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Abstract: A novel suboptimal control technique for output tracking was developed using model
predictive static programming (MPSP). The control technique was applied to a nonlinear model
of a single-stage closed grinding mill circuit in simulation. The control technique could determine
a suboptimal input trajectory to maintain the output variables at their desired values within
7 iterations. The input trajectory determined after only 2 iterations was already close to the
final solution. This technique shows promise to significantly reduce computational time to find
a suboptimal input trajectory for output tracking in large industrial processes.
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1. INTRODUCTION

A grinding mill circuit forms a crucial part in the energy
and cost-intensive comminution process of extracting valu-
able metals and minerals from mined ore. The ability to
control the grinding mill circuit is of primary importance
to achieve the desired product specification with regards
to quality and production rate. The control objectives are
mostly to improve the quality of the product, to maximise
the throughput, to decrease the power consumption, to
reduce the usage of grinding media and to improve process
stability. These objectives are interrelated and necessitates
trade-offs to be made (Hodouin, 2011). The challenges
when controlling a grinding process are the strong cou-
pling between variables, large time delays, uncontrollable
disturbances, the variation of parameters over time, the
nonlinearities in the process and instrumentation inade-
quacies (Chen et al., 2008).

In Coetzee et al. (2010), robust nonlinear Model Predictive
Control (MPC) was applied to a grinding mill circuit in
simulation and showed good results in the presence of large
disturbances and parameter uncertainties, but the compu-
tational cost was such that the controller was not suitable
for online application. In an effort to address this problem,
Bemporad et al. (2000) showed that for a discrete-time
linear time-invariant system the control law can be reduced
to a simple linear function evaluation instead of an expen-
sive quadratic program. Another technique for reducing
the computational cost of MPC can be found in Wang
and Boyd (2010), where the dimensionality of the prob-
lem is reduced by restructuring the quadratic programs
found in MPC and only a few iterations are performed to
solve the quadratic program using an appropriate interior-
point method. Application of this method to systems with
nonlinear dynamics has not yet been fully tested.

1 Radhakant Padhi works as an Associate Professor in the Dept. of
Aerospace Engineering, Indian Institute of Science, Bangalore, India.
He is currently visiting University of Pretoria, South Africa.

Recently, a novel suboptimal control design technique
called Model Predictive Static Programming (MPSP) was
developed by Padhi and Kothari (2009) for finite-horizon
nonlinear problems with terminal constraints. This tech-
nique combines the philosophies of MPC and approximate
dynamic programming to reduce a dynamic optimisation
problem to a static optimisation problem, which signifi-
cantly reduces computational complexity. The computa-
tional effectiveness of MPSP in the aerospace industry is
well illustrated in Oza and Padhi (2012) and Halbe et al.
(2013) for a class of systems described by

Xk+1 = Fk (Xk, Uk)
Yk = h (Xk)

(1)

where the primary objective is to obtain an input projec-
tion Uk, k = 1, 2, ..., N − 1 so that the output at the final
time step YN goes to the desired output value Y ∗N .

Because only the final output value is considered in the
technique described above, an output trajectory cannot
be followed. To follow an output trajectory, MPSP was
extended to include output tracking for a class of systems
where the output is a function of the states only (Kumar
and Padhi, 2014). However, this still presents a limitation
for systems where the output is a function of both the
states and the input. To use the MPSP control technique
in comminution, this paper shows how MPSP is extended
to include a class of systems where the output is a function
of both the states and the input, and the control aim is to
track a desired output setpoint. As far as the authors are
aware, this is a novel technique. In order to illustrate the
concept of this new control law, the technique is applied
to a grinding mill circuit.

Results indicate that the control law developed in this
paper is capable of maintaining the desired output setpoint
for the grinding mill circuit. Although it takes 7 iterations
of the algorithm to meet the user-defined toleration speci-
fications, a good input trajectory is already available after
only 1 iteration.
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2. OUTPUT TRACKING USING MPSP

The state dynamics and output equation of a general
discrete nonlinear system can be written as

Xk+1 = Fk (Xk, Uk)
Yk = h (Xk, Uk)

(2)

where X ∈ <n, U ∈ <m, Y ∈ <p represent the states, the
input and the output of the system respectively, and k are
time steps.

