considering the
distribution in the systems.

In this paper, we consider the parameterized fault and
when the fault happens, the fault related parameters of
the system in both deterministic part and random part
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will be changed compared with the normal values. The
KF technique plus ML method is applied to estimate the
fault parameters in an online manner together with using
sliding windows technique. Then the fault decision can
be made onlinely based on the result of identification.
The estimated parameters can be applied to realize the
state estimation, and if necessary, Kalman Smoother (KS)
technique (Charles and Chen (2009)), can be used in order
to get smooth state estimation.

The remainder of the paper is organized as follows:
The considered problem is formulated in Section II; The
method using joint parameter identification and state esti-
mation for the FDD purpose is given in Section III; Section
IV illustrates the proposed algorithm via a robot case;
Finally, we conclude the paper in Section V.

2. PROBLEM FORMULATION

In the following, our discussion is restricted to a class of
continuous systems with possible abrupt parametric fault.
Considering a system which is represented in state-space
form using Itô Stochastic Differential Equation (ISDE)
model, see Øksendal (2000), as:{

ẋt = [A(θ)xt +B(θ)ut]dt+ E(θ)dBt

yk = Cxk +Duk +Gωk
(1)

where xt ∈ Rn is the system state, u ∈ Rm is the
system input (sometimes can be seen as control variable),
y ∈ Rr is the system output with r < n, Bt is an n-
dimensional Brown Motion (B.M) and ωt ∈ Rr denotes
Gaussian noise in the measurement with zero means and
covariance matrix R. θ is the parametric vector of the
system. A(θ), B(θ), E(θ) are the system matrices, which
can be dependent on the parameter θ. C, D, G are the
output matrices and they are assumed to be independent
of θ.

The fault in the model is assumed to be a parametric one
and located inside the system. When the fault happens,
it will affect the value of system matrices by changing
parameter θ. It means that

θ =

{
θ0, Normal system,

θf , Faulty system.
(2)

Note that the coefficient of random part in the system
changes from E(θ0) to E(θf ), i.e., the fault affects both
the deterministic part and random part.

The main problem is to estimate both the parameter θ
and state xt from the data of input and measurement in
an on-line manner and to make the fault decision based on
the estimation.

3. KF-ML METHOD FOR FAULT DETECTION AND
STATE ESTIMATION

KF-ML method was firstly applied in Kristensen et al.
(2004) for system identification to Stochastic Differential
Equation (SDE) models and it was extended in our pre-
vious work, see Sun and Yang (2010), to deal with some
nonlinear cases. The main procedure using for joint FDD
and state estimation can be summarized in the following.

3.1 Parameterized State Estimation

The first stage is to use KF technique to get the parame-
terized state estimation. It can be referred to Charles and
Chen (2009) for general KF theory. Since the measurement
is in the discrete time version, the process equation in (1)
need to be discretized as:

xtk − xtk−1
= [A(θ)xtk +B(θ)utk ](tk − tk−1)

+ E(θ)(Bk −Bk−1).

Then the KF is performed to make the state estimation as
following:

The initial state can be specified as a random Gaussian
vector with mean x0 and covariance P0.

Time-updated (Prediction):

x̂−
k
(θ) = x̂k−1(θ) + [Ak(θ)x̂k−1(θ) +Bk(θ)uk−1](tk − tk−1),

P−
k
(θ) = Ak(θ)Pk−1(θ)A

T
k (θ) + Ek(θ)(tk − tk−1)IE

T
k (θ)

Sk(θ) = CP−
k
(θ)CT +GRkG

T ,

Kk(θ) = P−
k
(θ)CTS−1

k
(θ).

(3)

Measurement-updated (Update):

rk(θ) = yk − Cx̂−
k (θ)−Duk,

x̂k(θ) = x̂−
k (θ) +Kk(θ)rk(θ),

Pk(θ) = (I −Kk(θ)C)P−
k (θ).

(4)

Note that the subscript k means the corresponding vari-
able is chosen at kth sampling time. θ in the bracket means
that the corresponding variable depends on θ.

As a result, the estimated mean and covariance of the
state, both of which are functions of the unknown param-
eter θ, can be obtained by accomplishing KF process.

