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Abstract: In this paper, we consider the diffusion adaptive filters where a set of sensors is
required to collectively estimate time-varying signals (or parameters) from noisy measurements
in a way of information diffusion. We will establish the stability of the diffusion least mean square
(DLMS) algorithm, without requiring stationarity, independency, and boundedness assumptions
of the system signals, which means that our results can be applied to more general and practical
class of stochastic systems than those studied in the literature. We will present theoretical results
concerning stability and bounds on the mean square error(MSE)of the filtering. We will also
show that the network of sensors can cooperate to guarantee the stability of the filtering, even
though any single sensor does not have such a capability. This clearly reveals the advantages of
the DLMS algorithm vs. standard least mean square (LMS) algorithm. Numerical simulations
will also be presented to support the theoretical justifications.

1. INTRODUCTION

In the last decade, sensor networks have attracted much
attention from researchers and are widely used in var-
ious engineering areas including communications, signal
processing, controls, robotics and computer technology.
Generally speaking, sensor networks are composed of many
spatially distributed sensors which are used to collect
and deal with the information. In such a context, more
information from more regions can be utilized, while new
problems arise that one central processors might not han-
dle such a large amount of data. To solve the problem,
the in-network processing has been widely studied since it
has some advantages in robustness to failure, decreasing
computation and reducing network congestion.

It is well-known that parameter estimation or adaptive
filtering has been a central issue in the area of control
and identification. With the development of the wireless
communication networks, how to design the in-network
distributed estimation or distributed adaptive filtering
algorithm becomes more and more important. In recent
years, some distributed adaptive filtering algorithms have
been proposed inspired by different motivations. For in-
stance, the authors in [1] and [2] proposed the incremental
RLS and the incremental LMS algorithms, where the infor-
mation at each sensor is circulated through a topological
cycle. In [3] and [4], diffusion LMS and diffusion RLS were
proposed, where the estimates at each sensor are diffused
to its neighbors. In addition to this, other distributed al-
gorithms have also been developed and the corresponding
convergence and performance analysis are given, see [5]-
[11], [13] and [14] among many others.

To the best of our knowledge, almost all existing results on
the distributed adaptive filtering need the independency or
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strictly stationarity assumptions of the systems signals. In
[3] and [10], the authors assume that regression vectors
are spatially and temporally independent. In [9], the
authors require that the observation matrices at time t
are independent of the δ-filed Ft−1; In [8], the regression
vectors are assumed to be strictly stationary and ergodic.
However, in many practical situations, the independency
or strictly stationarity assumptions cannot be satisfied. So
a naturally important issue is: can we establish stability
and conduct performance analysis for distributed adaptive
filters for systems with correlated and non-stationary
signals ? On the other hand, for the stability of the
distributed LMS, most of the proposed conditions in the
existing literature, essentially require that each sensor
has the ability to guarantee the stability of the LMS
algorithm when there is no information exchange between
sensors[3][8]. Hence, the superiority of the distributed
strategies on cooperation need to be further explored.

In this paper, we focus on the analysis of the diffusion
adaptive filter (DLMS) developed in [3], where the signals
are generated by a linear time-varying stochastic regres-
sion model. We will provide sufficient conditions for the
stability and performance analysis of the filtering, which
can be regarded as a joint excitation condition of the
filtering network. Aiming at relaxing the limitations of the
existing theoretical results as mentioned in the last para-
graph, we will establish more general theoretical results in
the current paper with the following two main features: (i)
Different from most existing work, we do not require any
independency or stationarity assumptions on the system
signals, which means that a more general class of stochastic
models can be included. To this end, we need to investigate
the product of random matrices, which is the root of the
problem. (ii) Compared with the standard LMS algorithm,
we find that the sensors in DLMS can cooperate to fulfill
the estimation or filtering task, even though each single
sensor cannot. This finding clearly displays the advantage
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of the distributed algorithms, which is rarely mentioned in
the existing literature.

