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Abstract: The studies on the controllability of complex networks popularly existing in natural,
social and man-made engineered systems have been a critical and attractive subject for both
academic and practical communities. To design and maintain a networked system under control,
it is vital to explore the mechanism and relationship between the network layout and its
controllability. For a fully-controlled complex system, potential malicious attacks and/or random
failures will lead to the damage of its internal structure, such as the breakdown of certain control
nodes or the loss of the links between state nodes. In this paper, we first introduce the concept of
degree of controllability to quantify the control level of the networks. And for the networks whose
degree of controllability is not full, we propose two novel optimal recovering strategies, OAN
(short for optimal adding-node) strategy and OAE (short for optimal adding-edge) strategy,
to repair their controllability. The results of experiments conducted on the various real and
model networks demonstrate the effectiveness of these two strategies and the better performance
compared to their randomized counterparts, RAN (short for randomized adding-node) strategy
and RAE (short for randomized adding-edge) strategy.

Keywords: degree of controllability, optimal adding-node recovering strategy, optimal
adding-edge recovering strategy, network controllability, complex networks

1. INTRODUCTION

Complex networked dynamical systems can be seen almost
everywhere in our life, from the neural systems, to the
social networks, to the large-scale man-made engineered
systems (e.g., Internet and power grids). The interaction
of distinct units within them naturally gives rise to the
complex network structures (Albert and Barabási (2002);
Newman (2003); Boccaletti et al. (2006); Barabási (2012)).
In recent years, the studies focused on how to develop
the capacity to effectively and efficiently control complex
networks receive a lot of attention from both fields of
network science and control science (Liu et al. (2011); Ding
et al. (2013b); Posfai et al. (2013); Wang et al. (2012b);
Nepusz and Vicsek (2012); Liu et al. (2012); Wang et al.
(2012a); Yan et al. (2012); Cowan et al. (2012); Pu et al.
(2012); Nacher and Akutsu (2013); Delpini et al. (2013);
Jia et al. (2013); Sorrentino (2007); Wang et al. (2013)).

Consider a directed weighted network G of N state nodes
and P control nodes whose time evolution follows the
linear time-invariant dynamics (Liu et al. (2011)).

Ẋ(t) = AX(t) + Bu(t) (1)
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where X(t) = (x1(t), x2(t), ..., xN (t))T ∈ RN is the state
vector of the network at time t ; A ∈ RN×N denotes the
state matrix which depicts the linking strength between
the state nodes. The input matrix B ∈ RN×P elucidates
the network’s control wiring diagram which identifies the
N state nodes that are controlled by P -dimensional input
vector u(t) with the independent control signals imposed
by P control nodes. G is said to be controllable if and
only if with a suitable choice of inputs u, it can be guided
from any initial state Xo to any desired state Xf within
the finite time, which can be numerically judged by the
Kalman controllability rank condition,

rank(C = (B,AB,A2B, ...,AN−1B)) = N (2)

where C is the controllability matrix (Kalman (1963)).

The property of controllability of networks is the bedrock
for various dynamical processes running as desired on
them, for example, the traffic flow between routers in
Internet (Paxson (1997)) and the power transmission on
the power grids (Kundur (1994)). If losing the controlla-
bility, by the definition, there exist two separate states
of the network can not reach each other within finite
time under the properly selected inputs, which means in
Internet, the desired traffic distribution on routers may
not be achieved and on power grids, we may not be able
to configure the voltage and phase at each bus as planned.
For a fully-controlled network, potential malicious attacks
and/or random failures will lead to the damage of its
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internal structure, such as the breakdown of certain control
nodes or the loss of the links between state nodes. This
in turn may transform its fully-controllable status to the
opposite. In Fig. 1b, the sample network in Fig. 1a loses
its controllability after the breakdown of the control node
u1. In Fig. 1c, after the link (x6, x5) breaks, the network
loses its controllability as well. This naturally gives the
spotlight to the research of robustness of controllability
of the networks (Liu et al. (2011); Magnien et al. (2011);
Albert et al. (2000); Wang et al. (2012b); Pu et al. (2012);
Liu et al. (2012); Wang et al. (2013)). In reality, the
precise value of system parameters, i.e., the elements of
A and B, are often not known except the zeros that
mark the absence of the links between components of the
system (Lin (1974)). Hence A and B are commonly taken
as the structural matrices with either fixed zero or free
parameters. The structural controllability (Lin (1974)) is
used to characterize such systems. In this regard, Liu et
al. (Liu et al. (2011)) proposed a graph-theoretic approach
to identify the minimum number of state nodes, a.k.a.
driver nodes, whose control can offer full capacity to guide
the network’s dynamics. In addition, they found, to make
controllability robust to the attacks on links, it is sufficient
to double the critical links in the networks. Pu et al. (Pu
et al. (2012)) studied the controllability of directed ER
and SF networks under attacks and cascading failures, and
found degree-based attacks are more efficient than random
attacks. In (Liu et al. (2012)), Liu et al. proposed an effi-
cient random upstream attack strategy against malicious
networks. Wang et al. (Wang et al. (2013)) proposed and
optimized a control robustness index which can mitigate
the destruction of malicious attack through backing up the
control routes. These interesting and insightful studies are
helpful to deepen our understanding on the robust control
of networks.