The primary objective of output tracking by means of
MPSP is to find an input projection Uk, k = 1, 2, ..., N so
that the output Yk goes to the desired output value Y ∗k for
time steps Nst to N , i.e. Yk → Y ∗k ∀ k = Nst, Nst+1, ..., N ,
where N is the full simulation time and Nst|(Nst < N) is
the settling time of the output. It is important to note that
the output Yk is a function of both the states Xk and the
input Uk of the system.

For the suboptimal control technique presented here, it
is necessary to start with an estimated input projection.
The method to obtain a good estimated input projection
is problem specific. Although the objective will not nec-
essarily be met by the estimated input, the input can be
improved by an iterative process where i is the iteration
index which increases until the algorithm converges, i.e.
‖Y i

k−Y
∗
k ‖

‖Y ∗
k
‖ < εk, ∀ k = Nst, Nst + 1, ..., N , where Y ∗k is the

desired output and εk is a user defined tolerance limit on
the output error. The system shown in (2) can now be
written as

Xi
k+1 = Fk

(
Xi
k, U

i
k

)
Y ik = h

(
Xi
k, U

i
k

) (3)

The relationship of variables between consecutive itera-
tions i and i+ 1 at time step k are

Y i+1
k = Y ik + ∆Y ik
Xi+1
k = Xi

k + ∆Xi
k

U i+1
k = U ik + ∆U ik

(4)

The output Y i+1
k at time step k and iteration (i+1) can be

expanded by Taylor series expansion, retaining only first
order terms

Y i+1
k = h

(
Xi+1
k , U i+1

k

)
= h

(
Xi
k + ∆Xi

k, U
i
k + ∆U ik

)
≈ Y ik +

[
∂Yk

∂Xk

]
∆Xi

k +
[
∂Yk

∂Uk

]
∆U ik

(5)

Because Y i+1
k = Y ik + ∆Y ik , it is possible to write

∆Y ik = Y i+1
k − Y ik

∆Y ik ≈
[
∂Yk

∂Xk

]
∆Xi

k +
[
∂Yk

∂Uk

]
∆U ik

(6)

where ∆Y ik is the error in the output at time k and
iteration i.

The state Xi+1
k+1 at time step (k+1) and iteration (i+1) can

be expanded by Taylor series expansion retaining only first
order terms and disregarding higher order terms (HOT)

Xi+1
k+1 = Fk

(
Xi+1
k , U i+1

k

)
= Fk

(
Xi
k + ∆Xi

k, U
i
k + ∆U ik

)
= F

(
Xi
k, U

i
k

)
+
[
∂Fk

∂Xk

]
∆Xi

k +
[
∂Fk

∂Uk

]
∆U ik +HOT

≈ Xi
k+1 +

[
∂Fk

∂Xk

]
∆Xi

k +
[
∂Fk

∂Uk

]
∆U ik

(7)

Because Xi+1
k+1 = Xi

k+1 + ∆Xi
k+1, it is possible to write

∆Xi
k+1 = Xi+1

k+1 −Xi
k+1

∆Xi
k+1 ≈

[
∂Fk

∂Xk

]
∆Xi

k +
[
∂Fk

∂Uk

]
∆U ik

(8)

where ∆Xi
k is the error in the state and ∆U ik is the

error in the input solution at time step k and iteration
i. If small input deviations (∆U ik = dU ik), small state
deviations (∆Xi

k = dXi
k) and small output errors are

assumed (∆Y ik = dY ik ), the output error dY ik can be
written in terms of the state error and input error at time
step (k − 1)

dY ik =
[
∂Yk

∂Xk

]
dXi

k +
[
∂Yk

∂Uk

]
dU ik

dY ik =
[
∂Yk

∂Xk

] [
∂Fk−1

∂Xk−1

]
dXi

k−1+[
∂Yk

∂Xk

] [
∂Fk−1

∂Uk−1

]
dU ik−1+[

∂Yk

∂Uk

]
dU ik

(9)

The error in the state dXi
k−1 can be expanded further in

terms of dXi
k−2 and dU ik−2. And the error in the state

dXi
k−2 can be expanded further in terms of dXi

k−3 and

dU ik−3, and so on. This process can continue until state

error dXi
1

dY ik =
[
Ak
]i
dXi

1 +
[
Bk1
]i
dU i1 +

[
Bk2
]i
dU i2+[

Bk3
]i
dU i3 + ...

[
Bkk−1

]i
dU ik−1 +

[
∂Yk

∂Uk

]
dU ik

(10)

where[
Bkj
]i

=
[
∂Yk

∂Xk

] [
∂Fk−1

∂Xk−1

]
× ...