The remainder of this article is organized as follows. In
Section 2, we present the DLMS and the main results of
this paper. In Section 3, we provide the related lemmas
and outline the proof of Theorem 2.1. In Section 4, numer-
ical simulations are presented to illustrate the theoretical
justifications. Concluding remarks are made in Section 5.

The following notations are used throughout the pa-
per. In means n × n-dimensional identity matrix. Opera-
tors (·)′, diag(·), λmax(·), λmin(·) denote transpose, diago-
nal matrix, the largest eigenvalue, the smallest eigenvalue,
respectively. col(· · · ) stands for a vector by stacking the
specified vectors. ⊗ denote matrix Kronecker product. A
matrix A ≥ 0 means A is semi-positive definite, A ≥ B
means A−B ≥ 0. We say that the matrix A is stochastic if
each element of A is non-negative and the sum of each row
equals to1. Furthermore, a matrix is called doubly stochas-
tic if it is a stochastic matrix and the sum of each column
is also 1. For any vector x, ∥x∥ represents the Euclidean

norm of x. For any matrix X, ∥X∥ = {λmax(XX ′)} 1
2 .

2. DLMS & MAIN RESULTS

Consider a network comprising of N sensors where only
single-hop communication is allowed, i.e., sensor i can
only communicate with the sensors in its neighborhood
Ni ⊂ {1, · · · , N}. We use graph G = {V,E} to describe
the relationship between sensors, where the vertices are
the sensors and edge (i, j) ∈ E if sensor j is one of the
neighbors of i. For convention of analysis, we assume that
the graph G is undirected and contain self-loops, that is,
i ∈ Ni, ∀i. An N × N matrix A = {aij} is introduced to
represent the weights of links, where aij > 0 if and only if

j ∈ Ni and
∑N

j=1 aij = 1, ∀i.

The task of the network of sensors is to estimate a se-
quence of M dimensional time-varying parameter vectors
{θk, k = 1, 2, · · · }, where the parameter variation at time
k is denoted by ωk = θk − θk−1. We assume that the
signal {yik, φi

k} that the sensor i(i = 1, 2, · · · , N) receives
obeys the following time-varying stochastic linear regres-
sion model:

yik = (φi
k)

′θk + vik, (1)

where yik and vik are scalar observation and noise at node
i, respectively, and φi

k is the M -dimensional stochastic
regression vector.

At each time step k ≥ 0, each sensor updates its estimates
by using the estimates of its neighbors. In this paper, the
sensor i(i = 1, 2 · · · , N) will adopt the following diffusion
LMS (DLMS) algorithm:

ϑi
k =

N∑
j=1

aij θ̂
j
k;

θ̂ik+1 = ϑi
k + µi

φi
k

1 + ∥φi
k∥2

(yik − (φi
k)

′ϑi
k),

(2)

where 0 < µi < 1 is the step size of i and the initial

estimates θ̂i1, i = 1, · · · , N are arbitrary values.

Remark 2.1. It is worth mentioning that the above DLMS
is first introduced in [1][3]. In the above DLMS algorithm,

all sensors will estimate the time-varying parameters at
the same time, which can reduce the complexity and save
communications.

The objective of this paper is to establish the exponentially
stability and performance analysis of the DLMS (2).

To proceed our analysis, we introduce the following global
quantities:

Θk , col{θk, · · · , θk︸ ︷︷ ︸
N

}, Wk = col{ωk, · · · , ωk︸ ︷︷ ︸
N

},

Yk , col{y1k, · · · , yNk }, ϑk , col{ϑ1
k · · ·ϑN

k },
Ψk , diag{φ1

k, · · · , φN
k }, Θ̂k , col{θ̂1k, · · · , θ̂Nk },

Θ̃k , col{θ̃1k, · · · , θ̃Nk } with θ̃ik = θ̂ik − θik

Vk = col{v1k, · · · , vNk },

Dk , diag{ µ1

1 + ∥φ1
k∥2

IM , · · · , µN

1 + ∥φN
k ∥2

IM}

Then (1) can be written as

Yk = Ψ′
kΘk + Vk. (3)