It is realized that the research activities dedicating on the
robustness of controllability of networks so far have mainly
been focused on how to better design the sophisticated
network structure against malicious attacks (Liu et al.
(2011); Wang et al. (2013)) or evaluate the efficiency of
various attack strategies targeting the controllability of
the networks (Liu et al. (2012); Pu et al. (2012)). There
is little effort being devoted to developing effective and
efficient avenues to recover the damaged controllability of
networks caused by malicious attacks or random failures,
e.g., networks in Fig. 1b and Fig. 1c, which is a common
scenario in the real world. For example, on power grids,
the power electronic devices on the buses have a high
probability to fail after a long time running, which means
the voltage and the phase on that bus may not be con-
figured desirably, leading to the loss of its controllability.
It is for the considerations of efficiency and economics
to repair such controllability-damaged dynamical systems
rather than redesign a new control scheme for them.

In this paper, we first introduce the concept of degree of
controllability to quantify the control level of the networks.
It is defined as the ratio of the number of state nodes in a
maximum controllable subnetwork to the total number of
the state nodes. Clearly it ranges from 0 to 1. If it equals
to 1, we call the degree of controllability of the network is
full. For the networks whose degree of controllability is not
full, which means the networks are not fully controllable

(i.e. not all the state nodes under control), we develop two
novel optimal recovering strategies, OAN (short for opti-
mal adding-node) strategy, which optimizes the number
of control nodes added to the networks for recovering the
controllability and OAE (short for optimal adding-edge)
strategy, which optimizes the number of edges between the
state nodes added to the networks for recovering the con-
trollability. Mathematically they both can be mapped into
the constrained combinatorial optimization problems with
the binary decision variables and solved by the branch-
and-bound techniques (Nemhauser and Wolsey (1988)).
The experiments conducted on the various real and model
networks demonstrate the effectiveness of both strategies
and the better performance compared to their randomized
counterparts, RAN (short for randomized adding-node)
strategy and RAE (short for randomized adding-edge)
strategy.

The main contributions of this paper rest on the following
two aspects,

(1) Propose an optimal adding-node recovering strategy
for the networks which are not fully controllable;

(2) Propose an optimal adding-edge recovering strategy
for the networks which are not fully controllable.

The rest of the paper is organized as follows. Section
2 introduces the concept of degree of controllability of
networks. In section 3 and section 4, we propose two recov-
ering strategies, one with optimally adding control nodes
and the other with optimally adding links between state
nodes. Then we map them into the constrained combi-
natorial optimization problems. In section 5, experiments
on various real and model networks are conducted and
detailed discussions are made. Finally, concluding remarks
are given.

