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Abstract: This paper addresses the design of feedforward compensators for integrating
processes. Initially, the disturbance rejection problem for a classic two degrees-of-freedom control
scheme with feedfoward is analyzed to highlight the problem caused by integrating dynamics.
Afterwards, two simple tuning rules are derived to obtain undershoot-free responses based only
a desired settling time or by satisfying a tradeoff between maximum peak and settling time
specifications. Finally, some simulations are shown to prove the advantages of the proposed
controller. c⃝ Copyright IFAC 2014
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1. INTRODUCTION

Feedforwarding measurable disturbance signals to com-
pensate their effects before they affect the system is a
classic strategy in process control [Hägglund, 2013]. Even
though feedforward control is an old topic [Seborg et al.,
2004], most existing tuning rules only consider the ideal
cases or are only applied to very specific problems [Nisen-
feld and Miyasak, 1973, Seborg et al., 2004].

The ideal feedforward compensator within a classic feed-
forward scheme is formed as the quotient of the reversed
sign dynamics between the measurable disturbance and
the process output divided by the dynamics between the
control signal and the process output. However, in many
cases this controller becomes non-realizable due to several
causes: non-realizable delay inversion, non-minimum phase
zeros, unstable poles, integrating dynamics or improper
transfer function [Seborg et al., 2004, Guzmán et al., 2012].

In those cases where the perfect feedforward controller is
not realizable, the effect of the measurable disturbance
can not be totally rejected from feedback error using a
classic feedforward scheme. In [Brosilow and Joseph, 2012],
a non-interacting feedforward structure was introduced
to cope with this problem by introducing a new block.
This scheme greatly simplifies feedforward compensator
design, as an independent nominal analysis can be done
for both reference tracking and disturbance rejection even
if the ideal compensator is not realizable. However, the
main limitation of this scheme is that it cannot deal with
unstable or integrating plants.

⋆ This work has been partially funded by the following projects:
CAPES-DGU 220/2010; CNPq-BRASIL; PHB2009-008 financed by
the Spanish Ministry of Education; and Spanish Ministry of Science
and Innovation and EU-ERDF funds under contract DPI2011-27818-
C02-01.

Recently, feedforward controller tuning rules have ap-
peared in the literature within classic and non-interacting
feedforward schemes. [Guzmán and Hägglund, 2011] pro-
posed a design based on the minimization of integral
absolute error and the reduction of undershoot for the
case when ideal feedforward is not realizable due to
delay inversion problems. Similar results within a non-
interacting feedforward scheme were also pointed in [Hast
and Hägglund, 2012] and [Rodŕıguez et al., 2013], where
the objective was the minimization of the integral squared
error. All of these rules are based on simple first-order plus
time delay systems, and their extension to higher-order
dynamics is seldom achievable.

A different approach for stable systems is proposed in [Vi-
lanova, 2007], where the authors establish a general design
framework, in which a robust tuning procedure within an
internal model control structure is used. This strategy was
later extended to unstable processes in [Vilanova et al.,
2009]. However, this control structure as well as those with
feedforward made from the reference require a different
design and are not treated in this work.

Within a classic feedforward scheme, a methodology to de-
sign feedforward compensators by shaping the disturbance
rejection response for the case when ideal feedforward is
not realizable due to plants with integrating dynamics is
required. To suggest simple tuning rules for this case is the
main contribution of this paper.

The paper is organized as follows. A brief overview of the
classic feedforward scheme including closed-loop relation-
ships is presented in section 2. Section 3 introduces the
proposed design methodology for shaping the disturbance
rejection response. Two simple rules to define the shape
response according to settling time or as a tradeoff between
maximum peak and settling time are obtained. In section
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4, the proposed design is tested with some simulations.
Finally, section 5 conducts the conclusions of the work.

2. CONTROL SCHEME

In this section, the classic feedforward control together
with a two degrees-of-freedom (2DOF) structure is de-
scribed. It is a well-known structure which allows to com-
pensate measurable disturbance effect as soon as possible
with an independent design for reference tracking and
disturbance rejection. The main advantage with respect
to classic feedback is that a control action is supplied even
if there is no feedback error.