Correspondingly, equation (2) can be written as{
ϑk = (A⊗ IM )Θ̂k,

Θ̂k+1 = ϑk +DkΨk(Yk −Ψ′
kϑk),

(4)

or, in a more compact form:

Θ̂k+1 = (A⊗ IM )Θ̂k +DkΨk(Yk −Ψ′
k(A⊗ IM )Θ̂k). (5)

Subtracting Θk from both sides of (5) and using the fact
that (A⊗ IM )Θk = Θk, we obtain

Θ̃k+1 = (IMN −DkΨkΨ
′
k) · (A⊗ IM )Θ̃k

+DkΨkVk +Wk+1.
(6)

To state the main result of this paper, we will introduce
some definitions first.

Definition 2.1. ([17]). A random matrix (or vector) se-
quence {Ak, k ≥ 0} defined on the basic probability space
(Ω,F , P ) is called Lp stable(p > 0) if supk≥0 E∥Ak∥p <
∞.

In the sequel, we will refer to ∥Ak∥Lp defined by ∥Ak∥Lp ,
{E∥Ak∥p}

1
p as the p norm of Ak. In order to obtain the

stability of Θ̃k, some conditions on the coefficient matrices
of the homogeneous part of (6) are required. To this end,
we give the following definition:

Definition 2.2. ([17]). A sequence of d×d random matrices
A = {Ak, k ≥ 0} is called Lp-exponentially stable(p ≥ 1)
with parameter λ ∈ [0, 1), if it belong to the following set

Sp(λ) =

{
A : ∥

k∏
j=i+1

Aj∥Lp ≤ Mλk−i,∀k ≥ i,

∀i ≥ 0, for some M > 0

}
.

(7)

Condition 2.1. The graph G is undirected and connected,
and the weighted matrix A is symmetric.

Remark 2.2. From the construction of A, A is doubly
stochastic with aii > 0.
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Condition 2.2. {φi
k,Fk}, i = 1, · · · , N , are N adapted

sequences, and λk ∈ So, where

λk , λmin

{
E

[
1

2N

N∑
i=1

φi
k+1(φ

i
k+1)

′

1 + ∥φi
k+1∥2

∣∣∣ Fk

]}
, (8)

and

So =

{
a = (ai) : ai ∈ [0, 1], and there exist constants λ

∈ (0, 1) and M > 0 such that E

k∏
j=i+1

(1− aj) ≤ Mλk−i.

}
Remark 2.3. If there exists a constant λ ∈ (0, 1) such that
λk ≥ λ for all k, then Condition 2.2 is obviously satisfied.
More discussions on how to verify Condition 2.2 can be
found in [17]. The advantages of Condition 2.2 for diffusion
adaptive filters will also be discussed in Remark 2.8 below.

Theorem 2.1. If Conditions 2.1 and 2.2 are satisfied, then
the coefficient matrices of the homogeneous part of (6){
(IMN −DkΨkΨ

′
k) · (A⊗ IM ), k ≥ 1

}
is L2-exponentially

stable.

Remark 2.4. Different from almost all the existing works
on distributed adaptive filtering, for example [1][3][8], we
do not require the signals to satisfy the independency or
stationarity assumptions. So, our result can be applied to
a more general class of stochastic models, and, in fact, the
results in [3] can be deduced from our results.

Remark 2.5. The above theorem essentially provides the
joint excitation condition for the exponentially stability of
the homogeneous part of (6), by which we can know how

the bound of the mean square estimation error E∥Θ̃k∥2
depends on the amplitude of Vk and ωk.