2. DEGREE OF CONTROLLABILITY OF THE
DIRECTED NETWORKS

The computing of rank(C) needs the accurate value of net-
work parameters, i.e. the entries in the state matrix A and
the input matrix B. In reality, the elements of A and B are
not often known precisely other than the zeros that depict
the absence of connections between nodes of the network.
Hence, A and B are often viewed as structured matrices,
i.e. their elements are either fixed or independent free
parameters (Lin (1974)). Obviously, the rank of C varies
as a function of the free parameters of A and B. However,
it reaches the maximal value for all but an exceptional
set of values of the free parameters which forms a proper
variety with Lebesgue measure zeros in the parameter
space (Shields RW (1976); Hosoe (1980)). This maximal
value is called generic rank of the controllability matrix
C, denoted as rankg(C), which represents the number of
the state nodes in the maximal controllable subnetwork
(Hosoe (1980)). When rankg(C) ≡ N , the network is said
to be structurally controllable, i.e. controllable for almost
all sets of values of the free parameters of A and B other
than an exceptional set of values with zero measure (Lin
(1974); Hosoe (1980); Poljak (1990)). Lin (Lin (1974))
proposed a graph-theoretical approach to test a given net-
work’s structural controllability, depicted in Fig. 2, where
the network covered by cacti is structurally controllable.
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Fig. 1. An illustrative example on how a network loses its controllability due to malicious attacks
or random failures. a, A directed weighted network with nine state nodes and three control nodes whose
controllability matrix has the full rank. b, When control node u1 breaks down, the rank of C becomes 3, indicating
the damaged network loses its controllability. c, When the link (x6, x5) breaks, it leads the rank of C to 6, losing
its controllability.

Fig. 2. Structural controllability of a network. a, A
sample network of ten state nodes and one control
node. b, The network is spanned by cacti which can
be decomposed into node-disjoint stems (in green)
and cycles (in yellow), indicating it is structurally
controllable. For the definitions of cacti, stem and
cycle, please refer to (Lin (1974)).

For a directed network G(A,B) of N state nodes and
P control nodes, we introduce the concept of degree of
controllability to quantify the level of the control of the
network, which is defined as the ratio of the number of
state nodes of its maximal controllable subnetwork and
the total number of the state nodes, N, expressed below,

doc =
rankg(C)

N
, (3)

It is clear to see doc ranges from 0 to 1. When it
equals to 1, the degree of controllability of the network
is said to be full. The calculation of doc depends on the
calculation of rankg(C), which can be mapped into a
combinatorial optimization problem over G(A,B) (Hosoe
(1980)). According to Hosoe’s theorem (Hosoe (1980)),
rankg(C) is given by

rankg(C) = max
Gs∈G

|E(Gs)|, (4)

where G is the set of all stem-cycle disjoint subnetworks of
the accessible part of G(A,B) and |E(Gs)| is the number
of the edges in the subnetwork Gs. A state node xi is called
accessible if there exists a path reaching it from one of

the control nodes. For example, in Fig. 2a, all state nodes
{x1, ..., x10} are accessible from the control node u1. A
stem is a directed path starting from a control node and
ending in a state node, with no nodes appearing more than
once in it, e.g., u1 → x1 → x2 → x3 → x4 in Fig. 2a. A
stem-cycle disjoint subnetwork Gs consists of stems and
cycles only, and the stems and cycles have no node in
common, e.g., the subnetwork colored in Fig. 2b. Note
that the subnetwork colored in Fig. 2b contains the largest
number of edges among all possible stem-cycle disjoint
subnetworks, denotes as Gmax

s . Thus, doc of the network
shown in Fig. 2a equals to 1, which means the degree
of controllability is full. Note that the advantage of the
Equation (4) is that rankg(C) can be calculated via linear
programming (Poljak (1990)), which gives us an efficient
numerical tool to determine the degree of controllability
of an arbitrary controlled directed network.

3. PROBLEM FORMULATION OF THE OPTIMAL
ADDING-NODE RECOVERING STRATEGY

A fully controlled directed network may lose its controlla-
bility due to the potential malicious attacks and/or the
random failures (Pu et al. (2012); Liu et al. (2012)),
which has been illustrated in Fig. 1. For such damaged
networks whose degree of controllability is not full, linking
the additional control nodes separately to each of the
reasonably identified state nodes or adding links properly
between the state nodes can effectively get them recovered
(Liu et al. (2011)). Intuitively, the damaged networks can
be decomposed into the controllable part and the non-
controllable part, and for the non-controllable part, we can
identify its minimum number of driver nodes (Liu et al.
(2011)) or make the minimum structural perturbation
(Wang et al. (2012b)) to transform it into the controllable.
But such heuristical recovering approaches can only obtain
the suboptimal solutions due to its insufficient ability to
tackle the damaged networks as a whole. Here, we are
interested in developing the optimal solution framework
which adds the minimum number of control nodes or edges
into these impaired networks and help them recover.
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In this section, we propose an optimal adding-node (OAN
for short) recovering strategy. Before we give the procedure
of OAN, two definitions are introduced.

