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Abstract:
This paper presents two nonlinear model-based control designs for a hydraulic system that consists
of two mechanically coupled hydraulic cylinders actuated each by a separate servo-valve. Based on a
physically-oriented nonlinear mathematical model of the test rig, a further model simplification results
in a completely controllable MIMO system. Two different control structures are discussed and compared
to each other in this paper: First, a cascaded flatness-based control is designed, where fast inner control
loops determine the difference pressure in each hydraulic cylinder, while the position as well as the
generated force is controlled in the outer loop. In the second approach, a centralised flatness-based
control, with the same outputs as in the outer loop of the cascaded approach, is developed for the MIMO
system. Model parameter uncertainties are estimated by a reduced-order disturbance observer and
compensated by the control algorithm. The efficiency of the proposed control structures is demonstrated
by experimental results from a dedicated test rig.

Keywords: nonlinear control, disturbance observer, hydraulic, flatness-based control, hydraulic
cylinder, mechatronic system

1. INTRODUCTION

Nonlinear control for hydraulic systems becomes more and
more attractive for highly dynamic positioning tasks that are
subject to a variable load. A typical application is a hydraulic
steer-by-wire system, see Haggag et al. (2005). In Sirouspour
and Salcudean (2000) and in Sohl and Bobrow (1999), nonlin-
ear control approaches for position-controlled hydraulic cylin-
ders with one servo-valve are presented. The papers of Nakkarat
and Kuntanapreeda (2009) as well as Sun and Chiu (1999)
address nonlinear concepts for force-controlled hydraulic cylin-
ders. A backstepping control for the position as well as a
generated force of a coupled hydraulic cylinder is described
in Prabel and Aschemann (2014). Further applications of the
proposed flatness-based control design were published for other
mechatronic systems in Aschemann et al. (2011) and Butt et al.
(2012).

A test rig dedicated for the development and validation of
sophisticated control approaches for hydraulic cylinder systems
is available at the Chair of Mechatronics at the University
of Rostock, see Fig. 1. In this paper, two nonlinear control
concepts as well as corresponding experimental results from
the hardware-in-the-loop (HIL) test rig are presented. The HIL
test rig combines two control tasks: hydraulic positioning and
generation of a specified disturbance force.

The test rig consists of two rigidly coupled hydraulic cylin-
ders, which are actuated each by a separate servo valve. To
guarantee a high bandwidth at force generating, two hydraulic
capacities are directly installed in front of the second servo
valve to maintain a constant pump pressure. Furthermore, in
each hydraulic chamber a pressure sensor is available, and the
actual position of the first hydraulic cylinder is measured. Due
to the rigid mechanical connection between the cylinders and a

geometric adjustment of the middle positions of both pistons, a
further sensor for the second servo cylinder is not necessary. In
between both cylinders, an additional force sensor is integrated
that allows for a force measurement.

hydraulic
cylinder 1

hydraulic
cylinder 2 

force
sensor

servo
valve 1

position
sensor

servo
valve 2

Fig. 1. Test rig for the hydraulic system.

The paper is structured as follows: First, a physically-oriented
state-space model of the mechatronic system is derived and fur-
ther simplified in subsequent model-order reduction step. Sec-
ond, the differential flatness property is shown for the cascaded
control as well as the centralised structure, and the correspond-
ing control design is described. Third, a reduced-order distur-
bance observer is designed to estimate parameter uncertainties
and disturbances like friction forces. Finally, experimental re-
sults show the advantages of the proposed control approaches
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with only small tracking errors during transient phases as well
as a negligible steady-state control error.

2. MODELLING OF THE MECHATRONIC SYSTEM

The mechatronic system can be split into a mechanical and a
hydraulic subsystem. The mechanical system part covers the
joint motion of the rigidly connected piston rods. The hydraulic
subsystem describes the pressure dynamics in the cylinder
chambers.

2.1 Mechanical Subsystem

The considered operation range of the system is characterized
by values−lmax < z(t)< lmax, cf. Fig. 2. The equation of motion
for the linked piston rods follows directly from a force balance.
To differentiate between the two hydraulic cylinders, the index
1 is used for the left cylinder, whereas 2 denotes the right
cylinder. The pressures p1,A(t) and p1,B(t) represent the two

z
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Fig. 2. Mechatronic model of the test rig.

absolute pressures in the right and left hydraulic chamber the
first cylinder. The corresponding force on the piston is given
by F1(t) = A1 (p1,A(t)− p1,B(t)). Here, A1 stands for the piston
area of the first cylinder. For the second cylinder, the driving
force is given by F2(t) = A2 (p2,A(t)− p2,B(t)). The absolute
pressures are denoted by p2,A(t) and p2,B(t), and A2 stands for
the piston area for the second cylinder. Furthermore, a velocity
proportional damping force FD(t) = ż(t)bD is considered in the
model.