Remark 2.6. From Theorem 2.1, we can make a short
comment on the relationship between our results and the
results of other consensus-based distributed estimation
algorithms. The similarity lies in that the excitation con-
ditions both have the “sum-form” in space[9][10][11]. And
the difference is in the excitation mechanism: our results
rely on the “shrink” property of the network adjacen-
cy matrix A. Specifically, under the sum-form condition
of the estimators and the ergodicity of A, the norm of
the coefficient matrix will be strictly less than 1, then
the homogeneous part of the error equation is exponen-
tially stable, thereby the algorithm works. While other
consensus-based results resort to the “consensus” property
of A. In practical terms, as time evolves, the information
collected by each individual estimator will asymptotically
approximate the sum-form information of the network so
that each individual estimator is like a “central unit”, then
the algorithm works under the sum-form condition.

Theorem 2.2. Suppose that Conditions 2.1 and 2.2 are

satisfied, ∥Θ̃0∥L2 < ∞, and that for some β > 1,

σ2 , sup
k

∥ξk logβ(e+ ξk)∥L2 < ∞, (9)

where ξk = ∥Vk∥+∥Wk+1∥. Then {Θ̃k, k ≥ 1} is L2 stable,
and

lim sup
k→∞

∥Θ̃k∥L2 ≤ c[σ2 log(e+ σ−1
2 )] (10)

where c is a constant.

Remark 2.7. The proof of Theorem 2.2 is similar to The-
orem 4.2 in [17], and we omit it due to space limitation.
Moreover, both Theorems 2.1 and 2.2 can be extended to
more general norms as those in [17]. Furthermore, more
accurate estimation for the MSE can also be obtained by
following the arguments of those in [19].

Remark 2.8. For a single sensor whose signals are gener-
ated by the following regression model:

yk = φ′
kθk + vk, (11)

where yk, φk, θk, vk are observations, regression vectors,
unknown parameters and noises, respectively, if we apply
the standard LMS to estimate θk, then the correspond-
ing estimation error is L2 stable, provided the following
condition [17]holds:

Condition 2.3. (Excitation Condition).

λmin

E

 1

1 + h

(k+1)h∑
j=kh+1

φj(φj)
′

1 + ∥φj∥2
∣∣∣ Fkh

 ∈ So.(12)

(13)

It is easy to find that for a network of sensors, even
though none of the sensors satisfies the above Excitation
Condition 2.3, the sensors as a whole can still have the
possibility to satisfy Condition 2.2, which means that in a
certain degree, the DLMS algorithm can make the sensors
to fulfill the estimation task in a cooperative fashion,
which any single sensor cannot do alone. We will provide
a simulation example to explain this point in Section 4.

3. PROOF OF THEOREM 2.1

To prove Theorem 2.1, we need to provide some key
lemmas first, with the proof being presented partially.

Lemma 3.1. ([21]). Assume that all the eigenvalues of A ∈
RM×M are λ1, · · · , λM with respect to the eigenvectors
a1, · · · , aM , and all the eigenvalues of B ∈ RN×N are
µ1, · · · , µN with respect to the eigenvectors b1, · · · , bN ,
then all the eigenvalues of A⊗B are λiµj , i = 1, · · ·M, j =
1, · · ·N with respect to ai ⊗ bj , i = 1, · · ·M, j = 1, · · ·N .

Lemma 3.2. Assume that a family of matrices {Ak =

(Aij
k ) ∈ RN×N} are semi-positive definite, and for any k,

Ak ≤ IN×N , then there exists a constant b, such that for

any k, i, j, Aij
k ≤ b.

Lemma 3.3. ([17]). Assume that {αk} ∈ So and αk ≤ α∗,
where α∗ is a constant. Then for any ε ∈ (0, 1), we have

{εαk} ∈ So. (14)

Lemma 3.4. ([17]). Assume that α = {αk,Fk}, β =
{βk,Fk} are two adapted processes, satisfying

βk ∈ [0, 1], E[βk+1|Fk] ≥ αk, k ≥ 0. (15)

Then {βk} ∈ So provided {αk} ∈ So.