Definition 1. (Ding et al. (2013a)) A control scheme of
G(A) is defined as a set of the state nodes, which driven
by the different input signals imposed from the control
nodes can offer the structural controllability for the whole
network.

Remark 2. A minimal control scheme is a control scheme
from which excluding any state node will shift the network
into the structurally uncontrollable, denoted as M, e.g.,
{x1, x4, x5} in Fig. 3a. Note that all the minimal control
schemes of a directed network have the same size (Ding
et al. (2013a)).

Definition 3. A controlled scheme of G(A,B) is defined
as a set of the state nodes each of which can find a
distinguished driving control node, denoted as F. For
example, {x3} or {x4} in Fig. 3a.

Remark 4. {x3, x4} is not a controlled scheme due to
there not existing two different control nodes which are
connected to that two state nodes separately.

In general, OAN includes two steps, proceeding as follows,

step 1 Identify a minimal control scheme and a controlled
scheme for a given directed network, the pair having the
biggest intersection, denoted as Mbig and Fbig respec-
tively (Fig. 3a and Fig. 3b).

step 2 For each of the state nodes in Mbig −Fbig, link an
additional control node to it.

Here, we give the proof of the optimality of ONA strategy.

Theorem 5. (optimality of OAN strategy)
numnode = |Mbig−Fbig|, numnode denoting the minimum
number of the control nodes added for recovering a dam-
aged network’s controllability.

Proof. By the definition of the minimal control scheme,
to make a directed network structurally controllable, at
least we need to link |M | control nodes, each separately to
a distinguished state node, these state nodes all appearing
in a minimal control scheme. By the definition 3, we know
each controlled scheme of a damaged network includes the
state nodes each of which can find a distinct control node.
Obviously, for recovering the network’s controllability,
at a minimal, we need to link the additional control
nodes to the state nodes appearing in a minimal control
scheme, not appearing in a controlled scheme, one on
one. Therefore, the minimum number of the control nodes
added for recovering a damaged network equals to the size
of the difference between a minimal control scheme and a
controlled scheme of this network, the pair of which has
the biggest intersection.

Fig. 3 shows an illustrative example on this strategy.

A minimal control scheme, M, of G(A) is the set of
the unmatched nodes of one of its maximum matchings
(Ding et al. (2013a)). The unmatched nodes of a maxi-
mum matching of a directed network can be figured out
efficiently using its bipartite representation (Hopcroft and
Karp (1973)), shown in Fig. 4b. A controlled scheme, F,
of G(A,B) is formed through the following steps,

Fig. 3. An illustrative example of OAN strategy. a,
A sample network of five state nodes and one control
node whose degree of controllability is not full. Below
the network list its all minimal control schemes and
controlled schemes. b, F2 and M1 have the biggest
intersection. So the minimum number of control nodes
for recovering this network is 2. Newly added u2 and
u3 separately connect to the state nodes x1 and x5.
Note that in general, Mbig is not unique, e.g., M3 is
also a minimal control scheme which has the biggest
intersection with F2.

step 1 For each control node ui in G(A,B), i = 1, 2, ..., P ,
denote Ui={xj |bji 6= 0, j = 1, 2, ..., N} as the set of the
controlled state nodes of ui.

step 2 Draw one node from each U, without duplication,
and form a controlled scheme F.

