
Identification of Linear Climate Models
from the CMIP3 Multimodel Ensemble

Steven R. Weller ∗ Brenton P. Schulz ∗ Brett M. Ninness ∗

∗ School of Electrical Engineering and Computer Science
University of Newcastle, Callaghan, NSW 2308, Australia

e-mail: steven.weller@newcastle.edu.au, brenton.schulz@uon.edu.au,
brett.ninness@newcastle.edu.au

Abstract: In this paper, we investigate an ensemble of atmosphere–ocean general circulation
models (AOGCMs) participating in phase 3 of the Coupled Model Intercomparison Project
(CMIP3), and whose dynamic behavior is emulated by the reduced-complexity climate model
MAGICC6. Using a superimposed impulse in solar radiative forcing for the purposes of system
identification, we identify 12 AOGCMs in the CMIP3 ensemble for which low-order linear, time-
invariant (LTI) models are able to very closely approximate MAGICC6 surface temperature
projections under each of the four greenhouse gas (GHG) emission scenarios known as the
Representative Concentration Pathways (RCPs) in the IPCC Fifth Assessment Report (AR5),
even when extended to centennial timescales. The linear climate models identified in this paper
are suitable for the analysis of feedback-based approaches to mitigation aimed at stabilizing
global-mean surface temperature, and will inform future quantitative assessment of closed-loop
approaches to geoengineering of the climate based on solar radiation management (SRM).

1. INTRODUCTION

In response to the risks associated with anthropogenic
climate change, the international community has sought
to implement binding emissions reductions treaties, of
which the Kyoto protocol is the most prominent example.
Such treaties are a form of mitigation: attempts to limit
the accumulation of atmospheric carbon dioxide (CO2)
and other greenhouse gases (GHGs) by restricting anthro-
pogenic emissions.

The limited effectiveness to date of the mitigation-based
response to anthropogenic climate change has prompted
a network of scientists, entrepreneurs and advocates to
consider a “Plan B” response known as geoengineering
or climate engineering. Broadly defined, geoengineering
involves deliberate and large-scale interventions in the
Earth’s climatic system to counter impacts of climate
change such as sea level rise, more severe weather ex-
tremes, and ocean acidification (Lenton and Vaughan
[2009]).

Global-scale implementations of either mitigation or geo-
engineering implicitly involve feedback of the climate state
in order to inform decision-making, in effect creating a
closed-loop system with the global climate as the system
being controlled, and with the influence of a policy-based
response modeled as a feedback controller (Jarvis et al.
[2012], MacMartin et al. [2013]).

Whether for mitigation or geoengineering, climate models
play a key role in the formulation of control-based ap-
proaches to climate change responses. The aim of this pa-
per is to develop a suite of low-order, linear time-invariant
(LTI) climate models suitable for model-based feedback
control design of both mitigation and geoengineering re-
sponses to climate change, and to serve as a resource for

control researchers seeking simplified climate models for
these purposes.

The research of Jarvis and colleagues (Jarvis et al. [2008],
Jarvis et al. [2009], Jarvis et al. [2012]) laid the groundwork
for feedback control-based interpretation of sequential,
mitigation decision-making frameworks seeking to stabilize
global-mean surface temperatures. In Jarvis et al. [2009],
the assumed 20-year duration of an emissions treaty re-
view period plays the role of the sampling period, and
an optimal control strategy is devised so as to minimize
the peak reduction rate of anthropogenic CO2 emissions
whilst limiting warming to 2 ◦C above preindustrial levels,
subject to model uncertainty. The 2 ◦C limit is an interna-
tionally accepted value broadly representing the maximum
warming that can be tolerated without risking dangerous
anthropogenic interference in the climate.

In recent research, MacMartin et al. [2013] have proposed
a feedback control-based approach to a class of geoengi-
neering responses known as solar radiation management
(SRM). In SRM, a planetary cooling effect is created by
reflecting a fraction of the incident solar radiation before
it can cause warming, e.g. by injection of reflective strato-
spheric sulphate aerosols, or cloud reflectivity enhance-
ment through the addition of condensation nuclei (Lenton
and Vaughan [2009]). In (MacMartin et al. [2013]), the
impact of uncertainty in the imposed radiative forcing
and the consequent temperature response is compensated
through the use of feedback of the observed global-mean
surface temperature.