3.2 Maximum Likelihood Estimation

The second stage is to make the ML estimation of system
parameter θ. Based on the discretized process model and
measurement, the ML estimation of the unknown param-

eter θ can be determined by finding θ̂ that maximizes the
likelihood function in the following. This ML function is
computed based on the state estimation in one length of
time windows. Now suppose M > N > 0, where N is the
length of sliding windows using for the on-line estimation,
introducing the notation

Y N
M = [yM , yM−1, . . . , yM−N+2, yM−N+1],

then, the likelihood function becomes the joint probability
density, i.e.,

L(θ;Y N
M ) = p(Y N

M | θ).

Since the noises in the measurement are independent at
each step, it can be obtained that

L(θ;Y N
M ) =

(
M∏

k=M−N+2

p(yk | Y k−1
k−M+N−1, θ)

)
p(Y M−N+2

M−N+1 | θ).
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In order to carry out the optimization of the likelihood
function, the estimated mean and covariance of state are
needed, which is solved in the first stage using KF. Since
the random part of measurement in (1) is driven by a
Gaussian process, and the increment of a Gaussian process
still follows normal distribution, it is reasonable to assume
that the conditional densities can be approximated by
normal densities. Then based on the obtained parameter-
ized state estimation in the first stage, the parameterized
likelihood function can be rewritten as:

L(θ;Y N
M ) =

M∏
k=M−N+2

(
exp(− 1

2r
T
k (θ)S

−1
k (θ)rk(θ))√

det(Sk(θ))(
√
2π)n

)
p(Y M−N+2

M−N+1 | θ).
(5)

Then, the considered FDD problem via parameter identi-
fication need to solve the following optimization problem
in an online manner:

θ̂ = argmin
θ∈Θ

{− ln(L(θ;Y N
M ))}. (6)

Generally, the convex property of the formulated optimiza-
tion problem (6) need to be explored. But a good initial
value could possibly lead to a global optimal solution.
Here, for LTI cases, the global optimal point could be
obtained. In the case of this paper, the quasi-Newton
using BFGS update method, see Dennis and Schnabel

(1983), is adopted. After optimization, θ̂ is obtained at

the time when measurement yM is collected. The value θ̂
is considered as the estimated value of the fault parameter
at the recent time point.

3.3 Fault Detection Decision

From the last stage, θ̂ is obtained as the estimation of
parameter θ which is related to fault. It need to repeat the
procedure using a moving window with length N to make
an on-line parameter identification of the fault variable.
In order to make the fault decision, either the predefined
threshold method or some statistical methods (Yang and
Akbar Hussain (2007)), may be used to determine whether
the fault happened or not. In this paper, the deterministic
threshold method is applied. If the value estimated is
around the normal value θ0 within 10% deviation, the sys-
tem is claimed running well. When the difference between
the normal value and the estimated value exceeded this
predefined value or the estimated value changed beyond
10% compared with the historical value, it can be claimed
that the fault has happened.

3.4 Smoothing State Estimation

If estimated parameter value θ̂ is substituted into the
parameterized state estimation (3) and (4), the state

estimation x̂k(θ̂) and Pk(θ̂) can be obtained jointly. But
in the state estimation, sometimes Kalman Smoother
technique need to be adopted to make the estimation more
accurate.

Kalman Filter
Based on System Model

Input Output

Maximum Likelihood
Function

ML Function

Solving Optimization of the
ML Function

Identification Result

Change Detection

Fault Decision

Substitution
(Kalman Smoother)

State Estimation

Parameterized
Estimated State

Normal
Value

Fig. 1. The scheme using KL-ML method

The Kalman Smoother proceeds backward in time Charles
and Chen (2009). It can be summarized as:

Initial with x̂M (θ̂) and PM (θ̂), and let k = M − 1, N −
2, . . . ,M −N + 1, there is:

Lk(θ̂) = Pk(θ̂)A
T
k (θ̂)P

−
k+1(θ̂),

x̂k|N (θ̂) = x̂k(θ̂) + Lk(θ̂)(x̂k+1|N (θ̂)− x̂−
k+1(θ̂)),

Pk|N (θ̂) = Pk(θ̂) + Lk(θ̂)(Pk+1|N (θ̂)− P−
k+1(θ̂))L

T
k (θ).

