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Abstract: Novel nonlinear predictors are studied for nonlinear systems with delayed measure-
ments without assuming globally Lipschitz conditions or a known predictor map but requiring
instead bounded state trajectories. The delay is constant and known. These nonlinear predictors
consists of a series of dynamic filters that generate estimates of the state vector (and its
magnitude) at different delayed time instants which differ from one another by a small fraction

of the overall delay.

1. INTRODUCTION

The problem of accurately reconstructing the unmeasur-
able state variables by using a system/process model and
the available on-line output measurements has been ad-
dressed by many authors. Particularly challenging remains
the nonlinear observer design problem in the presence
of delayed output measurements. Output measurements
naturally arise in a variety of engineering applications
(system/process to be controlled or monitored but located
far from the controller unit, measured output data trans-
mitted through a low-rate communication system, non-
negligible time-delays introduced by sensors). In this case
it is important to implement some kind of prediction based
on the delayed measurements. A nonlinear observer pro-
posed in Marquez et al. [2000] for linearizable by additive
output injection systems. A predictor based on a cascade
of observers has been introduced with LMI techniques in
Besancon et al. [2007]. For globally Lipschitz continuous
invertible observability maps (Germani et al. [2011]) the
proposed observer consists of a chain of dynamic predictors
that reconstruct the unmeasurable state vector at different
delayed time-instants within the time-delay window intro-
duced by the output measurements. Hence, the proposed
nonlinear observer exhibits a chained structure that explic-
itly takes into account the magnitude of the output delay.
The paper ?], while adopting a conceptually similar design
methodology, aims at overcoming some of the restrictions
associated with the above approaches by following a tech-
nically different path. Also globally Lipschitz conditions on
the system are required in Ibrir [2011]. In all these papers
linear predictors are used.

Predictor—based results have been recently obtained in
Karafyllis et al. [2013] where a known compact absorbing
set (plus some technical facts) is assumed for all the
system trajectories. This assumption is much stronger
than boundedness of the state trajectories, where the
absorbing compact set depends on the initial condition of
each state trajectory. On the other hand, these dynamic
predictors follow the structure of the ones introduced in
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Germani et al. [2011] and Kazantzis et al. [2001]. It must
be said that the existence of a known compact absorbing
set is very much similar to a Lipschitz condition over
compact sets, in the sense that after some times all the
trajectories stay in some known compact set and over this
set the nonlinearities are Lipschitz.

Predictors, which are not implemented as dynamical fil-
ters, are designed in Karafyllis et al. [2012b] under the
assumption that either a) the expression of the state tra-
jectories is explicitly known or b) the system is globally
Lipschitz. In Karafyllis et al. [2012a] the existence of
predictor—based observers is shown under the hypothesis
that the so-called predictor map is known exactly. Actu-
ally, all the above cited results can be implemented only
if the predictor map is available (this happens for linear
systems, bilinear systems, chains of linear systems with
input nonlinearities), except for Karafyllis et al. [2013]
where a modified version of the chained predictors, intro-
duced in Germani et al. [2011] and Kazantzis et al. [2001],
are used. Further results have been obtained for delays
that depend on the delayed states in Bekiaris-Liberis et al.
[2013]. Numerical and approximate predictors have been
proposed in Karafyllis et al. [2013]. Design of predictors
for specific implementation has been proposed in Mazenc
et al. [2011].