[
∂Fj+1

∂Xj+1

] [
∂Fj

∂Uj

]
(11)

Because it is assumed that the initial condition is known,
there is no error in the initial term, i.e. dX1 = 0. The error
in the output reduces to

dY ik =

k−1∑
j=1

[
Bkj
]i
dU ij +

[
∂Yk
∂Uk

]
(Xi

k
,Ui

k)
dU ik (12)

Note that in the derivation of (12) it has been assumed
that the input variables at each time step are independent
of the previous values of states and/or inputs. The input
variables are seen as decision variables and independent
decisions can be made at every point in time. Equation
(12) represents the output sensitivity at time step k with
respect to change in the input at all time steps prior
to k. In order to reduce the computational requirements

of the algorithm,
[
Bkj
]i

can be computed recursively. It
is intuitively clear that the effect of input changes at
future time steps will not change the output vector at the

current time step. Therefore,
[
Bkj
]i

can be defined for all
k = 2, 3, ..., N and j = 1, 2, ..., N[

φkk
]i

= In×n[
φkj
]i

=
[
φkj+1

]i [ ∂Fj

∂Xj

]
[
Bkj
]i

=
[
∂Yk

∂Xk

] [
φkj+1

]i [ ∂Fj

∂Uj

]
 ∀j < k

[
Bkj
]i

= [0]p×m ∀j ≥ k

(13)

The primary objective of the suboptimal control technique
can be defined by the following cost function
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J i = 1
2

∑N
k=2

(
Y i+1
k − Y ∗k

)T
Qk
(
Y i+1
k − Y ∗k

)
+

1
2

∑N
k=1

(
U i+1
k − U ik

)T
Rk
(
U i+1
k − U ik

)
= 1

2

∑N
k=2

(
Y ik + dY ik − Y ∗k

)T
Qk
(
Y ik + dY ik − Y ∗k

)
+

1
2

∑N
k=1

(
dU ik

)T
Rk
(
dU ik

)
= 1

2

∑N
k=2

(
dY ik − dY ∗ik

)T
Qk
(
dY ik − dY ∗ik

)
+

1
2

∑N
k=1

(
dU ik

)T
Rk
(
dU ik

)
(14)

where dY ∗ik = Y ik − Y ∗k . Using (12), the cost function can
be written in terms of the input error dUk

J i = 1
2

∑N
k=2

(∑k−1
j=1

[
Bkj
]i
dU ij +

[
∂Yk

∂Uk

]
dU ik − dY ∗ik

)T
×Qk

(∑k−1
j=1

[
Bkj
]i
dU ij +

[
∂Yk

∂Uk

]
dU ik − dY ∗ik

)
+

1
2

∑N
k=1

(
dU ik

)T
Rk
(
dU ik

)
(15)

The iteration index i is dropped throughout the rest of
the document for the sake of simplicity. The objective is
to minimize the cost function J i for dU1, dU2, ..., dUN . The
equation corresponding to ∂J

∂(dU1)
= 0 can be simplified to

∂J
∂(dU1)

=
∑N
k=2

(
Bk1

T
Qk
∑k−1
j=1 B

k
j dUj

)
+∑N

k=2B
k
1
T
Qk

[
∂Yk

∂Uk

]
dUk−∑N

k=2B
k
1
T
QkdY

∗
k +R1dU1

(16)

The first term in (16) can be simplified further as∑N
k=2

(
Bk1

T
Qk
∑k−1
j=1 B

k
j dUj

)
=
∑N
l=2B

l
1
T
QlB

l
1dU1 +

∑N
l=3B

l
1
T
QlB

l
2dU2 + ...

BN1
T
QNB

N
N−1dUN−1

= C11dU1 + C12dU2 + ...+ C1(N−1)dUN−1

(17)

The second term in (16) can also be simplified to∑N
k=2

(
Bk1
)T
Qk

[
∂Yk

∂Uk

]
dUk

= B2
1
T
Q2

[
∂Y2

∂U2

]
dU2 + ...BN1

T
QN

[
∂YN

∂UN

]
dUN

= D12dU2 + ...+D1NdUN

(18)

Thus, ∂J
∂(dU1)

= 0 can now be written as∑N
k=2B

k
1
T
QkdY

∗
k

= C11dU1 + C12dU2 + ...+ C1(N−1)dUN−1
+R1dU1 +D12dU2 + ...+D1NdUN

(19)