We define qij as the binary decision variables to indicate
whether or not state node xj is drawn from the set Ui,
i = 1, 2, ..., P, j = 1, 2, ..., N . At most one state node
can be drawn from the set Ui, and the same state node
can only be drawn from one set U among the potential
multiple sets which include it. These two constraints guar-
antee a configuration of qij represents a valid controlled
scheme. Note that if xj doesn’t appear in Ui, then the
value of qij always equals to 0. We also define mij as the
binary decision variables to indicate whether or not the
out node xi (Fig. 4) can reach or match the in node xj ,
i = 1, 2, ..., N, j = 1, 2, ..., N . One out node can match
at most one in node among its reachable in nodes and
the same in node can only be matched by one out node.
These two constraints help guarantee a configuration of
mij represents a valid minimal control scheme. Therefore,
OAN strategy can be mapped into a constrained combi-
natorial optimization problem with the binary decision
variables. The objective of OAN strategy is to minimize
the number of the control nodes added for recovering a
damaged network’s controllability, or to maximize the size
of the intersection between a minimal control scheme and
a controlled scheme of the network. The formulation of
OAN strategy is given below,
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maximize

N∑
j=1

((1−
N∑
i=1

mij) ∗
P∑
i=1

qij) (5)

s.t.
N∑
i=1

mij ≤ 1, j = 1, 2, ..., N (6)

N∑
j=1

mij ≤ 1, i = 1, 2, ..., N (7)

N∑
j=1

(1−
N∑
i=1

mij) = |M |, (8)

P∑
i=1

qij ≤ 1, j = 1, 2, ..., N (9)

N∑
j=1

qij ≤ 1, i = 1, 2, ..., P (10)

mij ≤ sij , i = 1, 2, ..., N, j = 1, 2, ..., N (11)

qij ≤ cij , i = 1, 2, ..., P, j = 1, 2, ..., N (12)

mij ∈ {0, 1}, i = 1, 2, ..., N, j = 1, 2, ..., N (13)

qij ∈ {0, 1}, i = 1, 2, ..., P, j = 1, 2, ..., N (14)

where constraints (6), (7) and (8) guarantee the obtained
configuration of mij is a feasible minimal control scheme;
constraints (9) and (10) guarantee the obtained configu-
ration of qij is a feasible controlled scheme; |M | is the
size of any minimal control scheme of G(A,B); sij is a
Boolean constant. sij = 1 indicates there exists a link
from state node xi to xj in G(A,B), otherwise not; cij is
also a Boolean constant. cij = 1 indicates control node ui
connects to the state node xj , otherwise not. In section 5,
the canonical branch-and-bound technique is employed to
provide the optimal solution for this constrained combina-
torial optimization problem with the binary variables.

4. PROBLEM FORMULATION OF THE OPTIMAL
ADDING-EDGE RECOVERING STRATEGY

OAN strategy recovers a damaged network’s controlla-
bility via linking additional control nodes separately to
each of the properly identified state nodes in the network.
While sometimes, in reality, due to some kind of physical
restraints, such as the limited installation space, adding
control nodes to a network is not that convenient compared
to adding links between the state nodes. Taking this into
account, in this section, we propose an alternative for the
OAN strategy--optimal adding-edge (OAE for short) re-
covering strategy, which aims to add the minimum number
of edges between the state nodes for recovering a damaged
network’s controllability.

OAE strategy proceeds as follows,

step 1 Add virtual links from state node xj to xi if
aij = 0 into G(A,B), i = 1, 2, ..., N, j = 1, 2, ..., N . For
example (x2, x4) in Fig. 5b. Denote the set of these links
as V SL.

Fig. 4. Identifying the unmatched nodes of a max-
imum matching using bipartite representation
of a directed network. a, A sample directed net-
work with five state nodes. b, The bipartite repre-
sentation of the directed network in a, where nodes
are represented as two disjoint sets, out and in. A
directed link from x1 to x3 in a corresponds to a
link from x1 of out set to x3 of in set. c, One max-
imum matching (in red) in bipartite representation
where one node can maximumly match another node
through one link, leaves node x2 and x3 matched (in
red). d, A maximum matching (in red) in the directed
network corresponds to that in c. Hence, we get three
unmatched nodes (in green), x1, x4 and x5

step 2 Add virtual links from the state nodes to the
control nodes into G(A,B), e.g., (x4, u1) in Fig. 5.
Denote the set of these links as V CL. The newly formed
network is denoted as G’ (A,B).

step 3 Denote the original edge set as OL. Assign weight
w = 1 to each edge in V SL and w = 0 to each edge in
V CL and OL.

step 4 Identify a collection of the node-disjoint cycles
which spans G’ (A,B) and has the minimum edge
weight. For example, {(u1 → x1 → x3 → x4 → x2 →
u1)} in Fig. 5c with the total edge weight equal to 1.

step 5 Turn the virtual edges belonging to V SL of this
collection to the real. And these edges are the mini-
mum edges required for recovering the controllability of
G(A,B).