(7)

3.5 Entire FDD and State Estimation

Summarizing the above stages, the entire scheme for FDD
using proposed method can be illustrated in Fig. 1. In the
beginning of the process, the length of moving windows
N need to be determined. Then based on the input and
output data, the estimation procedure can be performed
in an on-line manner.

• Employ KF technique to make state estimation (mean
and covariance).

• Form the parameterized ML function of fault param-
eter based on the parameterized state estimation.

• Solve the optimization problem of the ML function,
and obtain the value of fault parameter identification.

• Compare the identification result with the historical
values and make the fault decision using the prede-
fined deterministic threshold method.

• Substitute the identified parameter into parameter-
ized KF solution, and then obtain the state estima-
tion. If necessary, apply KS for smoothing purpose.

• When a new couple of data arrived, repeat the same
procedure as above.

4. CASE STUDY

The space robot system used in Yang et al. (2007) is
considered as a case study. The process could be seen
in Fig. 2. In the normal situation, system parameters are
listed in Table 1, and the dynamic of the normal system
is described by:

N2ImΩ̈ + Ison(Ω̈ + ϵ̈) + β(Ω̇ + ϵ̇) = T eff
j , (8)
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Fig. 2. The process of a robot space referred Yang et al.
(2007)

Table 1. System parameters of the space robot
system

Symbol Description Unit

N=-260.6 Gear-box ratio –
Im = 0.0011 Inertia of the input axis kg m2

Ω Joint angle of the internal axis rad
Ison = 400 Inertia of the output axis kg m2

T eff
j Torque of effective joint input Nm

ϵ Joint angle of output axis rad
kt = 0.6 Motor torque constant N/%
ic Motor current Am
β = 0.4 Damping coefficient N/%
c = 130 000 Spring coefficient N/%
Tdef Deformation torque of gear box Nm
Tm Motor torque Nm

Ison(Ω̈ + ϵ̈) + β(Ω̇ + ϵ̇) = −Tdef . (9)

The actuator part including a DC-motor and a gear box is

simplified as T eff
j = NTm and Tm = ktic. Torque Tdef due

to the deformed spring is described by Tdef = cϵ. In the
actual system, the controllable input is the motor current
ic, and the measured signals are encoder output Θ = Ω+ϵ
and tachometer output N Ω̇. The original system was a
SIMO system. The fault scenario is assumed to disturb
the motor constant. It will have an influence on both the
value of the motor torque constant and the system random
circumstance. Fault parameter is assumed as θ and motor
toque constant is taken as θkt. If the system runs normally,
the motor toque constant is kt with θ0 = 1. But when the
fault happens and the motor toque constant changes to
θfkt. The fault also affects the random part of system by
changing the value of σ.

Define state vector xs = [Ω, Ω̇, ϵ, ϵ̇]T , output vector y =

[Ω + ϵ,N Ω̇]T , and

A =


0 1 0 0

0 0
c

N2Im
0

0 0 0 1

0 − β

Ison
−(

c

N2Im
+

β

Ison
) − β

Ison

 ,

E =


0
kt

NIm
0

− kt
NIm

 , C =

[
1 0 1 0
0 N 0 0

]
,

Then the normal/faulty system could be described as
follows: {

dx(t) = [Ax(t) + E(θ)u(t)]dt+ aσdBt

y(t) = Cx(t) + ωt
(10)

where E(θ) = [0 θkt

NIm
0 − θkt

NIm
]T , Bt is one two

dimensional Brown Motion, the noises ωt is the Gaussian
noise which denotes by ωt = [0 1 0 1]T v1, where
v1 is one dimensional Gaussian processes with means 0,
and covariances R. a = 0.001 and σ is the unknown
parameter in the random item. In the test, it is assumed

that R =

[
0.0012 0

0 0.0012

]
.

The system runs according to the following rules.

Θ = [θ σ]T =

{
[θ0 σ0]

T = [1 1]T , Normal system,

[θf σf ]
T , Faulty system.

(11)

In the following simulation tests, the whole time the
system running is 31.4 seconds and at the 10th second
the fault happened. The multi-step input u1 and sinusoid
input u2 are concerned as the system inputs.

u1(t) =

{
0.1, for t < 5s
−0.5, for 5s ≤ t < 20s
0.2, for others

,

u2(t) = 0.5sin(0.8t).