The equation corresponding to ∂J
∂(dUl)

= 0 for l = 2, ..., N−
1 can be simplified to∑N

k=2B
k
l

T
QkdY

∗
k + ∂Yl

∂Ul

T
QldY

∗
l

= Cl1dU1 + Cl2dU2 + ...+ Cl(N−1)dUN−1+
Dl2dU2 + ...+DlNdUN +RldUl+∑l−1
j=1

∂Yl

∂Ul

T
QlB

l
jdUj + ∂Yl

∂Ul

T
Ql

∂Yl

∂Ul
dUl

(20)

The second last term of (20) can be simplified to∑l−1
j=1

∂Yl

∂Ul

T
QlB

l
jdUj

= ∂Yl

∂Ul

T
QlB

l
1dU1 + ∂Yl

∂Ul

T
QlB

l
2dU2 + ...

∂Yl

∂Ul

T
QlB

l
l−1dUl−1

= El1dU1 + El2dU2 + ...+ El(l−1)dUl−1

(21)

The equation corresponding to ∂J
∂(dUN ) = 0 can be simpli-

fied to

∂YN

∂UN

T
QNdY

∗
N

=
∑N−1
j=1

∂YN

∂UN

T
QNB

N
j dUj + ∂YN

∂UN

T
QN

∂YN

∂UN
dUN

= EN1dU1 + EN2dU2 + ...+ EN(N−1)dUN−1+
∂YN

∂UN

T
QN

∂YN

∂UN
dUN

(22)

Matrix C ∈ <N×N is defined for e = 1, ..., N − 1 and
j = 1, ..., N − 1 as

Cej =
∑N
l=(j+1)

(
Ble
)T
QlB

l
j (23)

otherwise, Cej = [0]m×m. Matrix D ∈ <N×N is defined for
e = 1, ..., N − 1 and j = e+ 1, ..., N as

Dej = Bje
T
Qj

∂Yj

∂Uj
(24)

otherwise, Dej = [0]m×m. Matrix E ∈ <N×N is defined
for j = 1, ..., N − 1 and e = j + 1, ..., N as

Eej =
(
∂Ye

∂Ue

)T
QeB

e
j

(25)

otherwise, Eej = [0]m×m.

Compiling all the equations for all times steps, the system
of equations can be written as

[dUe] = [Cej +Dej + Eej+

δej

(
Re + ∂Ye

∂Ue

T
Qe

∂Ye

∂Ue

)]−1
[be]

(26)

where δej is the Kronecker-delta function and be is defined
for e = 1, ..., N as

be =

N∑
k=2

(
Bke
)T
QkdY

∗
k +

∂Ye
∂Ue

T

QedY
∗
e (27)

Finally, the updated input at time step k = 1, ..., N is

U i+1
k = U ik + dU ik (28)

Although this is a novel technique and some issues are
still to be explored, this paper attempts to show proof
of concept. Future work involves, rigorous convergence
guarantees, the consolidation of input and output equality,
inequality and rate constraints, as well as investigation of
the robustness of the model to modelling errors and the
ability to reject noise and large disturbances.

3. CIRCUIT AND MODEL DESCRIPTION

The single-stage closed grinding mill circuit and model
used to illustrate the control technique developed above
is described below. The three main elements in Figure 1
are the mill, sump and hydrocyclone. The mill receives
four streams: mined ore (MFS), water (MIW ), steel
balls (MFB) and underflow from the hydrocyclone. The
ground ore in the mill mixes with the water to create
a slurry. The fraction of the mill filled with charge is
represented by JT . The slurry from the mill is usually
discharged through an end-discharge-screen where the
particle size of the discharged slurry is limited by the
aperture size of the screen. The slurry in the sump is
diluted with water (SFW ) before it is pumped to the
cyclone for classification. The volume of the slurry in
the sump and the flow-rate of slurry pumped to the
cyclone is represented by SV OL and CFF respectively.
The hydrocyclone is responsible for the separation of the
in- and out-of-specification ore discharged from the sump.
The in-specification particles of the slurry pass to the
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Cyclone Feed Flow (CFF)

Cyclone Feed Density (CFD)

Particle Size Estimate (PSE)

Mill Inlet Water (MIW)

Mill Feed Solids (MFS)

Mill Feed Balls (MFB)

Pump

Fig. 1. A single-stage grinding mill circuit.

overflow of the hydrocyclone, while the out-of-specification
particles pass to the underflow. This underflow is passed to
the mill for further grinding. The overflow (PSE) contains
the final product passed to downstream processes (Napier-
Munn et al., 1999).