Fig. 1 presents the classic feedforward block diagram.
There are two processes Pu and Pd relating the process
output y with the control signal u and the measurable
disturbance d, respectively. A primary controller Cfb and
a reference filter Fr are used within a 2DOF closed-
loop system for reference tracking purposes. Moreover, the
feedforward compensator Cff is connected in open-loop to
counteract measurable disturbance effects.

r u y

d

ΣΣΣ Cfb Pu

−Cff Pd

Fr

−1

Fig. 1. Block diagram illustrating a 2DOF + feedforward
control scheme

The relationships for reference tracking and disturbance
rejection within this scheme are

y(s)

r(s)
=

Fr(s)L(s)

1 + L(s)
(1)

y(s)

d(s)
=

Pff (s)

1 + L(s)
(2)

where L(s) = Cfb(s)Pu(s) is the open-loop direct chain,
and Pff (s) = Pd(s) − Cff (s)Pu(s) is the open-loop
disturbance rejection chain.

Note that within this scheme, perfect disturbance rejection
is achieved for Cff (s) = Pd(s)/Pu(s). However, when the
ideal compensator is not realizable, it can be observed that
an interaction between Cfb(s) and Cff (s) arises [Guzmán
and Hägglund, 2011, Guzmán et al., 2012].

In what follows, the special case of integrating plants is
presented and a procedure for shaping the disturbance
rejection response based on a desired settling time is
derived. Furthermore, an optimal controller which finds
a satisfying tradeoff between maximum peak and settling
time is proposed.

3. FEEDFORWARD DESIGN

In this section, the problem of integrating processes is
presented and the controller design approach is addressed.

Let us consider the following process descriptions

Pu(s) =
κu

Du(s)stu
(3)

Pd(s) =
κd

D−

d (s)
(4)

such that tu is the type of process Pu(s), Du(s) = 1 +
∑nu

i=1 au[i]s
i is a polynomial of degree nu and D−

d (s) = 1+
∑nd

i=1 ad[i]s
i is a polynomial of degree nd with all its roots

in the left half plane (LHP). Note that it is supposed
without any loss of generality that Du(0) = D−

d (0) = 1
to ensure that κu and κd are process integrator and static
gains, respectively.

As well-known, within a 2DOF control scheme, it is
possible to shape the reference tracking response by correct
tuning reference filter and feedback controller.

Let us consider

Fr(s) =
1

Dfr(s)
(5)

Cfb(s) = κfb
Nfb(s)

Dfb(s)stfb
(6)

such that tfb is the type of Cfb(s) and Dfr(0) = Nfb(0) =
Dfb(0) = 1 to ensure that 1 and κfb are Fr(s) and Cfb(s)
static and integrator gains, respectively.

The reference tracking response can now be expressed as
y(s)

r(s)
=

1

Dfr(s)

Nfb(s)

Nfb(s) +
Dfb(s)Du(s)s

tfb+tu

κfbκu

=
1

Dfr(s)

Nfb(s)

Dcl(s)

(7)

where Dcl(s) is a polynomial of degree ncl that represents
the closed-loop system dynamics. Note that since Dcl(0) =
1, if tfb + tu ≥ 1, the reference tracking response has
unitary static gain. In fact, to achieve zero steady-state
error against reference signals with tr poles in s = 0
(r(s) = s−tr ), it is necessary to set tfb ≥ tr − tu.

Furthermore, if it is set Dfr(s) = Nfb(s), the following
final expression is obtained

y(s)

r(s)
=

1

Dcl(s)
(8)

Remember that since Dcl(0) = 1, expression (8) has
unitary static gain.

3.1 Disturbance rejection

Within a classic feedforward scheme (see Fig. 1), it is
possible to improve the disturbance rejection behaviour
even if unstable dynamics exist in process Pu(s). In fact,
equation (2) can be expressed as

y(s)

d(s)
=

(

κd

D−

d (s)
− Cff (s)

κu

Du(s)
s−tu

)

Du(s)stuDfb(s)stfb

Dcl(s)

=

(

κdDu(s)stu

D−

d (s)
− Cff (s)κu

)

Dfb(s)stfb

Dcl(s)
(9)

where it can be observed that even unstable dynamics
of Pu(s) caused by its poles located in the right half
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plane (RHP) or at the origin have disappeared from the
denominator.