In this paper we consider the problem of state observation
for a class of multi—output systems which satisfy an incre-
mental homogeneity (in the generalized sense) condition
with bounded state trajectories. This class of systems
includes lower triangular and upper triangular systems
and many non-triangular systems. The measurement delay
is constant and known. It is not required any globally
Lipschitz condition on the system or availability of the
predictor map. The additional complexity of the solution
with respect to previous contributions with known com-
pact absorbing sets is due to the fact that any trajectory is
contained in some compact set which however is not known
since it depends on the initial values of the trajectory. An
estimation of the maximum delayed state and its magni-
tude are computed and, using this estimate, a prediction
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is implemented by a chain of nonlinear dynamic predictors
that reconstruct the unmeasurable state vector at different
delayed time-instants. The novelty of our observers is the
use for the first time of nonlinear predictors with saturated
estimates where the saturation levels are adapted on-line
according to the delayed measurements. This adaptation is
needed to estimate the compact absorbing set of each state
trajectory (depending on its initial condition) and this
is done through the estimation of state magnitude. Our
result is also based on the observer design with undelayed
measurements proposed in Battilotti [2011]. An important
feature of our observer is also the constructive design
illustrated by a step-by-step procedure.

2. NOTATION

e R™ (resp. R™*™) is the set of n-dimensional real
column vectors (resp. n x n matrices). R (resp. RZ,
RZ*™) denotes the set of real non-negative numbers
(resp. vectors in R™, matrices in R™*", with real non-
negative entries). R (resp. RZ) denotes the set of
real positive numbers (resp. vectors in R™ with real
positive entries).

e For any G € RP*"™ we denote by G;; (or [G];;) the
(i,7)—th entry of G and by G; (or [G];) the i—th row
of G. We retain a similar notation for functions. For
any v € R™ we denote by diag{v} the diagonal n x n
matrix with diagonal elements vy, ...,v,. Also, |a]
denotes the absolute value of a € R, |a| denotes the
euclidean norm of a € R™, i.e. 4/a? + ...+ a2, and
a) the column vector of the absolute values of the
components of a € R, i.e. (|ay|---|a,|)7.

e We denote by C/(Z",%), with j = 0, Z < R" and
% < RP, the set of j-times continuously differentiable
functions f : 2" — %, by DI(2, %), X, Z < R",
the set of functions f € C/(2", %) with decoupled
components, viz. f(z) = (f1(21):-+, fu(zn))"

e We say that 0" € D(R",R") is a saturation function
with levels h € R? if for each i = 1,...,n, o%(s;) = s;
for all s; : |s;] < h; and o(s;) = sign(s;)h; for all
si ¢ |si| > hy (sign(s;) is 1if s; > 0 and —1 if s; < 0).

e For any vectors z,t € R” and ¢ € R, we define

l'n)T

et= (et )t fon = (el'wy ey,

)

viz. € o x is the dilation of a vector x with weight .
3. MAIN ASSUMPTIONS

Consider the system

o(t) = f(z(t) := (A+ BF)x(t) + d(x(t)),
t=-A, x(_A) = Ty,
y(t) = Bt — A)) 1= Crlt — A) + bl — A)), 6> 0 (1)

where A > 0 is the constant (known) measurement delay,
x € R" y e R, yis a function of the state at time t — A.
A, B, C are in Brunowski canonical form:

V

01 --- 0 0\” 1\T

. . 0 0
A= “l,B=|.|,Ct= ,

0 0 1 :

0 0 0 1 0

with F' € RP*™, Moreover, ¢ and \{ are locally Lipschitz
continuous with ¢(0) = 0, P(0) = 0, %(0) = 0,
%w (0) = 0. The vector A + BF represents the linear
approximation around zero of the system. The vector
of the initial conditions z(—A) is zo. We will denote
by x(t,x9) the state trajectory of (1) ensuing from g
at t = —A (resp. t = 0), unique and defined over
its maximal right extension interval (theorem 3.7 and
proposition 3.10 of Smith [2011]). We identify matrices
with linear maps. Moreover, see the appendix for a short
review of incremental homogeneity in the upper bound
(i.g.-h.wb.). Our assumptions are the following ones:

(A0) (incremental homogeneity) { and ¢ + BF
are incrementally homogeneous in the upper bound
(i.g.h.ub.) with quadruple (v,—g; + tv1,9,¥Yo) and, re-
spectively, (v, A(—g+t)+ (I —AAT)(g+v), g, @9+ BFp)
where ®((0,0) = 0, ¥(0,0) = 0 and t, g are such that
39j41— 05 Stjp1—t; < gj+g;forallj=1,...,n—-1,

(A1) (boundedness of trajectories) for each zg € R"
there exist a compact set 6, < R™ such that x(¢,z¢) €
Cup Yt = —A,

(A2) (incremental observability) for any zj,z, €
R™ : h(at,zy) = ha(t, o) ¥t > —A = a(t,ap) -
x(t, xy) Vt = —A.

