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Abstract: This paper develops an iterative learning control algorithm starting from some
recent results in the area of predictive repetitive control. The algorithm uses receding horizon
control and Laguerre functions to parameterize the future control trajectory, where the Laguerre
functions reduce the number of parameters requiring optimization on-line. Stability of the
predictive iterative learning control system is analyzed and conditions on error convergence
are established. Supporting experimental results from application to a robot arm are also given.
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1. INTRODUCTION

Many systems complete the same finite duration task over
and over again. The sequence is that the task is completed,
the system resets to the starting location, the next one
is completed and so on. In this paper each execution is
termed a trial and the duration the trial length. Such
systems arise in many industrial applications, where a
generic example is a gantry robot undertaking a pick and
place task with the sequence of operations: i) collect the
object from a fixed location, ii) transfer it over a finite
duration, iii) place it at a static location or on a moving
conveyor, iv) return to the starting location and v) repeat
the previous four steps for as many times as required or
until a halt is needed for maintenance or other reasons.
Each execution is known as a trial and the execution time
the trial length.

Once a trial is complete all information generated during
its production is available for use in computing the control
signal to be applied on the next trial. Iterative Learning
Control (ILC), for which the first work is widely credited
to [Arimoto et al., 1984], uses information generated on
the previous trial, or a finite number thereof, in the
computation of the input to be applied on the next trial
and the survey papers [Bristow et al., 1984, Ahn et al.,
2007] are one starting point for the literature. Repetitive
control has been developed for cases where the process or
plant output is required to track a given periodic signal
with the novel feature is that information from previous
periods or trials is used to modify the control signal [Hara
et al., 1988]. The reference signal used in repetitive control
is a periodic function in time.

One extensively studied class of ILC laws for linear dy-
namics is based on the minimization of a cost function
constructed from the addition of two quadratic terms.
The first of these is formed from the current trial error,

i.e., the difference between the supplied reference signal
and the current trial output and the second from the
difference between the control signals used on successive
trials. This class of algorithms is termed norm optimal and
experimental verification of the performance of members
of this class have also been reported, e.g., [Barton and
Alleyne, 2011].

This paper develops a predictive ILC law that uses a
similar cost function to the one in norm optimal ILC, but
with the reference signal model embedded in the controller
and use of the receding horizon control principle. The
idea of embedding the reference signal information in the
controller was successfully used in for, example, [Wang,
2009] and in other ILC related research [Moore and El-
Sharif, 2009]. In this paper the wealth of information
that the reference signal contains is embedded in the ILC
design.

2. BACKGROUND

The design in this paper is based on a frequency domain
decomposition of the supplied reference signal or vector in
the single-input, single-output (SISO) and multiple-input,
multiple-output (MIMO) cases respectively. Once these
are selected they are embedded in the process state-space
model in accordance with the internal model principle.

Consider first the SISO case and suppose that the fre-
quency components of the reference signal to be included
in the design have been selected, for the details see [Wang
et al., 2012], and form the polynomial

D(z) = (1− z−1)Πl
i=1(1− 2cos(iω)z−1 + z−2)

= 1 + d1z
−1 + d2z

−2 + d3z
−3 + . . .+ dγz

−γ ,

(1)

where 0 and i ω, i = 1, 2, . . . , l, for some chosen positive
integer l denotes the frequencies to be included. The con-
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trol law is to be designed to track the reference signal and
hence, by the internal model principle [Francis and Won-
ham, 1975], D(z) must be embedded in the denominator
of the controller transfer-function and one way of doing
this is as follows.

In the MIMO case, suppose that the plant to be controlled
has input, output and state vectors u(k) ∈ Rmu , y(k) ∈
Rmy and xm(k) ∈ Rn1 , respectively, and state-space model
matrices {Am, Bm, Cm}. Then the frequency components
of the reference vector can, as one approach, be embedded
in the design by adding a vector µ(k) ∈ Rn1 to the state
dynamics to obtain

xm(k + 1) =Amxm(k) +Bmu(k) + µ(k),

y(k) =Cmxm(k), (2)

where each entry in µ(k) is the inverse z-transform of
1

D(z) defined by (1). (This approach extends naturally to

examples where it is required to embed a different number
of frequencies for some of the entries in the reference
vector.)

Let q−1 denote the backward shift operator and D(q−1)
the shift operator interpretation of D(z). Applying D(q−1)
to xm(k) and u(k) of (2) gives

xs(k) = D(q−1)xm(k), us(k) = D(q−1)u(k),

Also D(q−1)µ(k) = 0 and from (2)

xs(k + 1) =Amxs(k) +Bmus(k),

D(q−1)y(k + 1) =CmAmxs(k) + CmBmus(k).