A balance of momentum yields the equation of motion in the
form of a second order differential equation

z̈(t) =
1
m
[−ż(t)bD +A1 (p1,A(t)− p1,B(t))

+A2 (p2,A(t)− p2,B(t))−FU (t)] ,
(1)

with m as the reduced mass of all the moving components
connected to the hydraulic cylinders. Model uncertainty and
nonlinear friction could be advantageously taken into account
by a lumped disturbance force FU (t).

2.2 Hydraulic Subsystem

A mass flow balance for one of the four cylinder chambers,
i ∈ {1,2} and j ∈ {A,B}, directly leads to
dmi, j(t)

dt
= ρ̇i, j(t) ·Vi, j(z(t))+ρi, j(t) ·V̇i, j(ż(t)) = ρi, j(t)qi, j(t).

(2)
Here, the density ρi, j(t), the chamber volume Vi, j(z(t)) and the
volume flow qi, j(t) into the corresponding cylinder chamber are

introduced. The elastic model of the hydraulic fluid is defined
as

d pi, j(t) =−E(pi, j)
dVi, j

Vi, j
, (3)

with the bulk modulus E(pi, j) of the hydraulic fluid, which in
general depends on the pressure. In this paper, however, E can
be assumed with high accuracy as constant in the given pressure
range. Mass conservation leads to the relationship

−
dVi, j

Vi, j
=

dρi, j

ρi, j
. (4)

This results in the pressure dynamics

ṗi, j(t) =−
E V̇i, j(ż)
Vi, j(z)

+
E

Vi, j(z)
qi, j(t) . (5)

The differential equations for the pressures in the chambers j,
j ∈ {A,B}, of cylinder i, i ∈ {1,2}, become

ṗi,A(t) =−
E Ai ż(t)

Vi,0 +Ai z(t)
+

E
Vi,0 +Ai z(t)

qi,A(t) and

ṗi,B(t) =
E Ai ż(t)

Vi,0−Ai z(t)
+

E
Vi,0−Ai z(t)

qi,B(t).
(6)

Here, the volume chambers are characterized by Vi,A = Vi,0 +
Ai z(t) and Vi,B =Vi,0−Ai z(t), and the volume flows qi,A(t) and
qi,B(t) serve as control inputs.

2.3 Model-Order Reduction and Derivation of Decentralised
Models

An overall nonlinear state-space model for the whole test rig in
the form ẋ = f (x,u) can be stated as

ẋ =



ż
1
m

[−ż bD +A1 (p1,A− p1,B)+A2 (p2,A− p2,B)−FU ]

−
E A1 ż

V1,0 +A1 z
+

E
V1,0 +A1 z

q1,A

E A1 ż
V1,0−A1 z

+
E

V1,0−A1 z
q1,B

−
E A2 ż

V2,0 +A2 z
+

E
V2,0 +A2 z

q2,A

E A2 ż
V2,0−A2 z

+
E

V2,0−A2 z
q2,B


,

(7)
with the state vector x = [z ż p1,A p1,B p2,A p2,B]

T , the input
vector u = [q1,A q1,B q2,A q2,B]

T and the output vector y =

[z ((p1,A − p1,B) · A1 − (p2,A − p2,B) · A2)/2]T . This nonlinear
model, however, turns out to be not completely controllable.

In the following, a model-order reduction is performed. For this
purpose, a new state variable in form of the difference pres-
sure ∆pi(t) = pi,A(t)− pi,B(t) is introduced, where i ∈ {1,2}
indicates the individual cylinder. The corresponding differential
equation can be stated as
∆ṗi(t) = ṗi,A(t)− ṗi,B(t)

=− E Ai ż
Vi,A(z)

+
E

Vi,A(z)
qi,A(t)−

E Ai ż
Vi,B(z)

− E
Vi,B(z)

qi,B(t).