However, when the process Pu(s) has integrating behavior,
pure derivative terms should be included in Cff (s) in order
to achieve a perfect cancellation. Thus, non-realizable ideal
controllers are possible in this case and tuning rules for
the feedforward compensator are required. In this work,
a proposal for the feedforward controller transfer function
to obtain an undershoot-free response is presented. To this
end, the feedforward compensator is defined as

Cff (s) =
κd

κu

1

Dfb(s)D
−

d (s)

1 +
∑mff

i=1 βff [i]si

(τffs+ 1)nff
(10)

such that Cff (0) = κd/κu, and τff will be the only tuning
parameter.

Using (10) in (9), after some operations, equation (9) can
be expressed as

y(s)

d(s)
= Gy/d(s) =

−κdstfb

(τffs+ 1)nff

P (s)

Dcl(s)D
−

d (s)
(11)

with

P (s) = 1 +

mff
∑

i=1

βff [i]s
i − (τffs+ 1)nff Dfb(s)Du(s)s

tu

(12)

such that P (0) = 1.

Note that to achieve zero steady-state error against dis-
turbance signals with td poles in s = 0 (d(s) = s−td), it is
necessary to set tfb ≥ td.

The idea is to cancel all stable roots of Dcl(s) and D−

d (s)
with βff [i] coefficients, and therefore it is necessary to
have the same number of βff [i] coefficients that the sum
of the degrees of both polynomials,

mff = ncl + nd (13)

in order to solve a system of mff equations. Furthermore,
it is considered that

nff = max(mff − (nfb + nd) , 1)
= max(ncl − nfb, 1)

(14)

to guarantee a realizable compensator, with nfb the degree
of Dfb(s).

Moreover, the degree of P (s) in (12) is desired to be equal
to mff to avoid undesired zeros. Therefore, the constraint
nff + nfb + nu + tu ≤ mff must be satisfied. Note this
is not a severe restriction since mff may be increased to
cancel non-dominant poles — located far from the origin
— in D−

d (s) or Dcl(s).

As observed from (11), the resulting response will not
present any undesired dynamics or undershoot (notice
the transfer function with multiple real poles and a pure
derivative term). This fact can be clearly observed by
its consequent time response against unitary step 1 in d,
which is given by

y(t) =
−κdtnff−1

τ
nff

ff (nff − 1)!
e
−

t
τff (15)

1 Expression (15) is also obtained for higher values of td if it is
considered tfb = td

Then, what remains is to determine the τff value in
order to obtain the desired response. In the following, two
different solutions for τff are given, resulting in simple
tuning rules. First, τff is used to obtain a desired settling
time. Afterwards, an optimal solution for τff is derived
based on the computation of a satisfying tradeoff between
maximum peak and settling time.

3.2 Settling time tuning rule

In (11), since Gy/d(∞) is the same as Gy/d(0) — there is
a pure derivative zero—, the settling time t5% is defined
as the time when the system reaches around 5% 2 of its
maximum peak value. Therefore, it can be computed as

y(t5%) = 0.05Mpeak (16)

Thus, to calculate Mpeak, first it is necessary to compute
its peak time tpeak making the derivative of (15) with
respect to t

dy(t)

dt
= −

κde
−

t
τff

(nff − 1)!τ
nff

ff

(

(nff − 1) tnff−2 −
tnff−1

τff

)

(17)

equal to zero

e
−

tpeak
τff t

nff−2
peak (τff (nff − 1)− tpeak) = 0 (18)

A solution for (18) is

tpeak = τff (nff − 1) . (19)

Note that this solution includes t = 0 for the biproper case
where nff = 1. Thus, the maximum peak Mpeak is given
by

Mpeak = y(tpeak) = −
κd

τff

e1−nff (nff − 1)nff−1

(nff − 1)!
(20)

If we substitute (20) in (16), an analytical solution can be
only found for nff = 1

t5% ≈ 3τff . (21)

For higher values of nff , explicit solutions can be found
by solving numerically the equation

0.05−
xnff−1

(nff − 1)nff−1 e
−x+nff−1 = 0 (22)

with
x = t5%/τff . (23)

Therefore, it is possible to shape the disturbance rejection
response to meet a desired settling time, t5%, by using the
following tuning rule for τff

τff =
t5%
x

(24)

3.3 Optimal tuning rule

A tradeoff arises from the fact that by making τff small,
the settling time is reduced (as observed in (23)) but the
maximum peak (20) is increased.