The model used to describe the circuit in Fig. 1 consists
of four modules: a feeder, a semi-autogenous mill with
an end-discharge screen, a sump and a hydrocyclone. All
these modules can be described by the reduced complexity
nonlinear model found in le Roux et al. (2013). The
approach in the derivation of the model was to use as few
fitted parameters as possible while still making the model
produce responses that are reasonably accurate and in the
right direction. The variables of the circuit are described
in Table 1.

Table 1. Description of circuit variables

Manipulated Variables

MIW flow-rate of water to the mill [m3/h]
MFS feed-rate of ore to the mill [t/h]
MFB feed-rate of steel balls to the mill [t/h]
SFW flow-rate of water to the sump [m3/h]
CFF flow-rate of slurry to the classifier [m3/h]

Controlled Variables

JT fraction of the mill filled [-]
SV OL volume of slurry in sump [m3]
PSE product particle size estimate [-]

The model uses five states to represent the constituents
of charge in the milling circuit. The states are rocks,
solids, fines, balls and water. Rocks are ore too large to
be discharged from the mill, whereas solids are ore that
can be discharged from the mill. The solids consist of the
sum of fine and coarse ore, where fine ore is smaller than
the product specification size and coarse ore is larger than
the product specification size. Balls and rocks are only
found in the mill, as they are too large to pass through
the apertures in the end-discharge screen.

For the equations, V denotes a flow-rate in m3/h and X
denotes the states of the model as volumes in m3. Table 2
provides a description of the subscripts for V and X. The
first subscript indicates the module considered, the second
subscript specifies which of the five states are considered
and in the case of flow-rates the final subscript shows if it is
an inflow, overflow or underflow. The nomenclature for the
model is shown in Table 3. The values for the parameters

were taken from le Roux et al. (2013). The continuous time
state-space description of the grinding mill circuit is shown
below

Ẋmw = MIW − VV ϕXmwXmw

Xms+Xmw
+ Vcwu

Ẋms = MFS
DS

(1− αr)− VV ϕXmwXms

Xms+Xmw
+ Vcsu+

Pmillϕ
DSφr

(
Xmr

Xmr+Xms

)
Ẋmf = MFS

DS
αf − VV ϕXmwXmf

Xms+Xmw
+ Vcfu + Pmill

DSφf
/[

1 + αφf

(
Xmw+Xmr+Xms+Xmb

vmill
− vPmax

)]
Ẋmr = MFS

DS
αr − Pmillϕ

DSφr

(
Xmr

Xmr+Xms

)
Ẋmb = MFB

DB
− Pmillϕ

φb

(
Xmb

DS(Xmr+Xms)+DBXmb

)
Ẋsw = VV ϕXmwXmw

Xms+Xmw
− CFFXsw

Xsw+Xss
+ SFW

Ẋss = VV ϕXmwXms

Xms+Xmw
− CFFXss

Xsw+Xss

Ẋsf =
VV ϕXmwXmf

Xms+Xmw
− CFFXsf

Xsw+Xss

(29)

where Xmw, Xms, Xmf , Xmr and Xmb are the volume
of water, solids, fines, rocks and balls within the mill
respectively, and Xsw, Xss and Xsf are the volume of
water, solids and fines within the sump respectively. The
output equations are

JT = Xmw+Xms+Xmr+Xmb

vmill

SV OL = Xss +Xsw

PSE =
Vcfo

Vcso

(30)

where Vcfo and Vcso are the volumetric flow rate of fines
and solids at the overflow of the cyclone respectively. The
intermediate equations required in (29) relating the the
mill are

ϕ =
(

1−
(

1
εsv
− 1
)
Xms

Xmw

)0.5
Pmill = Pmax{1− δPvZ2

x − 2χP δPvδPsZxZr−
δPsZ

2
r} · (αspeed)αP

Zx = Xmw+Xmr+Xms+Xmb

vmillvPmax
− 1

Zr = ϕ
ϕPmax

− 1

(31)

where ϕ is an empirically defined rheology factor, Pmill is
the mill power draw, Zx is the effect of the charge within
in the mill on the power draw, and Zr is the effect of the
rheology of the charge in the mill on the power draw. The
intermediate equations required in (29) and (30) related
to the cyclone are