Lemma 3.5. Assume that A = (aij) is an N × N -
dimensional doubly stochastic matrix which satisfies Con-
dition 2.1, and {Φk = (Φij

k ), k = 1 · · ·N} are a sequence
of M ×M -dimensional symmetric matrices satisfying 0 ≤
Φk ≤ IM , k = 1 · · ·N , then there exists a constant C < 1
depending only on A such that

λmax

[
(A⊗I)·diag(IM−Φ1, · · · , IM−ΦN )·(A⊗I)

]
≤ 1−Cδ,

(16)
where δ = 1

N λmin(Φ1 + · · ·+ΦN ).
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Proof From Condition 2.1 and Remark 2.2, A has N real
eigenvalues in an ascending order

−1 < λN (A) ≤ λN−1(A) ≤ · · · ≤ λ2(A) < λ1(A) = 1.
(17)

Denote λgap(A) , max{|λ2(A)|, |λN (A)|}.
Let {α1, · · ·αN} be a system of orthogonal basis of
RN composed of the unit eigenvectors corresponding to
{λ1, · · · , λN}, then α1 = ( 1√

N
, · · · 1√

N
)′. Hence, by Lemma

3.1, the eigenvalues of A⊗IM are {λi, i = 1, · · ·N}, and the
eigenvectors corresponding to λi are {αi⊗ej , j = 1, · · ·M},
where ei is the ith row of IM . For convenience, we use
βk(1 ≤ k ≤ MN) to denote α⌈k/M⌉ ⊗ ek−M⌊k/M⌋, then
{βk, k = 1, · · · ,MN} is a system of orthogonal eigenvec-
tors of A⊗ I.

For any two MN -dimensional vectors x and y, we use x′∗y
and x′ ⋄ y to denote

x′[(A⊗ I) · diag(IM −Φ1, · · · , IM −ΦN ) · (A⊗ I)
]
y (18)

and
x′diag(Φ1, · · · ,ΦN ) · y (19)

respectively.

Pick any MN -dimensional unit vector x, then x can be

written as x =
∑MN

i=1 xiβi and
∑MN

i=1 x2
i = 1. Then

x′ ∗ x =
MN∑
i=1

x2
i (λ⌈i/M⌉)

2

− (
MN∑
i=1

xiλ⌈i/M⌉βi)
′ ⋄ (

MN∑
i=1

xiλ⌈i/M⌉βi)

, S1 − S2,

(20)

where S1 > 0, S2 > 0.

Now we consider S1 and S2 respectively. Since for 1 ≤ i ≤
M , λ⌈i/M⌉ = 1, and for M + 1 ≤ i ≤ MN , λ⌈i/M⌉ ≤ λgap,
then

S1 ≤
M∑
i=1

x2
i + λ2

gap(1−
M∑
i=1

x2
i ) ≤ 1. (21)

Let S1
2 ,

∑M
i=1 xiλ⌈i/M⌉βi and S2

2 ,
∑MN

i=M+1 xiλ⌈i/M⌉βi,
then

S2 = (S1
2 + S2

2)
′ ⋄ (S1

2 + S2
2)

= (S1
2)

′ ⋄ S1
2 + (S1

2)
′ ⋄ S2

2 + (S2
2)

′ ⋄ S1
2 + (S2

2)
′ ⋄ S2

2 .
(22)

For the first term of the right hand side of (22),

|(S1
2)

′ ⋄ S1
2 | =

1

N

N∑
i=1

(x1, · · · , xM )Φi(x1, · · · , xM )′

=
1

N
(x1, · · · , xM )(

N∑
i=1

Φi)(x1, · · · , xM )′

≥ δ(
M∑
i=1

x2
i ).