2 Other % values can be chosen without any change in the whole
development.
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One interesting characteristic of equation (15) is that its
area does not depend on τff and therefore it is not possible
to find optimal shapes which minimize the integral error.
So, a cost function to find a tradeoff between settling time
and maximum peak can be proposed as follows

J = αt5% + (1− α) |Mpeak| α ∈ (0, 1) (25)

where α is a weighting parameter.

Then, substituting (20) and (24) in (25), when (25) is
derivative with respect to τff

dJ

dτff
= αx− (1− α)

|κd|

τ2ff

e1−nff (nff − 1)nff−1

(nff − 1)!
(26)

and is taken equal to zero

αxτ2ff − (1− α) |κd|
e1−nff (nff − 1)nff−1

(nff − 1)!
= 0 (27)

the following solution is obtained

τff =

√

|κd|
(1− α)

α

e1−nff (nff − 1)nff−1

x (nff − 1)!
(28)

Note this is the only feasible solution since τff must be
greater than zero to achieve a stable compensator, and α
can be easily used as a tuning parameter to find a desired
tradeoff between settling time and maximum peak values.

3.4 Guideline summary

The steps to tune the feedforward compensator according
to the proposed methodology are:

(1) Set nff = max(ncl − nfb, 1).
(2) Set mff = ncl + nd.
(3) If the constraint nff + nfb + nu + tu ≤ mff is not

satisfied, increase the degree of D−

d (s) with a non-
dominant pole and go to step 2. Otherwise, go to step
4.

(4) Set τff according to the desired specification:

Settling time : τff = t5%/x
Optimal : tuning rule (28)

(5) Obtain the coefficients βff [i] such that

P (s) = D−

d (s)Dcl(s) (29)

(6) End of design.

4. RESULTS

In this section, low- and high-order process examples
are presented to evaluate the proposed tuning rules. The
results are compared to classic tuning rules presented in
the literature, namely, static feedforward controllers and
lead-lag compensators.

4.1 Settling time specifications

Consider the following process transfer functions

Pu(s) =
1

s (0.25s+ 1)
(30)

Pd(s) =
0.5

0.9s+ 1
(31)

To obtain a reference tracking response with the closed-

loop dynamics given by Dcl(s) =
(

0.25s2 + 0.75s+ 1
)2
,

the feedback controller is selected as a PID controller with
a filter in the derivative term such that

Cfb(s) = 2
0.56s2 + 1.5s+ 1

s (0.5s+ 1)
(32)

and the reference filter Fr(s) is set as

Fr(s) =
1

0.56s2 + 1.5s+ 1
(33)

Then, the feedforward compensator is defined using the
guideline presented in Subsection 3.4 resulting in

Cff (s) =
0.5

(0.025s+ 1) (0.9s+ 1) (0.5s+ 1)

1 +
∑6

i=1 βff [i]si

(τffs+ 1)3

(34)

where a pole located at s = −40 was introduced in D−

d (s)
to ensure that constraint nff + nfb + nu + tu ≤ mff is
satisfied.

Afterwards, τff is set according to the following settling
time specification

τff = 0.13t5% (35)

Once the τff is set, what remains is to calculate the
βff coefficients. Several tunings are evaluated for different
settling time values, such as presented in Table 1.

Fig. 2 shows the process output and control effort for
classic (static gain compensator as Cff (s) = 0.5 and
lead-lag compensator as Cff (s) = 0.5(0.25s+ 1)/(0.9s +
1)) and the proposed feedforward compensators. In the
simulation, a step disturbance of d = 0.6 is applied at time
instant t = 1. Note that the feedforward compensators
designed using the presented methodology satisfy the
design specifications — undershoot-free response with
fixed settling time —, while the controllers tuned using
classic methods obtain oscillatory solutions. Numerical
results are shown in Table 2 including norm-1 (integrated
absolute error - IAE), norm-2 and the initial control peak
(∥y(t)∥1, ∥y(t)∥2, uinit) as performance measurements. A
relation between low settling time and large control effort
values can be observed. Note also how similar the areas
given by ∥y(t)∥1 are with the proposed controller. This
fact concludes that by using the proposed tuning rule, the
desired settling time can be reached by keeping the same
IAE value.