Comprehensive atmosphere–ocean general circulation mod-
els (AOGCMs) simulate the combined thermal response of
the atmosphere, ocean, land surface and cryosphere to net
radiative forcing, the imbalance between planetary energy
absorbed from sunlight and the energy emitted to space as
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thermal radiation. While AOGCMs represent state-of-the-
art in climate modeling, their high spatio-temporal reso-
lution makes them computationally intensive, and quite
unsuitable for many applications. For example, the CSIRO
Mk3L model takes on the order of 6 weeks on a typical
desktop PC to simulate 1000 years of climatic response
(Phipps et al. [2011]).

A range of “impulse response function” (IRF) climate
models have been proposed in the literature. Nevertheless,
shortcomings in these models limit their suitability for the
long-term mitigation and geoengineering applications en-
visaged in this paper, including: identification and valida-
tion on very short (≈100-year) data records (Caldeira and
Myrhvold [2013], Good et al. [2013], Geoffroy et al. [2013]),
highly simplified underlying climate models (Jarvis et al.
[2009], and model validation under limited conditions (Ge-
offroy et al. [2013], Li and Jarvis [2009]).

In this paper, we apply system identification techniques
to a collection of AOGCMs participating in a multimodel
ensemble known as phase 3 of the Coupled Model Inter-
comparison Project (CMIP3) (Meehl et al. [2007]). The
dynamic behaviour of each of the AOGCMs in the CMIP3
ensemble is in turn emulated by the reduced-complexity
climate model MAGICC (Model for the Assessment of
Greenhouse-gas Induced Climate Change), version 6.

We identify a total of 12 AOGCMs in the CMIP3 suite for
which low-order LTI models are able to very closely emu-
late surface temperature projections generated by MAG-
ICC under each of the four GHG emission scenarios known
as the Representative Concentration Pathways (RCPs) in
the Fifth Assessment Report (AR5) of the Intergovern-
mental Panel on Climate Change (IPCC) (van Vuuren
et al. [2011], Meinshausen et al. [2011b]), even when ex-
tended to centennial timescales.

There are two motivations for employing MAGICC to
identify transfer function models, given that MAGICC
itself is already a reduced-complexity climate model de-
signed to emulate AOGCMs. First, while MAGICC is
a so-called simple climate model, the MAGICC model
is nonetheless nonlinear, high-order (≈ 100) and time-
varying (Meinshausen et al. [2011a]), making it quite ill-
suited for the application of control design methodologies
requiring low-order LTI plant models. Second, MAGICC
serves as a highly convenient proxy for a large number
of AOGCMs developed by independent climate modeling
groups. Running such AOGCMs directly is complicated
and time-consuming at best, and more often infeasible due
to the need for software packages which are prohibitively
expensive and/or to which access is restricted.

The paper is organized as follows. In §2 we provide back-
ground on the MAGICC climate model, the CMIP3 cli-
mate model intercomparison project and the RCP emis-
sion scenarios. In §3 we detail both the methodology for
obtaining input–output datasets from MAGICC and the
formulation of the system identification problem. Results
are presented in §4, and conclusions are drawn in §5. The
estimated parameters of transfer function representations
of 12 climate models from the CMIP3 multimodel ensem-
ble are presented in Appendix A.

Fig. 1. Block diagram of the MAGICC combined gas cycle–
climate model: gas cycle G1 and climate model G2,

emissions E, net anthropogenic radiative forcing R̃,
volcanic forcing V , solar forcing S, net forcing R, and
temperature anomaly T . Dotted line shows climate
feedbacks on the carbon cycle

2. BACKGROUND

2.1 The MAGICC climate model

The model employed in this paper for climate simulations,
known as MAGICC, quantifies the movement of energy
through the atmosphere, land and ocean due to changes
in atmospheric GHG concentrations and radiative forcing.
MAGICC has been developed over a period of 20 years
(Wigley and Raper [1992], Meinshausen et al. [2011a]), has
been used in several IPCC assessment reports (including
the most recent draft Fifth Assessment Report (AR5)
report) to produce projections of future global mean
temperature, and is freely available for download from
www.magicc.org

A high-level view of MAGICC is shown in Fig. 1, in
which the two major modules are a gas cycle model G1

driven by GHG emissions E, and a reduced-complexity
climate model G2 whose output is the global-mean surface
temperature anomaly T , measured relative to the year
1765.

The gas cycle model G1 in MAGICC requires as input the
annual global anthropogenic emissions of CO2 and other
GHGs arising from fossil fuel emissions, other industrial
sources and land-use changes, along with emissions of
aerosols and tropospheric ozone precursors. Using these
emissions, together with modeled fluxes between carbon
pools in terrestrial and ocean carbon cycles, the MAGICC
gas cycle model determines the atmospheric concentration
of GHGs and other radiatively active species, from which
the net anthropogenic radiative forcing at the tropopause,

denoted R̃ (W/m2) in Fig. 1, can be calculated. Together
with the influence of volcanic aerosols V and solar activity
S, the net radiative forcing applied to the climate system

G2 is given by R = R̃+ S + V .