(3)

Introducing the state vector

x(k) =
[
xTs (k) yT (k) . . . yT (k − γ + 1)

]T
,

gives the following augmented state-space model for design

x(k + 1) =Ax(k) +Bus(k)

y(k) =Cx(k) (4)

where

A =

[
Am 0

Ĉ Ad

]
, Ĉ =

[
CmAm

0

]
,

Ad =


−d1I −d2I . . . −dγ−1I −dγI
I 0 0 . . . 0
0 I 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . I 0


and 0 and I denote the zero and identity matrices, respec-
tively, of compatible dimensions. Also

B =
[
BTm (CmBm)T 0 . . . 0 0

]T
,

C = [ 0 I 0 . . . 0 0 ] .

The poles of (4) are the union of those for plant model and
that representing the embedded reference frequencies.

3. ILC DESIGN

In the ILC setting the trial number is denoted by the
superscript j = 0, 1, 2, . . . . In this setting the process state-
space model (4) is

xj(k + 1) =Axj(k) +Bujs(k),

yj(k) =Cxj(k), (5)

where xj(k), ujs(k) and yj(k) denote the state, filtered con-
trol and output vectors, respectively, at sampling instant
k on trial j. The state vector xj(k) is formed from two sub-
vectors, the first of which is xjs(k) and for stable systems
is equal to the process state vector xjm(k) filtered by the
operator D. In the steady-state this vector is zero. If it
is assumed that the process has reached the steady-state
before a trial commences, the state initial vector on each
trial can be assumed to be zero. The second sub-vector
is formed from samples of the output vector, which is a
measured output and hence its initial condition on trial j
is known.

To complete the ILC problem formulation, let r(k) denote
the reference vector to be tracked. Then the error on trial
j is

ej(k) = yj(k)− r(k)

and it is a straightforward step to write the dynamics in
terms of the current trial error as a state-space model with
the structure of (5) where ej(k) replaces yj(k) and the
state vector xj(k) is replaced by

xj(k) =
[

(xjs)
T (k) (ej)T (k) . . . (ej)T (k − γ)

]T
On trial j + 1 and sampling instant k, the future state
vector along this trial, denoted xj+1(k + m | k) is, given
xj+1(k) and the required filtered control inputs, obtained
from the state equation in (5) as

xj+1(k +m | k) = Amxj+1(k) +

m−1∑
i=0

Am−i−1Buj+1
s (i),

where m is a future sampling instant.

In control problems that require the modeling of the future
control trajectory, one approach is to embed an integrator
in the design and the incremental control trajectory is
then directly computed within an optimization window.
For the ILC design considered in this paper, the signal to
be optimized is the filtered control signal ujs(k) on trial
j and the design could be undertaken by modeling this
signal using pulse functions. The main drawback is the
requirement to optimize a large number of parameters if
fast sampling is required and/or the system has a relatively
complex dynamic response.

Fast sampling is typically required for mechanical and
electro-mechanical systems because the time constants
arising in the various sub-components can vary in duration
and a smaller sampling interval ∆t is required to capture
the effects of the smaller of these. One approach to reduce
the number of parameters requiring optimization on-line is
to parameterize the future trajectory of the filtered control
signal using a set of Laguerre functions, where a scaling
factor is used to reflect the time scale of the predictive
control system.

The use of Laguerre functions in model predictive control,
including identification based models of the system dy-
namics, is detailed in, e.g., Wang [2004] and the following
is a summary relevant to the new results in this paper,
focusing on the SISO case with the natural MIMO ex-
tension noted For ease of notation, the ILC trial variable
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j is omitted in this presentation of required background
material.

The basis of the design is the use of a set of discrete
orthonormal functions to describe the filtered future con-
trol signal us(m) within a moving horizon window, 0 ≤
m ≤ Np. Assume that N is the number of terms in the
expansion and let li(m), 1 ≤ i ≤ N, be a set of Laguerre
functions, which are orthonormal. Then

us(m) ≈
N∑
h=1

chlh(m), (6)

where, in general, the coefficients ch are functions of k but
the notation here is used for simplicity.