Vccu =
CFF (Xss−Xsf )

Xsw+Xss

(
1− C1 exp

(
−CFF
εc

))
×(

1−
(

Xss

C2(Xsw+Xss)

)C3
)(

1−
(
Xsf

Xss

)C4
)

Fu = 0.6−
(

0.6− Xss

Xsw+Xss

)
exp

(
−Vccu

αsuεc

)
Vcwu = Xsw(Vccu−FuVccu)

FuXsw+FuXsf−Xsf

Vcfu =
Xsf (Vccu−FuVccu)
FuXsw+FuXsf−Xsf

Vcsu = Vccu +
Xsf (Vccu−FuVccu)
FuXsw+FuXsf−Xsf

Vcso = Vsso − Vcsu
Vcfo = Vsfo − Vcfu

(32)

where Fu represents the fraction of solids in the cyclone
underflow, the flowrate of water, solids and fines at the un-
derflow of the cyclone is Vcwu, Vcsu and Vcfu respectively,
and the flowrate of solids and fines at the sump outflow is
Vsso and Vcfo respectively.
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Table 2. Description of subscripts

Subscript Description

X∆− f-feeder; m-mill; s-sump; c-cyclone
X−∆ w-water; s-solids; c-coarse; f-fines; r-rocks; b-balls
V−−∆ i-inflow; o-outflow; u-underflow

Table 3. Feeder, mill and cyclone parameters

Parm Value Description

αf 0.05 Fraction fines in the ore
αr 0.47 Fraction rock in the ore
αP 1.0 Fractional power reduction per fractional

reduction from maximum mill speed
αφf

0.01 Fractional change in kW/fines produced
per change in fractional filling of mill

αspeed 0.71 Fraction of critical mill speed
αsu 0.87 Parameter related to fraction solids in

underflow
C1 0.6 Constant
C2 0.7 Constant
C3 4.0 Constant
C4 4.0 Constant
δPs 0.5 Power-change parameter for fraction

solids in the mill
δPv 0.5 Power-change parameter for volume of

mill filled
DB 7.85 Density of steel balls [t/m3]
DS 3.2 Density of feed ore [t/m3]
εsv 0.6 Max fraction solids by volume of slurry at

0 slurry flow
εc 129 Parameter related to coarse split [m3/h]
φb 90.0 Steel abrasion factor [kWh/t]
φf 29.5 Power needed per tonne of fines produced

[kWh/t]
φr 6.00 Rock abrasion factor [kWh/t]

ϕPmax 0.57 Rheology factor for maximum mill power
draw

Pmax 1662 Maximum mill motor power draw [kW]
vmill 100 Mill volume [m3]
vPmax 0.34 Fraction of mill volume filled for

maximum power draw
VV 84.0 Volumetric flow per “flowing volume”

driving force [h−1]
χP 0 Cross-term for maximum power draw

4. SIMULATION

The algorithm in this paper predicts the system output
over a predefined horizon and calculates the input required
to track the output setpoint over that horizon. To illustrate
the effectiveness of this algorithm, this simulation shows
how the controller calculates the input to maintain the
desired output setpoint for the grinding mill circuit for 30
minutes using inputs MFS, SFW and CFF . Analogous
to MPC, the prediction horizon and control horizon are
both 30 minutes. (This paper does not show a receding
horizon problem where the input trajectory is calculated
at each sampling time, but rather only the first input
trajectory calculation.)

The continuous time state-space description of the grind-
ing mill circuit ((29) and (30)) is discretized with a sam-
pling time of Ts = 10 s. The ball feed rate MFB is kept
constant at 5.68 t3/h and the inflow of water MIW is kept
at a constant ratio of 7% of MFS. The initial states X̄0
are

[Xmw, Xms, Xmf , Xmr, Xmb, Xsw, Xss, Xsf
]T

=

[4.85, 4.90, 1.09, 1.82, 8.51, 4.11, 1.88, 0.42]T
(33)
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Fig. 2. Top: fraction of the mill filled JT . Middle: volume
of slurry in sump SV OL (normal - left; zoomed
- right). Bottom: fraction of particles smaller than
specification size PSE (normal - left; zoomed - right).
Legend: YSP is the desired setpoint, YG is the output
trajectory from the estimated input, Y 1

k , Y 2
k and Y 7

k
are the outputs after 1, 2 and 7 iterations of the
algorithm.
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Fig. 3. Top: mill solids feed rateMFS. Middle: sump water
feed rate SFW . Bottom: cyclone feed flow rate CFF .
Legend: UG is the estimated input trajectory, U1

k , U2
k

and U7
k are the inputs calculated after 1, 2 and 7

iterations of the algorithm.