Fig. 5 gives an illustrative example on OAE strategy.

Theorem 6. (optimality of OAE strategy)
After performing step 1 and step 2, the edges belonging
to V SL of an identified collection of the node-disjoint
cycles, which spans G’ (A,B) and has the minimum edge
weight, are the minimum edges required for recovering the
controllability of G(A,B).

Proof. We may assume without loss of generality that all
the state nodes in G(A,B) are accessible since it can be
fixed by adding links from one control node directly to
those state nodes which are not accessible.

After performing step 1 and step 2, it is clear to see in
G’ (A,B), there are two types of cycles in the network.
One is all-state-nodes cycle, the other is control-state-
mix cycle. A control-state-mix cycle is formed by adding
a link from the top of a stem to the root of the stem.
So a collection of the node-disjoint all-state-node and
control-state-mix cycles can be viewed as a collection of
the node-disjoint stems and elementary cycles by omitting
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the edges belonging to V CL, which is factorized from a
cacti in G’ (A,B) (Lin (1974)). When a collection of the
node-disjoint cycles spans G’ (A,B), e.g., {(u1 → x1 →
x2 → x3 → x4 → u1)}, which means the network is
covered by a cacti, G’ (A,B) is structurally controllable
(Lin (1974)). The edges belonging to V SL in this collection
are the required edges for recovering the controllability of
G(A,B). Due to the weights of the edges belonging to
V SL are set to 1 and the weights of the edges belonging to
V CL and OL are set to 0, a collection of the node-disjoint
cycles which has the minimum edge weight contains the
minimum number of edges belonging to V SL which are
used to recover the controllability of G(A,B). Thus, the
conclusion follows.

We define hi as the binary decision variables to indicate
whether or not the edge ei from G’ (A,B) is picked up to
form a collection of the node-disjoint cycles, i = 1, 2, ..., E,
where E denotes the total number of edges of G’ (A,B).
Therefore, OAE strategy can be mapped into a constrained
binary integer programming problem, whose objective is to
find a collection of the node-disjoint cycles which has the
minimum number of edges belonging to V SL and spans
G’ (A,B). The formulation of OAE strategy is given below,

minimizenumedge =

E∑
i=1

(wihi) (15)

s.t. ∑
ei leaves v

(hi) = 1, for every node v in G’ (A,B) (16)

∑
ei enters v

(hi) = 1, for every node v in G’ (A,B) (17)

hi ∈ {0, 1}, i = 1, 2, ..., E (18)

where numedge denotes the minimum number of the edges
between state nodes added for recovering G(A,B)’s con-
trollability; wi is the value of the weight assigned to ei.
wi equals to 1 if ei ∈ V SL, otherwise 0; constraints (16)
and (17) guarantee the picked edges can form a collection
of the node-disjoint cycles which spans G(A,B). In sec-
tion 5, the canonical branch-and-bound technique is em-
ployed to provide the optimal solution for this constrained
binary integer programming problem.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first examine the degree of controllabil-
ity on four real and model networks, including Foodweb
(Martinez (1991)), two SF networks both of N = 100 and
< k >= 2, and the network parameter γ set to be 2.5 and
3, respectively (Goh et al. (2001)), and an ER network
of N = 100 and < k >= 2 (Wang and Chen (2003)).
Then we add 0.05 ∗ N control nodes into each of these
four networks, intentionally to emulate the four corre-
sponding controllability-damaged networks. We call them
the damaged Foodweb, SF and ER networks. Each added
control node is randomly connected to the state nodes. The
effectiveness and efficiency of OAN and OAE recovering
strategies are subsequently examined on these damaged
networks by making a comparison to their counterparts,
RAN and RAE strategies, on the recovering speed. The