Remark 1. The notion of (incremental) homogeneity (in a
generalized sense) has been introduced in Battilotti [2013],
Battilotti [2011] for enlarging the class of homogeneous
(in the classical sense: Rosier [1992]) systems in such a
way to encompass triangular (non-homogeneous) systems
and many other non-triangular systems. On the other
hand, homogeneity in the upper bound allows to cope
more generally with homogeneous bounds and achieve
robustness properties. Assumptions (AQ) states that 1
and ¢+ BF are incrementally homogeneous with a certain
relation between degrees and weights. It can be seen that
assumptions (AO0) is satisfied for large classes of systems

(i) with polynomial lower triangular ¢ + BF' and 1, i.e.
such that for all

|d)7/(1:)‘ g ®(Z)(:Z:17 R 7:177:)7 II: = 17 A 7”’
P(z) =0, ©y(0) = 0, ¥o(0) = 0, for some functions ®°
and Yo,
(ii) with polynomial strict upper triangular ¢ + BF and
1, i.e. such that for all

b < O (w42, ...

W(z)] < YO(xg,... 2,
bn(z) = Pp_1(z) = 0, Vp(0) = 0, ¥o(0) = 0, for some
functions ®° and Yo,

(iii) for some all equal degrees g, = gn—1 = ... = go =
g1 := go, with go being the homogeneity degree of ¢ +
BF (in the classical sense) and 0 being the homogeneity
degree of ¥ (in the classical sense) .o

Remark 2. For systems (1) with undelayed measurements
a global observer was proposed in Battilotti [2011] under
assumptions (A0)—(A2). (A0) is a local observability as-
sumption for the undelayed system, stated in terms of
incremental homogeneity of f and h. In other words, it
guarantees the existence of a local observer for the un-
delayed state. Note that ®y(0,0) = 0 and ¥((0,0) = 0
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is required. This assumption can be relaxed by requiring
that the linear approximation of the undelayed system (1)
around the origin remains observable under the perturba-
tion terms ®¢(0,0) and ¥y(0,0).

Assumption (A2) is a global observability assumption for
the undelayed system (1).

Assumption (A1) is somewhat restrictive. However, many
physical systems have this property (Van Der Pol and
Fitzhugh-Nagumo oscillators, the Lorentz equations: see
examples in section 7). Note that we do not require the
knowledge of a Lyapunov function for the system. o

4. THE STRUCTURE OF THE PREDICTOR

Wherever possible we will omit the dependence of the
state trajectories from the initial conditions. The following
notation is adopted to denote the following delayed state
vectors:

Ay, il

x(j)(t)::x(t—A-i-jE),t?— 7_]':0,...,’/77,. (2)

m

The nonlinear observer exhibits the following chain struc-
ture. A first block is devoted to the estimation of (%) (t) :=
z(t — A) (variable &) and its maximal magnitude

sup, |z(t — A)|| (variable p(®))

EO () = 3°" OO (1)) + £ OY(1),

pO(t) = & () (1))

+(p©@ ()28l (0@ (1)) 7T o P (CTY (1) 2, (3)
t > 0, with

FP(E) := (A + BF)E + (0% (£))

BP(£) 1= p'2lnl ot 0 6P (£ — 0P (£)) |2

=y - ca<0> — (o (E))

R = (I — ATGP)'CT Kop®©9, G = diag{Tpp*?}, (4)
for some saturation function o’ with levels cpt, ¢ > 0,
Ky > 0 and diagonal positive definite Iy € R™*™. By
assumption (A1) the magnitude of x(t — A) is bounded
in time but unknown, depending on the initial condition
x(—A). The estimates £ and p(® are used in the block
devoted to the estimation of z(M(t) = z(t — A + £)
(variable £1) and p()(t) := pO(t + £) (variable p(!))