The estimated input trajectory ŪG is a constant input of

ŪG = [MFS, SFW, CFF ]T = [65.2, 140.5, 373]T (34)

The desired constant output setpoint ȲSP is

ȲSP = [JT, SV OL, PSE]T = [0.34, 6.00, 0.69]T (35)

The values above were taken from the plant survey done
in le Roux et al. (2013).

The particle size estimate PSE is regarded as the most
important output variable to control, since this variable
determines the economic efficiency of the milling circuit.
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Therefore, the Q weighting matrix for the output variables
was determined such that a 5% deviation of JT from
setpoint will produce an error in the cost function equal
to a 1% deviation from setpoint for PSE and equal to a
10% change in SV OL from setpoint, i.e.

Q1 (10%JTSP )
2

= Q2 (5%SV OLSP )
2

= Q3 (1%PSESP )
2

Finally, the output weighting matrix is defined as

Q = 103 diag([1.25, 0.001, 7.56])

The R weighting matrix for the input variables was deter-
mined such that 1% changes of half the ranges of CFF ,
MFS and SFW will produce the same error in the cost
function. The R matrix was scaled to produce 1% of the
error compared to the Q matrix, i.e.

100R1

(
1%MFSrange

2

)2

= Q1 (10%JTSP )
2

and

R1

(
1%MFSrange

2

)2

= R2

(
1%SFWrange

2

)2

= R3

(
1%CFFrange

2

)2

The ranges of the input variables are given below.

[MFS, SFW, CFF ]min
T

= [0, 0, 100]T

[MFS, SFW, CFF ]max
T

= [200, 400, 500]T
(36)

The input weighting matrix is R = 10−4 diag([36, 9, 9]).

Termination of the algorithm occurs when either of the
conditions below are met

‖Y i
k−Y

∗
k ‖2

‖Y ∗
k
‖ 2

< [0.001, 0.001, 0.001]T

‖Ui+1
k
−U∗k‖∞
‖U∗

k
‖ < [0.01, 0.01, 0.01]T

(37)

If these conditions are not met after a maximum iteration
count specified by the user, the algorithm also terminates.

The results are shown in Figs. 2 and 3. The algorithm met
the conditions of (37) after i = 7 iterations. As seen from
Fig. 2, the desired value for output PSE is maintained
for the entire duration of the simulation. Even after only
1 iteration of the algorithm, PSE is already very close
to the desired trajectory. Outputs JT and SV OL deviate
slightly from the desired trajectory, but allows PSE - the
most important output - to follow the desired trajectory
closely.

If there is no control action in the circuit and the estimated
input trajectory UG is maintained throughout, PSE and
SV OL will decrease while JT increases after 0.5 h. To
maintain PSE at setpoint, CFF increases. Because this
will decrease SV OL, there is an increase in SFW . But a
higher CFF causes a higher underflow to the mill and an
increase in JT . Thus, MFS is varied to maintain JT close
to setpoint since a slightly lower JT assist to improve the
grind efficiency (PSE).

5. DISCUSSION AND CONCLUSION

Simulation results illustrate that the suboptimal control
technique presented in this paper is capable of finding a
suboptimal input trajectory after 7 iterations to maintain
the outputs of a grinding mill circuit at their desired
setpoints. The most important output PSE is controlled

at the desired setpoint with almost no variation from
setpoint. The slight deviations from setpoint for both JT
and SV OL are regarded as minimal and have almost no
effect on the grinding efficiency of the mill. Both Figs.
2 and 3 show how quickly the algorithm converges to a
solution, even though the input has to be determined for
a relatively large horizon. Even after only 2 iterations, both
PSE and SV OL closely follow the desired trajectory.

Because the minimisation of the cost function in nonlin-
ear MPC can be time consuming for large and complex
systems, the suboptimal control technique presented here
has the potential to significantly reduce the computational
time. This technique could enable more opportunities for
on-line application of suboptimal control in the comminu-
tion industry. This can be illustrated in future studies
by means of a comparison between this technique and
nonlinear MPC applied to a complex system such as the
grinding mill circuit.
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