4.2 Optimal tuning rule

Consider the following process descriptions

Pu(s) =
1

s (s+ 1)
(36)

Pd(s) =
0.75

(0.35s+ 1)3
(37)

Again, to obtain a closed-loop response given by Dcl(s) =
(

0.25s2 + 0.75s+ 1
)2
, the feedback controller is selected as

a PID controller with a filter in the derivative term such
that

Cfb(s) = 3.2
0.75s2 + 1.5s+ 1

s (0.2s+ 1)
(38)
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Fig. 2. Simulation for low-order process example and settling-time tuning rule

Table 1. Feedforward compensators parameters for low-order process example and settling-time
tuning rule

Feedforward controller βff [1] βff [2] βff [3] βff [4] βff [5] βff [6] τff

t5% = 5 3.42 5.17 4.25 1.90 0.43 0.04 0.65
t5% = 4 3.42 4.78 3.50 1.38 0.27 0.02 0.52
t5% = 3 3.42 4.39 2.85 0.98 0.17 0.01 0.39

and the reference filter Fr(s) is set as

Fr(s) =
1

0.75s2 + 1.5s+ 1
(39)

The feedforward compensator is defined using the guide-
line presented in Subsection 3.4 resulting in

Cff (s) =
0.75

(0.35s+ 1)3 (0.2s+ 1)

1 +
∑7

i=1 βff [i]si

(τffs+ 1)3
(40)

In this case, the optimal feedforward tuning rule (28) is
used for the different α values obtaining the compensator
parameters presented in Table 3.

Table 2. Numerical results for the settling-time
tuning rule example

Feedforward controller ∥y(t)∥1 ∥y(t)∥2 uinit

Gain 18.57 1.16 −0.30
Lead-Lag 22.91 1.32 −0.08

t5% = 5 15.14 0.83 −3.47
t5% = 4 15.10 0.92 −3.60
t5% = 3 15.05 1.06 −3.96

Fig. 3 shows the process output and control effort for
classic (static gain compensator as Cff (s) = 1 and lead-
lag compensator as Cff (s) = (s + 1)/(0.35s + 1)3) and
the proposed optimal feedforward compensators. In the
simulation, a step disturbance of d = 0.6 is applied at time

instant t = 1. Note that a compromise between settling
time and maximum peak is found since the area obtained
with the proposed controllers is exactly the same as was
already observed in section 3.1. Numerical results for the
simulation are shown in Table 4. Moreover, classic tuning
rules achieve a similar performance — both responses are
almost overlapped — due to the aggressive tuning of the
feedback controller. It can be observed that by increasing
τff , the initial control peak is reduced as well as the
norm-2, while the norm-1 remains the same. Therefore,
the parameter τff could be considered as bigger as possible
— α has to be small — to reduce both ∥y(t)∥2 and uinit,
allowing higher settling times.

5. CONCLUSIONS

In this paper, the problem of disturbance compensation
for the case when ideal feedforward compensator is not
realizable due to the existence of integrating dynamics in
the main process is addressed. Initially, a straightforward
methodology to shape the desired response based on a
desired settling time is derived. Later, a simple optimal
tuning rule is proposed to establish a satisfying tradeoff
between maximum peak and settling time.

Simulation examples were presented to illustrate the tun-
ing procedure and to show that the proposed controller
obtains better performance than classic tuning rules pre-
sented in the literature. A limitation of the proposed
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Fig. 3. Simulation for high-order process example and optimal tuning rule

Table 3. Feedforward compensators parameters for high-order process example and optimal
tuning rule

Feedforward controller βff [1] βff [2] βff [3] βff [4] βff [5] βff [6] βff [7] τff

α = 0.25 3.55 5.05 3.54 1.39 0.32 0.04 0.01 0.28
α = 0.10 3.55 5.67 4.75 2.17 0.53 0.06 0.01 0.49
α = 0.01 3.55 9.06 15.95 15.52 6.89 6.88 0.01 1.62

Table 4. Numerical results for the optimal
tuning rule example

Feedforward controller ∥y(t)∥1 ∥y(t)∥2 uinit

Gain 23.35 1.40 −0.45
Lead-Lag 23.60 1.41 −0.43
α = 0.25 14.06 1.15 −6.31
α = 0.10 14.06 0.87 −1.21
α = 0.01 14.06 0.48 −0.03

methodology is that it is based on nominal processes
without uncertainty and further robustness analysis for
disturbance rejection are required. This point will be ana-
lyzed in future works.
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