EV () =3 OED () + EO (1) — D ED 1))
A

©(t) (£ (0) W=y ey _ 2
+5°OEO @) —§ W EN - )

. ey . 0
p(l)(t) = ®P (t)(a(l)(t)) + p(o)(t) _ %P (t)(E(O) (t))
e (1) (£0) (1)) _ e (t-2) sV _ B
+6° H(ET () - & (&2t =), (5)
> (0, where m > 1 an integer such that
A[|A + BF| + n*c*] < m. (6)

Since

x(l)(t) - x(O)(t>

t

¥ f [(A+ BF)@™M(s)) + ¢((z

t— A

m

(s)]ds  (7)

the predictor for z(!)(t) is obtained by differentiating

3P (D (s5))ds (8)

t—A

which is a copy of (8) except for substituting &) with its
saturated Uc(p(l))r(é(l)). In general, the estimates &%) and
e, i=0,...,j— 1, are used in the block devoted to the
estimation of 2\ (t) := 2(t — A + £2) (variable £9)) and
p@(t) := p?(t + L2) (variable p(¥))

Zsp“ (£D (1))

- %))] 2O - FOE O 0)

E,( ( ) %D(J) t)

e =R (g

0@ (1) = & OED (1)) + Z [ (0 (4))
=0

SR - D)

420 (t) — st“”(t)(a(o) ), j=2,...,m, 9)

t = 0, where the predictor for 2U)(t) is obtained by differ-
entiating a copy of () (t) except for substituting 2 (t)
with its saturated GC("(”(t))r(x(j)(t)). The predictor (3)-
(5)-(9) consists of 2(m + 1) filters that generate estimates
of the state vector (and its magnitude) at different delayed
time instants, which differ from one another by a small
fraction of the overall delay A, and it is initialized as
follows

pliHD (¢

-6

P (0) = pg” = p(-4),
, ; ) A
PO (s) = 0 (5) = ps — A+ 7).
£0(0) = &5 == £(-2),
£0)(s) 1= £§(s) = Els — A+ 1),
j=1m, se[-2 0] (10)

with bounded & € C°([—A,0],R") and ¢ € C°([-A,0],
[1,400)). The vector of the initial conditions (xg, p, &) will
be denoted in what follows by .

We want to prove that the estimates &) (t) converge to
the actual delayed states =) (¢) for j = 0,...,m — 1, and
most importantly, convergence (for j = m) of &,,(t) to
the undelayed actual state x(t) as long as m is chosen is
chosen sufficiently large. The main result of this paper is
the following.

Theorem 3. Assume (AO0), (A1) and (A2). There exist
¢, Koy > 0 and diagonal positive definite Ty € R™*"™
such that the solution z(-,zo), £9)(-,0), 09 (-, ¢0), j =
0,...,m, of (1)-(3)-(5)-(9) is defined and bounded for all
times and initial conditions ¢g. Moreover, lim;_,q ||z (¢, 20)—

EM (¢, 00)| = 0.
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Remark 4. Theorem 3 can be directly extended to systems
(1) with inputs and more generally with A + BF replaced
by A+ BF + D for some diagonal D (see example (22)).
Remark 5. The observer (9) is robust with respect to
square integrable output disturbances. Also robustness
with respect to non-vanishing output disturbances can be
achieved by suitably modifying (9) (this will be the object
of future work). o

In order to prove theorem 3 we first prove that &(©) (%)
converges to delayed state x(t — A) and, secondly, that
£U)(t) converges to the delayed state z()(t) for j =
1,....,m.