(23)

Notice that (S2
2)

′ ⋄ S2
2 is the linear combination of the

terms xixj(M + 1 ≤ i, j ≤ MN) and the coefficients

depend on {Φij
k , k = 1, · · · , N} and A. By the condition

that 0 < Φk ≤ IM , for any i, j, k, we have {Φij
k } have a

common upper bound from Lemma 3.2. Then there exists
constants Aij(M + 1 ≤ i, j ≤ MN) and C1 > 1 only
depending on A and M,N , such that

|(S2
2)

′⋄S2
2 | ≤

MN∑
i=M+1

MN∑
j=M+1

Aij |xixj | ≤ C1

MN∑
i=M+1

x2
i . (24)

Similarly, there exist constants C2, C3 depending on A,
such that

|(S1
2)

′ ⋄ S2
2 | ≤ C2

MN∑
j=M+1

x2
j , (25)

and

|(S2
2)

′ ⋄ S1
2 | ≤ C3

MN∑
j=M+1

x2
j (26)

Combining (23), (24), (25) and (26) together, we obtain

S2 ≥ δ(

M∑
i=1

x2
i )− (C1 + C2 + C3)(1−

M∑
i=1

x2
i ). (27)

Consider the function f(y) = δy − (C1 +C2 +C3)(1− y),
which monotonically increases on [0, 1]. It can be computed

that f(
δ
2+C1+C2+C3

δ+(C1+C2+C3)
) = δ

2 and f(1) = δ, then let K =
δ
2+C1+C2+C3

δ+(C1+C2+C3)
, we have f(y) ≥ δ

2 on [K, 1].

Now we discuss S1 − S2 in two cases:
(i) If K <

∑M
i=1 x

2
i ≤ 1, from the analysis above, we have

S1 − S2 < 1− δ

2
. (28)

(ii) If
∑M

i=1 x
2
i ≤ K, from S2 > 0 we have

S1 − S2 ≤ 1−
(1− λ2

gap)

2(C1 + C2 + C3)
δ. (29)

Combining (28), (29) and (20) together, and from the
arbitrariness of x, we complete the proof with C =

max{ 1
2 ,

(1−λ2
gap)

2(C1+C2+C3)
} < 1. �

Lemma 3.6. Under Conditions 2.1 and 2.2, there exists a
constant C∗ < 1 such that:

λmax

{
E[Φ′(k + 1, k)Φ(k + 1, k) | Fk−1]

}
≤ 1− C∗λk−1,

(30)
where Φ(•, •) is defined as:

Φ(n+ 1,m) = (IMN −DnΨnΨ
′
n) · (A⊗ IM )Φ(n,m),(31)

Φ(m,m) = IMN ,∀n ≥ m. (32)

Lemma 3.7. Under the same conditions and notations of
Lemma 3.6, for any k0 ≥ 0, consider the equation

xk = Φ(k + 1, k)xk−1, k ≥ k0 + 1, (33)

where xk0 is deterministic and ∥xk0∥ = 1. Then there
exists αk ∈ [0, 1] such that αk ∈ Fk and

∥xk∥ ≤ (1− αk)∥xk−1∥, k ≥ k0 + 1, (34)

and

E[αk+1|Fk] ≥
C∗

2
λk, k ≥ k0 + 1, (35)

where C∗ is defined in Lemma 3.6.
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Proof of Theorem 2.1:

Since C∗

2 λk ∈ [0, 1
2 ] and {λk} ∈ So, then by Lemma 3.3,

we have

{C
∗

2
λk} ∈ So. (36)

Using Lemma 3.4, we obtain

{αk} ∈ So, (37)

where {αk} is defined in Lemma 3.7.