In this application, the z transfer-function of the h th
Laguerre function is given by

Γh(z) =

√
1− a2h

1− ahz−1

(
z−1 − ah
1− ahz−1

)h−1
, (7)

where 0 ≤ ah < 1 is the scaling factor. Also the network
structure of the z transfer-function representation (7) can
be used to show that the set of discrete Laguerre functions
satisfies the difference equation

L(m+ 1) = ΩL(m), (8)

where L(m) = [ l1(m) l2(m) lN (m) ]
T

Ω =



a 0 . . . . . . 0

β a
. . .

... 0

−aβ β
. . . 0 0

...
...

. . .
. . . 0

−aN−2β aN−3β . . . β a


, (9)

β = (1− a2) and

L(0) =
√
β
[

1 −a a2 −a3 . . . (−1)N−1aN−1
]T
.

Setting a = 0 and δi(m) = δ(i), where δ(i) is the
Dirac delta function recovers the standard formulation of
model predictive control, i.e., the number of parameters
to be optimized is not approximated. Hence the solution
of the design problem given below is a computationally
less demanding approximation that approaches the true
problem under a well defined limiting operation.

Continuing with the MIMO case, given the state vector
x(p) the prediction of the future state at time τ, written
x(p+ τ |k) can be written as

x(p+ τ | p) = Aτx(p) + φ(τ)η (10)

where, if Bi is the ith column of the state-space model
input matrix

η =
[
ηT1 ηT2 . . . ηTmu

]T
and

φ(τ) =

τ−1∑
j=0

Aτ−j−1
[
B1L

T
1 (j) . . . Bmu

LTmu
(j)
]

Also the ith input is given by LTi ηi. where Li is generated
by applying (8) for this input. Moreover, the number of
terms and the scaling factor used in this last construction
can be chosen independently for each input.

The basic idea in Laguerre function based design is to rep-
resent us(i) by a set of Laguerre functions and associated
coefficients. This is illustrated in the SISO case by

us(i) = LT (i)η, (11)

where the Laguerre function vector

L(i) = [ l1(i) l2(i) . . . lN (i) ]
T

and the Laguerre coefficient vector

η = [ c1 c2 . . . cN ]
T
.

Moreover, N is the dimension of the Laguerre function
vector and is also the number of terms used in the approx-
imation. The Laguerre functions are pre-determined in the
design once the scaling factor 0 ≤ a < 1 and the number
of terms N are chosen.

In the SISO case, for simplicity, suppose that the control
trajectory is approximated by a Laguerre polynomial Then
the future state vector at time m on trial j + 1, i.e.,
xj+1(k +m|k), can be written as

xj+1(k +m | k) = Amxj+1(k) + φT (m), ηj+1, (12)

where φT (m) =
∑m−1
i=0 Am−i−1BLT (m) and this term is

independent of the trial number j.

The cost function for the MIMO ILC design is

J =

Np∑
m=1

xj+1(k +m | k)TQxj+1(k +m | k)

+

Np∑
m=0

(uj+1
s (m)− ujs(m))TR(uj+1

s (m)− ujs(m)),

(13)

where Q and R are symmetric positive definite matrices
and also the difference between the control signals on the
current trial previous trials is penalized. The motivation
for this last choice is to achieve trial-to-trial error reduction
without unduly large changes in the amplitudes of the
control signals required.

The previous trial filtered input vector is also parame-
terized in the form detailed above with a long prediction
horizon Np and hence

Np−1∑
m=0

ujs(m)TRujs(m) = (ηj)TRLη
j , (14)

Np−1∑
m=0

uj+1
s (m)TRujs(m) = (ηj+1)TRLη

j , (15)

Np−1∑
m=0

uj+1
s (m)TRuj+1

s (m) = (ηj+1)TRLη
j+1, (16)

where the orthonormal property of the Laguerre functions

has been used, i.e.,

Np∑
m=0

L(m)TL(m) = I, and RL is an

N ×N diagonal matrix.

Substituting (12) and (14)–(16) into (13) gives

J = (ηj+1)TΩηj+1 + 2(ηj+1)TΨxj+1(k)

− 2(ηj+1)TRLη
j + (ηj)TRLη

j , (17)

where
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Ω =

Np∑
m=1

φ(m)QφT (m) +RL, Ψ =

Np∑
m=1

φ(m)QAm.