5. THE OBSERVER FOR X (©)
The state (9 () := z(- — A) satisfies the equations

= (A + BF)z© + ¢(z®)
+ (@), >0 (11)
which we consider together with (3). The vector of the

initial conditions zg := z(—A) and p(o) Eéo) (see (10)) will
be denoted in what follows by go(() ). The following result

can be proved as in Battilotti [2011].

Proposition 6. Assume (A0), (A1) and (A2). There exist
¢, Ko > 0 and diagonal positive definite Ty € R"X" such
that the solution z()(-,z0), £©(-,o{") and p© (-, o)
of (1)-(3) is defined and bounded for all times and
(0)

y—C’x

initial conditions @, . Moreover, limy o |20 (t,20) —

£ (t, o) = 0.
6. THE PREDICTOR FOR X(T)

The vector of the initial conditions zq, p, & (see (10)) will
be denoted in what follows by ¢g. We set |@o| = |zol +
maxge[—a,0] |0(8)|| + max,er—a,07 |E(s)]|. The following no-
tation is adopted to denote the following delayed vectors:

A jA

()= p Ot 4+ ), b= =1 =0, m (12)

We will prove that £()(t) is an asymptotic estimate of
2 (t) and, therefore, £(")(t) is an asymptotic estimate of
2(™)(t) = x(t), which proves our main theorem 3.

Proposition 7. Let the integer m be chosen in such a
way that (6) is satisfied. Then the solutions z9)(-,x),

E»(j)(a @0)) p(J)(v %00)7 j = 1) c..,Mm, of (1)_(3)_(5)_(9) are
defined and bounded for all times and initial conditions
o and

- ) 0 -

tglfoo(x (t,20) — EY)(t,p0)) = 0

~ ) _ @ 0. j=

Jim (09t 00) =P (t,00)) = 0, j =1, m.(13)

Proof. Throughout the proof we will omit the dependence
of the trajectories from the initial conditions and wherever
there is no ambiguity we will omit the superscript ¢). First,
it is easy to show, following , that pU)(¢), j = 1,...,m,
satisfies for all times ¢ in its maximal right extension

+S A 6P )(£W)(s))ds. In

a similar way we can show that &J)( ), 5 = 0,...,m
satisfies for all times ¢ in its maximal right extension

domain £U)(t) = E(J D(t) + St_i §° ) (£0) (5))ds. Set
el = 2 g0 ) .= () _pl j) . The proof proceeds by
induction. First, we prove the boundedness of eU)(t) and
pW(t) for all j = 1,...,m and, finally, using invariance
theorems we prove their convergence to zero. Assume that

domain pW)(t) = pU=D(¢

e D@L 09 V0] < IV (lpol) (14

for all £ > 0 and for some increasing continuous nonnega-
tive function (U1 . By the induction hypothesis (14) and
on account of (6) and lemma 8

10D @) < ¢ (leoll) (15)
for all ¢ > 0 and for some increasing continuous nonnega-
tive function ()

On account of assumption (A0) it is easy to see that ¢ is
also i.g.h.u.b. with quadruple (r, g+t, g, @p). Using lemma
9, the induction hypothesis (14) and (15) there exists
increasing continuous nonnegative functions «, 6 such that
forallt > -2

m

A . A

leD ()] < 297 (gol) + f[ (zol) +80¢
t

+|A+ BF + D| He

tff

m

On account of (6), by lemma 8 and (15) it follows that

[P @1, 10 ()] < ¢V (o) (17)

for all £ > 0 and for increasing continuous nonnegative
function ¢). Since e (¢) and p© (¢) := () (¢) are norm-
bounded for all £ > 0 by some increasing continuous
nonnegative function of |¢gl|, it follows by induction that
(17) holds true for all ¢ > 0 and j = 0,...,m. Note
that, since £)(¢) is norm-bounded for all + > 0 by
some increasing continuous nonnegative function of [|eo],
(17) implies that also 7)(¢) is norm-bounded by some
increasing continuous nonnegative function of |¢g|-

D (lol)]

) (s)|lds (16)