(8)
Furthermore, the relationship between the volume flow into
chamber A and out of chamber B is given by qi,A(t) =−qi,B(t).
Thereby the effective volume flow for the difference pressure is
defined as qi,AB(t) = qi,A(t)−qi,B(t) = 2qi,A(t). The product of
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the volumes can be written as Vi,A(z) ·Vi,B(z) = V 2
i,0− (Ai · z)2,

and the sum becomes Vi,A(z)+Vi,B(z) = 2 ·Vi,0, with Vi,A(z) =
Vi,0 + Ai z and Vi,B(z) = Vi,0 − Ai z. The resulting differential
equation for the difference pressure dynamics is

∆ ṗi(t) =
−2E Ai Vi,0 ż

V 2
i,0− (Ai · z)2 +

E Vi,0

V 2
i,0− (Ai · z)2 qi,AB(t) . (9)

Note that this formulation for the difference pressure dynamics
holds for both hydraulic cylinders. Thereby, the dimension of
the state vector is reduced from dim(x) = 6 to dim(xr) = 4. The
dynamics of the MIMO system is described by

ẋr =



ż
−b ż

m
+

A1 ∆p1(t)
m

+
A2 ∆p2(t)

m
−

FU

m
−2E A1 V1,0 ż

V 2
1,0− (A1 · z)2 +

E V1,0

V 2
1,0− (A1 · z)2 q1,AB(t)

−2E A2 V2,0 ż
V 2

2,0− (A2 · z)2 +
E V2,0

V 2
2,0− (A2 · z)2 q2,AB(t)


. (10)

The position z(t) and force F(t) = (A1 ∆p1(t)−A2 ∆p2(t))/2
are considered as outputs. The corresponding input vector is
given by u(t) = [q1,AB(t) q2,AB(t)] and the state vector is chosen
as xr(t) = [z(t) ż(t) ∆p1(t) ∆p2(t)].

2.4 Valve Characteristic

The volume flow through a hydraulic valve is usually modelled
as an ideal turbulent resistance with variable cross-section. At
the given test rig, the two valves have an analogue voltage sig-
nal as input, respectively. The volume flow through a hydraulic
resistance with variable cross-section area is given by

qi = Bi,V ·ui ·
√

∆pV , (11)
with Bi,V as the valve conductance, ui the valve input signal and
∆pV the pressure difference between the pressure in front of and
behind the valve.
Instead of using the mathematical description of the volume

flow (11), both valve characteristics are experimentally identi-
fied at the test rig shown in Fig. 1.
The identified valve characteristics for the first cylinder, for ex-
ample, is depicted in Fig. 3(a). It can be inverted, see Fig. 3(b),
in such a way that the analogue voltage signal for the valve
is determined by the actual valve difference pressure ∆pV and
the volume flow qi,AB. The inverted valve characteristics are
employed in the control structures depicted in Fig. 4 and Fig. 5.

3. FLATNESS-BASED CONTROL DESIGN

A nonlinear system – usually given in the form ẋ = f (x,u)
– is denoted as differential flat, see M. Fliess, J. Levine, P.
Martin and P. Rouchon (1995), if appropriate flat outputs y =

y(x,u, u̇, ...,ul) exist that:

(i) allow for expressing all system states x and all system
inputs u as a function of these flat outputs y as well as

their time derivatives, i.e. x = x
(

y, ẏ, . . . ,y(β )
)

and u =

u
(

y, ẏ, . . . ,y(β+1)
)

,
(ii) are differentially independent, i.e., they are not connected

by differential equations.

If the first condition is fulfilled, the second condition is equiv-
alent to dim

(
y
)
= dim(u). In this paper, both a cascaded and a
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(a) Identified volume flow characteristic of the valve for the first cylinder
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Fig. 3. Identified and inverted volume flow characteristics.

centralised control approach are considered. In the case of the
cascaded control approach, fast inner control loops are designed
for the difference pressures ∆pi as flat outputs. Moreover, the
position z as well as the generated force F represent the flat
outputs of the outer control loop. Following the centralised
approach, a MIMO control for the position z as well as the
generated force F is developed.