Consider the equation (33), and by (34), we have

∥xk∥ ≤ (1− αk) · · · (1− αk0+1)∥xk0∥, (38)

which is followed by

∥xk∥2 ≤ (1− αk) · · · (1− αk0+1). (39)

Combing this and (37) together, we complete the proof of
Theorem 2.1. �

4. SIMULATION RESULTS

In order to illustrate Theorem 2.1 and 2.2, we present some
simulation examples in Figure 1-Figure 4. Assume that a
network consists of N = 3 sensors with

A =

(
2/3 1/3 0
1/3 1/2 1/6
0 1/6 5/6

)
(40)

and we will use the network to estimate the unknown M -
dimensional parameters {θk} with M = 3 cooperatively.
The observation noises {vik, i = 1, · · · , N, k ≥ 1} are
temporally and spatially independently distributed with
vik ∼ N(0, 1). For i = 1, 2, 3, assume that the regression
vector {φi

k} are the outputs of the linear stochastic model

xi
k = Aixi

k−1 +Biξik, ∀k ≥ 1, (41)

φi
k = Cixi

k, (42)

where {ξik, i = 1, · · · , N, k ≥ 1} are temporally and
spatially independently distributed with ξik ∼ N(0, 1). Set

x1
0 = x2

0 = x3
0 = (0, 0, 0)′,

A1 = A2 = A3 =

(
1/2 0 0
0 1/3 0
0 0 1/5

)
,

B1 = (1, 0, 0)′, B2 = (0, 1, 0)′, B3 = (0, 0, 1)′,

C1 =

(
1 0 0
0 0 0
0 0 0

)
, C1 =

(
0 0 0
0 1 0
0 0 0

)
, C1 =

(
0 0 0
0 0 0
0 0 1

)
.

It can be verified that {φi
k, k ≥ 0} is neither independent

nor stationary. Through the proof similar to that for Ex-
ample 2 in [20], we can prove that Conditions 2.1 and 2.2
are satisfied for the network of sensors under the weighted
matrix A , while Excitation Condition 2.3 is not for each

individual sensor. Set θ̃10 = 2.9580, θ̃20 = 2.2361, θ̃30 =
1.7321. We plot the mean square error(MSE)(averaged
over 50 Runs) in four contexts:
(i) When ωk = 0, and there is no information exchange
between sensors. Each sensor use the standard LMS algo-
rithm to estimate the parameter separately. From Figure
1, we see that the MSE at all sensors is very large.
(ii) When ωk = 0, and the network of sensors cooperate to
estimate the parameter with the weighted matrix A. The
sensors apply the DLMS algorithm, then the conditions in
Theorem 2.2 holds. Form Figure 2, we see that the MSE
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Fig. 1. The parameter is time-invariant and each sensor
estimates the parameters by the standard LMS sepa-
rately without information exchange.
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Fig. 2. The parameter is time-invariant and the sensors es-
timate the parameters cooperatively using the DLMS.

at all sensors decreases to small values.
(iii) When ωk is uniformly and independently distributed
in the interval [−0.15, 0.15], and there is no information ex-
change between sensors. Each sensor use the standard LM-
S algorithm to estimate the parameter separately. From
Figure 3, we see that the MSE at all sensors is very large.
(iv) When ωk is uniformly and independently distributed
in [−0.15, 0.15], and the network of sensors cooperate to
estimate the parameter with the weighted matrix A using
the DLMS algorithm, then the conditions in Theorem 2.2
holds. From Figure 4, we see that the MSE at all sensors
is within a small neighborhood of 0.

5. CONCLUDING REMARKDS

In this paper, we have established the L2 stability of
the MSE for DLMS algorithm under correlated and non-
stationary conditions on the system signals. We have
shown that the network of sensors can cooperate to fulfill
the estimation or filtering task even though any single
sensor cannot. This paper can be regarded as the first step
towards the theoretical analysis of distributed adaptive
filtering for more general and more practical stochastic
signal models. Of course, many problems still remain to
be further investigated, for example, how to further relax
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Fig. 3. The parameters are time-variant and each sensor
estimates the parameters by the standard LMS sepa-
rately without information exchange.
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Fig. 4. The parameters are time-variant and the sensors es-
timate the parameters cooperatively using the DLMS.

the joint excitation condition 2.2? how to analyze oth-
er distributed filtering algorithms including the Kalman
filtering-based cooperative algorithm? how to combine dis-
tributed filtering with distributed control properly?
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