Next, we proceed again by induction. Assume that for
some j = 2

Jim [20(1) - ﬁ”(ﬂ

lim [¢D(t) — pD ()] = 0,...

t—+00
Since (I(O)(t),...,a:(j)(t),é(o)(t),...,£(j)(t)) and (£ (¢),
e (), pO(t),...,p0)(t)) are bounded for all ¢ >
0, its Q-limit set is non-empty, compact and invariant
(corollary 5.6 of Smith [2011]). Moreover, since z(%)(t) —
E(O)(t—l—i%) — 0O foralli=0,...,j as £ - +00 and by
claim #2 of proposition 6, it also follows that

lim [0°C) M 20 (1)) -

t—+00

D] =0,i=0,...,j5. (19)

It follows by invariance of the Q-limit set, the induction
hypothesis (18) and lemmas 9 and 10 that the trajectories
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2O(t),..., 2D (), EO@),...,E9(1),e0@),...,e0)(1),
O)(#),...,pY)(t)) inside the Q-limit set must satisfy for
=0

o O

1t
|29 (t) — ED ()| < [|A + BF + D] + v (|ol)] -

.LA[H@@)(S) _ED(s)] + 1€9D(s) — pD()[1ds  (20)

m

In a similar way, using lemmas 9 and 10 it is seen that for
some increasing continuous nonnegative function x and for
allt >0

ED(t) — o ()] < x(llwo\l)ft 29 () = £9(s9)]

+[gW () — 69 (s)l1ds (21)
Summing (20) and (21) and using lemma 8 we conclude
that 20U)(t) = £W(¢) and W (t) = pU)(¢) for all t >
0. Tt follows that lim;, [z (t) — EU)(t)] = 0 and
lim;_, 4 [ (t) — pU)(¢)] = 0. Since by construction

i O () — £(0) — i 0) () — 50 -
Jim 00 - £00) =0, Tim, 00 - 0O 0)] =0
we infer by induction that lim; [z (t) — £W) ()] = 0

and lim;_, [ (t) — pW)(t)] =0 for all j = 1,...,m.

7. EXAMPLES

A simulation has been worked out (Fig. 1(a), 1(b) and
1(c)) with A =1, z(=A) = (3,2,1)T and &(s) = (0,0,0)T
for all s € [—A, 0] for the forced Lorentz equation

21(t) = w2(t) — 21(2)
xg(t) = —l'l(t)fﬂg(t) — I’Q(t) + 21’1(t)
&3(t) = —w3(t) + x1(t)z2(t) + sint (22)

If A =1 sec. then the integer m is chosen in such a way
that m > [||A+BF + D|+n?c*]A. For example, m = 3 and
we readily obtain (according to proposition 6) an observer
for the state x(t — A) of the Lorentz system.

8. CONCLUSIONS

Novel nonlinear predictors are studied for nonlinear sys-
tems with delayed measurements without assuming glob-
ally Lipschitz conditions but requiring bounded trajecto-
ries. The delay is constant and known. Further develop-
ments will be studied for the case of unknown delay and
unstable systems.

Appendix A. INCREMENTAL HOMOGENEITY IN
THE GENERALIZED SENSE: A REVIEW

The notion of (incremental) homogeneity in the gener-
alized sense has been introduced (in a slightly different
but equivalent form) in Battilotti [2013], Battilotti [2011]
for enlarging the class of homogenous systems (in the
classical sense: Rosier [1992]) in such a way to encompass
triangular (non-homogeneous) systems and many other
non-triangular systems.

(c)

Fig. 1. The states z(t — 22), 2(t — £) and z(t) for (22)

and their estimates £0)(t), j = 1,2, 3.

A function ¢ € CO°(R. x R™ R!) is said to be incremen-
tally homogeneous in the generalized sense (i.g.h.) with
quadruple (x,0,h, @) if there exist 0 € R, h e R?, v € R?
and ®g € C°(R?" R"*™) such that

bi(e, et ow) — di(e, e 0 2)

= g% Z ghi [@o]ij(w, 2)(w; — 2;)

j=1

(A1)

foralli=1,...,l,e >0 and w,z € R™.