3.1 Inner control loops for the difference pressures of the
hydraulic cylinders

In both hydraulic subsystems, the first time derivative of the flat
output candidate y f ,p(t) = ∆pi(t) becomes

∆ ṗi(t) =
−2E Ai Vi,0 ż

V 2
i,0− (Ai · z)2 +

E Vi,0

V 2
i,0− (Ai · z)2 qi,AB(t) . (12)

As it is affected by the control input, equation (12) can be
solved for the input variable qi,AB(t). This results in the fol-
lowing inverse model depending on the flat output and its first
time derivative

qi,AB(t) =
ν∆p,i(t) · (V 2

i,0− (Ai · z(t))2)

E Vi,0
+2Ai ż(t) , (13)

with ν∆p,i = ∆ṗi as the stabilising control input. For these flat
outputs, the stabilising control input is chosen as

ν∆p,i = ∆ ṗi,d +α∆p,i (pi,d− pi) . (14)

3.2 Outer control loop for the cylinder position and the
generated force

The mechanical system part also represents a differentially flat
system, with the position z(t) of the first hydraulic cylinder
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=[zd żd z̈d ]

Inverse Volume 
Flow Maps

xr
T
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Fig. 4. Implementation of the cascaded flatness-based control.

and the force F(t) = (A1 ∆p1(t)−A2 ∆p2(t))/2 as flat outputs.
Subsequent differentiations of the first flat output y1(t) = z(t),
until one of the control inputs (∆p1(t), ∆p2(t)) appears, leads
to

y1 =z , ẏ1 = ż ,

ÿ1 =z̈(t) =
1
m
[−ż(t)bD +A1 ∆p1 +A2 ∆p2−FU (t)] ,

(15)

whereas the second variable directly depends on the control
inputs

y2(t) = F(t) = (A1 ∆p1(t)−A2 ∆p2(t))/2 . (16)
The inverse dynamics can be obtained by solving the equations
(15) and (16) for the input variables ∆p1(t) and ∆p2(t). Hence,
the input vector u(t) depending on the desired force F and the
control input νz = z̈ is given by

u(t) =
[

∆p1(t)
∆p2(t)

]
=


1

2A1
(m ·νz +2F +b ż+FU )

1
2A2

(m ·νz−2F +b ż+FU )

 . (17)

The stabilising control input νz for the position error is chosen
as

νz = z̈d +αz,1 (żd− ż)+αz,0 (zd− z) . (18)
The coefficients αz,k, k ∈ {0,1}, are specified in such a way as
to obtain an asymptotically stable error dynamics with small
tracking errors. The implementation of the cascaded control
structure is shown in Fig. 4.

3.3 Centralised flatness-based control for the cylinder position
and the force between the coupled cylinders

To design a centralised flatness-based control, the reduced-
order model (10) with the input variables qi,AB is used. The time
derivatives of the first flat output result in

y1 =z , ẏ1 = ż ,

ÿ1 =z̈(t) =
1
m
[−ż(t)bD +A1 ∆p1 +A2 ∆p2−FU (t)] ,

...y 1 =
...z (t) =

1
m

[
−z̈(t)bD +A1 ∆ṗ1 +A2 ∆ṗ2− ḞU (t)

]
,

=g1(z, ż,∆p1,∆p2,q1,AB,q2,AB,FU , ḞU ) .

(19)

In (19), the third time derivative is affected by the control
inputs. The following equations

y2(t) =F(t) = (A1 ∆p1(t)−A2 ∆p2(t))/2 ,
ẏ2(t) =Ḟ(t) = (A1 ∆ṗ1(t)−A2 ∆ṗ2(t))/2 ,

=g2(z, ż,∆p1,∆p2,q1,AB,q2,AB) .

(20)

show that the first time derivative of the second flat output y2
is influenced by the control inputs. The inverse dynamics of the
centralised control structure is calculated by solving ν1 = g1
and ν2 = g2 for the control inputs qi,AB. The corresponding
stabilisation of the error dynamics is achieved with

ν1 =
...z d +βz,2 (z̈d− z̈)+βz,1 (żd− ż)+βz,0 (zd− z) ,

ν2 = Ḟd +βF,0 (Fd−F) .
(21)

As before, the coefficients βz,φ , φ ∈ {0,1,2}, and βF,0 are
chosen as coefficients of Hurwitz polynomials. In Fig. 5, the
implementation of the centralised control structure is shown.

3.4 Reduced-order disturbance observer

To consider model uncertainties, e.g. friction and unknown
parameters, represented by the lumped disturbance force FU
in the control strategy, a reduced-order disturbance observer
according to Friedland (1996) is introduced. The key idea for
the observer design is to extend the state equations with an
integrator as disturbance model

ẏ = f (y,FU ,u) , ḞU = 0 , (22)
where y = xr represents the fully measurable state vector. The
lumped disturbance force F̂U to be estimated is obtained from

F̂U = hT · y+ξ , (23)

with the observer gain vector hT = [ 0 h2 0 0 ]. The state
equation for ξ is given by

ξ̇ = Φ
(
y, F̂U ,u

)
=−h2 ·

(
1/m · (∆p1 A1 +∆p2 A2−b ż− F̂U )

)
.