The minimum value of this cost function occurs when

ηj+1 = −Ω−1(Ψxj+1(k)−RLηj). (18)

Under receding horizon control, only the first sample of
the optimal control trajectory is implemented, which is
constructed as the filtered control signal on trial j + 1 at
sample k, in the SISO case with an obvious extension to
MIMO,

uj+1
s (k) = LT (0)ηj+1. (19)

By combining (18) and (19), the predictive iterative learn-
ing control law is

uj+1
s (k) = −LT (0)Ω−1Ψxj+1(k) + LT (0)RLη

j . (20)

This control law is the sum of two terms in the current
state vector xj+1(k) and the previous trial term ηj , where
the first term can be written as −Kmpcx

j+1(k) with

Kmpc = LT (0)Ω−1Ψ

and is a current trial state feedback control law. The
second term is a feed-forward function, i.e., use of previous
trial information in the construction of the next trial
input.. Moreover, the state feedback provides stabilization
of the along the trial dynamics.

3.1 Convergence and Performance Analysis

The core problem in ILC design is to enure trial-to-
trial error convergence but since the trial length is finite
convergence can occur where the along the trial dynamics
are unstable, i.e., the state matrix has eigenvalues on or
outside the unit circle in the complex plane. In the lifted
approach to ILC design for discrete-time linear systems, a
stabilizing control loop is first designed and then ILC is
applied to the resulting dynamics to enforce trial-to-trial
error convergence. For a detailed treatment of the lifted
approach to ILC design, one starting point are the relevant
papers cited in [Bristow et al., 1984] and [Ahn et al., 2007].

Another alternative is to use a repetitive process setting.
Repetitive processes are a class of 2D systems and can be
used [Paszke et al., 2013] to design in one step an ILC
law to stabilize and/or regulate the transient dynamics
along the trials and enforce trial-to-trial error convergence.
Design in this setting also allows for the inclusion of only
selected frequencies from the reference signal or vector.
Hence the new results in this paper can be considered as
an alternative way to do such designs.

To investigate the properties of this new ILC design, the
fact [Wang, 2009] that, for standard linear systems, the
use of a suitably large prediction horizon and large N
in the Laguerre expansion the control law is identical
to the solution of an Linear Quadratic Regulator (LQR)
problem is used. In particular, the LQR problem as one
way of designing a stabilizing state feedback control law
is exploited, including the extension to a weighted design
and hence increased relative stability and/or regulation of
the transient dynamics along the trials.

Substituting for ηj+1 in the control law (18) gives

uj+1
s (k) =−L(0)TΩ−1Ψxj+1(k) + L(0)TΩ−1RLη

j .

(21)

Consider j = 0, with the assumption that η is the zero
vector. Then filtered control signal is

u1s(k) = −Kmpcx
1(k). (22)

and on applying the control law

x1(k + 1) = (A−BKmpc)x
1(k) = Aclx

1(k). (23)

For j = 1, the filtered control signal is

u2s(k) = −Kmpcx
2(k)−K1x

1(k) (24)

where K1 = L(0)TΩ−1RLΩ−1Ψ, and

x2(k + 1) = Aclx
2(k)−BK1x

1(k) (25)

and so on for j = 2, 3, . . . .

If all eigenvalues of (A − BKmpc) have modulus strictly
less than unity then for an induced matrix norm || · ||
there exist constants 0 < M < ∞ and 0 < λ < 1 such
that ||(A−BKmpc)

k|| ≤Mλk and hence

||x1(k)|| ≤Mλk||x1(0)||. (26)

Returning to the case of j = 1 gives

x2(k + 1) = (A−BKmpc)x
2(k)−BK1x

1(k)

= (A−BKmpc)x
2(k)−BK1(A−BKmpc)

kx1(0),

(27)

where (23) has been used. Also for given x2(0), it follows
from (27) that

x2(k) = (A−BKmpc)
kx2(0)

−
k−1∑
i=0

(A−BKmpc)
k−i−1BK1(A−BKmpc)

ix1(0)

and hence

||x2(k)|| ≤Mλk||x2(0)||

+

k−1∑
i=0

Mλk−i−1||BK1||Mλi||x1(0)||

=Mλk||x2(0)||+M2kλk−1||BK1||||x1(0)||.
By induction, for any value of j,

||xj(k)|| ≤Mλk||xj(0)||
+M2kλk−1||BK1||||xj−1(0)||+ . . . (28)

This last expression shows that the initial conditions for
each trial affect the error. Also the performance along
the trial and the rate of trial-to-trial error convergence
is determined by the value of λ. To improve performance,
a smaller value of λ can be used, i.e., require that the
eigenvalues of A − BKmpc lie inside a circle of radius
λ < 1 in the complex plane, where the choice of λ is
application dependent. Once λ is selected, LQR theory,
see, e.g., [Wang, 2009] and the relevant cited references,
can be used in the form of the following procedure.