The function ¢(z) = z1 + 3 is i.g.h. with quadruple
(t,0,h,®g), where v = (ry,t2)T, b = (r1,3t2)7 and
Op(w, z) = (1, w3 + 23 + zows). The function ¢(g,z) =
e(xy + x3) is i.g.h. with quadruple (v, 1, b, @p).

A function ¢ € C°(R= x R",R!) is said to be homogeneous
in the generalized sense (g.h.) with quadruple (¢,0,b, @)
if there exist 0 € Rl h € R, v € R? and @, € C°(R",RI*")
such that
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n

(I)i(<€,<€r <>w) = Eaz Z €hj [(Do]ij(w)w]’

Jj=1

(A.2)

foralli=1,...,l,e >0 and w e R".

I.g.h. implies g.h. and g.h. generalizes the classical notion
of homogeneity (Rosier [1992]). Note that for homogeneity
in the generalized sense we have two degrees (9, ) instead
of only one 0 in the classical sense and the function may
depend on the dilating parameter e itself. This clearly
allows more structure in the nonlinearity of ¢. In some
sense we can say that we have a homogeneity degree d; for
each component ¢; and one degree h; for each direction
wy.

There are functions, like sinz, which are not i.g.h. but

their absolute value is bounded by the absolute value of a
function which is i.g.h.

A function ¢ € C°(R- xR"™,R!) is said to be incrementally
homogeneous in the upper bound in the generalized sense
(i.g.h.u.b.) with quadruple (t,9,h, ®¢) if there exist ? €
R, h e R”, v e R2, @y € CO(R?",RY™) and &y > 0 such
that

|bi(e, et ow) — bi(e,e" o 2)|

= &% Y &M [Dolij(w, 2)|w; — ]

j=1

(A.3)

foralli=1,...,l,e 2 ¢9 and w, z € R".

The function ¢(z) = e (zo 22sinz; )’ is i.g.h.ub. with
triple (v, 1, b, @), where

o 1 _ To — 11

Do, 2) = <Z !

o + Z2|) . (A4)

Without loss of generality one can assume ¢y > 1, oth-
erwise rescale z and w as 2z’ = gf ¢ z and, respectively,

2 | sin wy —sin 21|
[w1—z1]

w' = €f o w and define new functions [®'];(w’,2") =
ESz‘“rti*fj‘th(Dj(EO*t o w/’EEt o z/) (resp. [@’]ij(w,z) —

0+t —t;+b; —t /-t / ;
o D,i(eg" 0w ey’ ¢ 2’)). Homogeneous in the

upper bound in the generalized sense (g.h.u.b.) functions
are also defined in a similar way.

Some key properties of incremental homogeneity can be
found and proved in Battilotti [2013], Battilotti [2011].

Appendix B. AUXILIARY RESULTS

The following result follows from the Grownwall-Bellman
inequality.
Lemma 8. Assume that s € CO([—2,+w),[0,+w0)) is

m’

such that s(t) is bounded for all t € [—2,0] and s(t) <

m
ko Sz_é s(t)dt + ky for all t > 0 and for some ko, k1 > 0.

If m is such that %ko < 1 there exists ¢ > 0 such that
s(t) < ¢ for all t = 0. If, in addition, k; = 0 then s(t) =0
for all t > %.

A saturation function has the following properties.

Lemma 9. If o" € DO(R",R") is a saturation function
with levels h, there exist c1,c2 > 0 such that {o")(w) —
o(2))) < e10"(Cw — 2)) < ealw — 2) for all w, z € R™.

In a similar way we can prove the following related result.

Lemma 10. If o 0% € D°(R",R") are saturation func-
tions with levels h and k, there exist ¢ > 0 such that
(oM (x) — o*(2)) < clk — b)) for all x € R™.
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