Fig. 5. An illustrative example of OAE strategy.
a, A sample network of four state nodes and one
control node whose degree of controllability is not
full. b, The formed network after performing step
1 and step 2. Edges in green belong to V SL. Edges
in yellow belong to V CL. c, A collection of the node-
disjoint cycles {(u1 → x1 → x3 → x4 → x2 → u1)}
(in purple) has the minimum edge weight equal to
1, which means only one edge (x4, x2) is required to
recover the controllability of the network in a.

three experiments are implemented using Matlab 2008b
and executed on an Intel 2.1Ghz computer.

Fig. 6 shows the changing curve of doc by constantly
adding control nodes to the four real and model networks.
The added control nodes are randomly linked to the state
nodes. From the figure, it is clear to see that at first doc
goes up dramatically with the increasing of the number
of the added control nodes. When the number reaches
a critical proportion of the total number of the state
nodes, e.g., 0.8 in Foodweb, doc turns out to be full, which
means the whole network at this point turns structurally
controllable. With more control nodes in, doc remains full.
This kind of changing curve coincides with our intuitive.

Fig. 7 depicts the recovering performance of both OAN
strategy and RAN strategy on the four damaged networks
by plotting the doc as the function of pc = nc

N , where
nc is the number of added control nodes and N is the
total number of the state nodes. In OAN strategy, the
linking position of the added control nodes is calculated
by Equation (5)-(14), whereas in RAN, the position is
randomized. By comparing both strategies’ speed to re-
cover the damaged networks, it is clear to see that OAN
strategy is much faster to get the controllability-damaged
networks recovered than RAN strategy, e.g., in Foodweb,
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Fig. 6. The changing curve of doc by constantly
adding the control nodes into the networks. We
plot doc as the function of pc = nc

N , where nc is the
number of added control nodes and N is the total
number of the state nodes.

when nc reaches about 32% of N on OAN strategy, the
damaged network gets repaired, whereas on RAN strategy,
for achieving the goal, nc needs to increase to more than
80% of N .

Fig. 7. Recovering performance of OAN strategy
and RAN strategy.

Fig. 8 illustrates the recovering performance of both OAE
strategy and RAE strategy on the four damaged networks
by plotting the doc as the function of pe = ne

N∗N , where
ne is the number of added edges and N ∗ N is the total
number of the possible edges between the state nodes. In
OAE strategy, the position of the added edge is calculated
by Equation (15)-(18), whereas in RAE, the position of
the added edge is randomized. Obviously, in terms of
the recovering speed, OAE strategy is more efficient to
get the controllability-damaged networks recovered than
RAE strategy, e.g., in Foodweb, when ne reaches less
than 1% of the total edge number on OAE strategy, the
damaged network gets repaired, whereas on RAE strategy,

to achieve the goal, nc needs to be around 3.7% of the total
edge number.

Fig. 8. Recovering performance of OAE strategy
and RAE strategy.

6. CONCLUDING REMARKS

The complex networked systems are prone to lose the
controllability due to the malicious attacks or random
failures. In this paper, we first introduce the concept of
degree of controllability for any arbitrary directed net-
work, and if its degree of controllability is not full, then
we propose two optimal recovering strategies, OAN and
OAE, which add the minimum number of control nodes
and edges, respectively, to help recover the damaged net-
work’s controllability. The simulation results on various
real and model networks show the effectiveness of the two
strategies and the superior performance compared to their
randomized counterparts, RAN and RAE strategies. The
research results presented here are of great significance
from both theoretical and practical perspectives, e.g., it
can be applied to repairing the power grid which is one
of the most complex networked dynamical systems in
the real world, and very vulnerable to the surrounding
environment. In the future work, we will investigate the
relationship among a network’s underlying topology, its
degree of controllability and the efforts needed to recover
its damaged controllability. Also, we will endeavor to de-
vise the heuristic approaches for OAN and OAE strategies
to provide computationally efficient solutions, especially
on the networks of hundreds of thousands of nodes and
edges, where the traditional branch-and-bound technique
is computationally prohibitive.
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