(1) For the selected λ < 1, solve the following steady-
state Riccati equation for a given Q > 0 and R > 0

AT

λ
[P∞ − P∞

B

λ
(R+

BT

λ
P∞

B

λ
)−1

BT

λ
P∞]

A

λ
+Q− P∞ = 0 (29)
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(2) Select α ≥ 1 such that all eigenvalues of the matrix
α−1A lie in the open unit circle in the complex plane
and form

Qα = γ2Q+ (1− γ2)P∞, γ =
λ

α

Rα = γ2R. (30)

(3) Use the Qα and Rα in the design of model predictive
control with the chosen α and a sufficiently large
Np. Also replace A and B by α−1A and α−1B and
compute ILC solution with cost function

J =

Np∑
m=1

xj+1(k +m | k)TQαx
j+1(k +m | k) +W

W =

Np∑
m=0

(uj+1
s (m)− ujs(m))TRα(uj+1

s (m)− ujs(m)).

(31)

4. EXPERIMENTAL CASE STUDY

Figure 1 shows an anthropomorphic robot arm undertak-
ing a ‘pick and place’ task in a horizontal plane using two
joints. The robots end-effector travels from the ‘pick’ to
the ‘place’ location in a straight line using joint reference
trajectories that minimize the end-effector acceleration.
During the movement, the arm stops at two intermediate
points, chosen such that there is a change in the direction
of travel along the path after reaching each of them.
Having reached the ‘place’ location, the robot repeats the
movement in reverse, arriving back at the ‘pick’ location.
Positional and velocity control loops have been imple-
mented around each joint to provide baseline performance
and the control scheme operates at 20Hz (∆t = 0.05 sec).

Fig. 1. Photograph of the robot arm showing pick and
place locations.

A model for this robot has been estimated using frequency
response tests and is given in Wang et al. [2012]. Two sets
of operational tasks are considered in this paper, both of
which are mapped to the coordinates of thee axes. These
reference signals, termed the r1 and r2, respectively, are
shown in Fig. 2, in the 1st and 3rd plots.

The experimental verification of this design requires many
tests to evaluate the effects of choices, including relative
aspects where appropriate, of the design parameters, e.g.,

the Laguerre functions, the prediction horizons and the
weighting matrices in the design. Due to limited space,
only a selection of the test results can be given for
which the control design variables are given in Table 1.
Figure 2 gives the experimental results obtained, where

a1 = a2 = a 0.6

N1= N2 = N 8

Np 100

Q I

R I

α 1.1

λ 0.7

Table 1. Design Parameters used to generate
the experimental results given in Fig. 2.

the first plot gives r1 reference signal and the resulting
output for trials 1, 3 and 5 and the second plot gives
the corresponding errors generated. The third and fourth
plots in this figure gives the corresponding results for the
r2 reference signal. Another issue is the level of control
signals used and the plots for the first and second cases,
respectively, are shown in the fifth and six plots in Fig. 2.
These are judged to be acceptable.

5. CONCLUSIONS

This paper has developed an iterative learning control law
design starting from some recent results in the area of
predictive repetitive control. The algorithm uses receding
horizon control and Laguerre functions to parameterize
the future control trajectory. Stability and error analysis
has also been undertaken. Supporting experimental results
from application to a robot confirms the basic potential of
the design. Due to space limitations, only a subset of the
experimental testing to enable a detailed evaluation of the
performance of this new design have been reported. One
critical aspect not treated at this stage is comparison with
alternative designs and this should be addressed in any
future research.

The results in this paper establish the basic feasibility of
the design and the use of Laguerre functions to parameter-
ize the future control trajectory reduces the computational
burden. Online computational costs, in particular, is an
ever increasing problem as applications of ILC expand be-
yond the domain of industrial robotics, including multiple-
input multiple-output systems. Applying control along the
trials should also have a role in extending the design to deal
with model uncertainty and disturbances and this should
also be investigated in future research. Further research
should also be directed to using the reset time between
trials to estimate and pre-compensate for the effects of
uncertainty in the trial state initial vector.

In some cases, the required control effort required may
be outside the capabilities or safe operating ranges of the
actuators employed and hence there is a need to consider
constrained design. Such designs for other ILC algorithms
are beginning to emerge, e.g., Chu et al. [2010] and further
research is required to extend the design in this paper
to allow constraints to be placed on the magnitude of
the control signals allowed and their rates of change. The
model predictive control setting should extend naturally
to this case with on-line computations.
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Fig. 2. Experimental results: in descending order from the
top are output 1, error 1, output 2, error 2, input 1
and input 2.
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