(24)

The observer gain vector h = [0,h2]
T and the function Φ have

to be chosen properly, so that the steady-state observer error
e = FU − F̂U converges to zero. Thus, the function Φ can be
determined as follows

ė = 0 = ḞU −hT · ẏ−Φ
(
y,FU −0,u

)
. (25)

In view of ḞU = 0, equation (25) leads to
Φ
(
y,FU ,u

)
=−hT · f (y,FU ,u) . (26)

The linearized error dynamics must be asymptotically stable.
Accordingly, the eigenvalue of the scalar Jacobian

Je =
∂Φ
(
y,FU ,u

)
∂FU

=−h2 ·
1
m
, (27)

is placed in the left complex half-plane. This can be achieved
by a proper choice of the scalar observer gain h2. The stability
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Fig. 5. Implementation of the centralised flatness-based control.

of the closed-loop control system has been investigated by
simulations.

4. EXPERIMENTAL RESULTS

In the following, experimental results for the coupled hydraulic
cylinders are presented to point out the benefits using the
flatness-based control approach. Each electro-hydraulic valve is
connected to a separate hydraulic pump, with a supply pressure
of p1,pump = p2,pump = 80 · 105 Pa. The desired trajectories

0 5 10 15 20 25 30 35
-0.06

-0.03

0

0.03

0.06

t in s

z d
in

m

Fig. 6. Desired trajectory for the position of the coupled cylin-
ders.

0 5 10 15 20 25 30 35
−3000

−2000

−1000

0

1000

2000

t in s

F d
in

N

Fig. 7. Desired trajectory for the force of the coupled cylinders.

for the position and the force are depicted in Fig. 6 and 7,
respectively.

In the following, the tracking errors of the four flatness-based
control structures are compared to each other: 1) cascaded
(CC), 2) cascaded with observer (CCO), 3) centralised (CE),
and 4) centralised with observer (CEO).

Fig. 8 and Fig. 9 shows the obtained tracking errors for the four
approaches: Obviously, the smallest position tracking errors of
mostly below 0.1 mm can be obtained with the CCO structure.
Without a disturbance observer, the position errors using CC
are slightly larger. The force tracking errors of the cascaded ap-
proaches are very similar to each other, see Fig. 8b and Fig. 8c.
This is a result of the disturbance observer, which affects only
the position tracking part. The centralised control approach
leads to tracking errors that are 10 times larger as those of the
cascaded one. Regarding the force tracking errors, however, the
difference between the cascaded and the centralised structure is
negligible.

Furthermore, the force tracking errors in the transient phases
of the position trajectory stem from the real differentiation
of the measured position signal, which is employed in the
inner control loops for the difference pressures of the hydraulic
cylinders. Measurement noise of the four pressure sensors is
reflected in the force tracking errors shown in Fig. 8b and
Fig. 9b.

The corresponding root-mean square errors for the position and
the generated force

eRMS,i =

√
1
N

N

∑
k=1

e2
i (k)

with i ∈ {z,F} are shown for all the investigated control struc-
tures in table 1.

CC CCO CE CEO

eRMS,z 0.052 mm 0.027 mm 0.59 mm 0.54 mm

eRMS,F 71 N 64 N 65 N 69 N

Table 1. Root mean square errors of the cylinder
position and the generated force

5. CONCLUSIONS

In this paper, a cascaded and a centralised flatness-based control
design are employed for a hydraulic system that consists of
two coupled hydraulic cylinders. Based on a control-orientated
model of the system, a model-order reduction is performed that
leads to a completely controllable state-space representation.
A reduced-order disturbance observer is estimating a lumped
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Fig. 8. Experimental results using the cascaded structures CCO
and CC.

disturbance force accounting for parameter uncertainties and
nonlinear friction. The control performance and the efficiency
of the proposed control structures are pointed out by exper-
imental results from an implementation on a dedicated test
rig at the Chair of Mechatronics, University of Rostock. The
obtained maximum tracking errors for the CCO structure are
approx. ez = 0.1 mm for the cylinder position and approx. eF =
220 N for the force.
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