The identification of the fault parameter need to wait for
the first N outputs in the beginning. During this waiting
period, the fault parameter estimated is set as the initial
value of the optimization and state estimation is based on
all the sample points before we get the N -th point. As soon
as N sample points are collected, a moving window with
length N is used to on-linely update the estimation. The
initial condition for the system is x(0) = [0.01, 0, 0, 0]T .
The sampled interval is set as 0.1 second. The initial
estimation values are assumed as θ̃ = 0.3 and σ̃ = 0.9.

In order to test the effect of different conditions, two
scenarios are considered as following:

• Case a: input signal u1, if fault happens, parameters
change to θf = 1.5, σf = 10 and the length of moving
windows is set as 30.

• Case b: input signal u2, if fault happens, parameters
change to θf = 0.5, σf = 1.5 and the length of moving
windows is set as 10.

The output data is plotted in Fig. 3 and Fig. 6.

From the results, it can be obtained that

• Fault detection:

As shown in Fig. 4 and Fig. 7, the procedure need
to wait 3 second and 1 second to collect enough
points to make the estimation. During this period,
the estimated parameter remains at the initial value.
When the data is enough to make the estimation,
there are some differences for the two scenarios. In
Case a, for parameter identification in deterministic
part, before 10th second, the estimated value is much
close to 1 which is true value of normal system. At
5th second, the estimated value has a small deviation
to the true value. It is due to the effect of input
signal which is converted to the different direction at
that time. When the fault happened at 10th second,
the estimated value has a large jump or deviation.
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Fig. 3. System output
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Fig. 4. Parameter identification
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Fig. 5. State estimation error

After a while, the estimated value changes to be
close to a new steady-state value which is nearly the
true value of parameter in the fault system. During
almost all period, the error for fault related parameter
identification of deterministic part is within 4%. If
the fault criterion is set as 10% deviation, it is
obvious that the fault happened at 10th second in the
deterministic part of system and its magnitude can
be obtained accurately as well. For the random part
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Fig. 6. System output
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Fig. 8. State estimation error

estimation, it is not so good as the estimation for the
deterministic part. It can be seen that in the whole
period, the estimated value has some deviation all the
time. It is due to the fact that only tens of data can
not catch all the information of the stochastic process.
If it is to get the precise estimation for the parameter
in the random part, it need thousands of data or more.
But that is laborious and in many situations for FDD,
it is unnecessary. However, it can still detected that
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more than 10% deviation emerged at 10th second,
i.e., it can be claimed the fault happened at 10th
second in the random part as well. In Case b, the
performance is not so good as in Case a. It has more
fluctuations for the estimation than that in Case a.
This is because the length of moving windows is much
shorter than Case a. However, it can still provide us
the information of the fault parameter and the right
fault decision can be made based on the estimation. In
the whole, from these two cases, it is believed that the
fault happened at 10th second in both deterministic
part and random part.

• State estimation:

Fig. 5 and Fig. 8 show the error in the state
estimation and it is expressed in percentage by the
ratio between the error and true state. The results
illustrate that most of state estimation errors are
within 1% for both of two cases. But as the same
phenomenon observed in the parameter identification,
at those intervals and times when the condition of the
system/input is changed, the estimations would have
relatively large temporal oscillations.

5. CONCLUSIONS AND FUTURE WORKS

An online approach using jointly parameter identification
and state estimation for fault detection and diagnosis is
proposed for systems where fault can affect both the de-
terministic part and random circumstance. This approach
firstly applies the KF technique to get the parameter-
ized state estimation. Then, ML function is formulated
based on the result of parameterized state estimation and
noise distribution knowledge. An optimization problem of
ML function is solved using numerical algorithm and the
optimal value is taken as the estimated fault parameter.
The fault detection decision can be made based on the
predefined threshold method. Moreover, this estimated
fault value can be substituted into the parameterized state
estimation and thereby the corresponding state estimation
is finally obtained. Sometimes, KS need to be used to make
the state estimation more smooth and accurate.

The simulation result based on a robot system showed that
this approach can provide an accurate estimation and fast
detection time in terms of fault parameter identification
and state estimation. However, the performance can be
slightly affected by the length of moving windows and
input signals using for the estimation. Moreover, the
parameter identification in the random part calls for a
large number of data.

To extend this method to the recursive manner is part of
our future work.
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