The climate model G2 in MAGICC employs four boxes
to represent the thermal properties of the atmosphere (at
hemispherical resolution, over both land and ocean), and
an upwelling-diffusion-entrainment model of the ocean.

MAGICC is referred to as a reduced-complexity model
in recognition of the fact that the representation of the
climate system in MAGICC is a highly parameterized
simplification of sophisticated AOGCMs which capture cli-
matic response to radiative forcing at significantly higher
spatial and temporal resolution. By calibration of 82 pa-
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rameters, MAGICC is capable of emulating the behaviour
of each of these far more complex gas cycle–climate models
(Meinshausen et al. [2009]).

2.2 CMIP3

The World Climate Research Programme’s (WCRP’s)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multimodel dataset contains simulation data submitted
from 14 climate modeling groups for 23 AOGCMs (Meehl
et al. [2007], Annan and Hargreaves [2011]).

Compiled in preparation for the IPCC Fourth Assessment
Report (AR4) released in 2007, the CMIP3 multimodel
ensemble has been extensively used for climate research.
As a multimodel ensemble capturing the results of a range
of climate models with differing structural and parametric
uncertainties, the CMIP3 ensemble represents a broad
range of plausible climate responses.

Of the 23 AOGCMs participating in CMIP3, a total of 19
models contained sufficient data to enable calibration of
MAGICC6 to emulate their behaviour; see [Meinshausen
et al., 2011a, Section 4]. These 19 AOGCMs are listed in
Table 1.

2.3 Representative Concentration Pathways (RCPs)

The Representative Concentration Pathways (RCPs) are a
set of four time-dependent GHG concentration trajectories
developed in preparation for the IPCC AR5. The four
RCPs are named RCP2.6, RCP4.5, RCP6 and RCP8.5
in reference to their associated radiative forcing values in
the year 2100, namely +2.6,+4.5,+6 and +8.5 W/m2,
respectively. RCP2.6 is also referred to as RCP3PD, for
Peak–Decline, since the forcing under this trajectory first
reaches a peak forcing level of ∼3 W/m2 mid-century
before declining to +2.6 W/m2 in 2100.

The RCP3PD pathway represents a strong mitigation
scenario, while RCP8.5 is characterized by increasing
GHG concentrations over time. The RCP4.5 and RCP6
pathways lie between these two extremes.

In this paper we utilize not the RCP concentrations
themselves, but rather the GHG emissions corresponding
to these concentrations, as detailed by Meinshausen et al.
[2011b].

3. METHODS

3.1 Obtaining input–output data

Consider the setup in Fig. 1, in which emissions E of
well-mixed greenhouse gases and other radiatively active

species lead to net anthropogenic radiative forcing R̃.

The climatic response to R̃ together with additive forcing
from the effects of volcanic aerosols V and solar forcing
S, is represented by the global-mean surface temperature
anomaly T , relative to the base year 1765.

The dotted line in Fig. 1 represents climate–carbon cycle
feedbacks, wherein the dynamics of the global carbon cycle
are influenced by temperature changes, e.g. the rate of
uptake of carbon by the terrestrial biosphere and ocean

are both temperature-dependent. All values E, R̃, V , S,
R and T are measured annually, and represent global
averages. Radiative forcing values are in units of watts per
square metre (W/m2); emissions are GHG-specific, and
temperature anomaly T is in degrees Celsius.

In this paper, we model the climate response represented
by the system G2 in Fig. 1, with radiative forcing input
R and output temperature anomaly T . Obtaining suitable
input–output data from MAGICC therefore requires care,
since MAGICC is conventionally used as an emissions-
driven emulator. User-specified emissions of GHGs there-
fore lead to time-dependent atmospheric concentrations

and thence to net anthropogenic radiative forcing R̃. This

consequently limits the flexibility over which R̃ can be used
to generate input (excitation) signals to the climate system
G2.

In this paper a solar radiative forcing signal is superim-
posed for the purposes of system identification. Since S is

additive with anthropogenic radiative forcing R̃ and can
be specified independently of GHG emissions, the input
signal can be designed flexibly; we choose a 1 W/m2

impulse as the superimposed solar radiative forcing signal.
Carbon cycle–temperature feedbacks (dotted line in Fig. 1)
are turned off during identification experiments to avoid
the risk of biased estimates of the model G2 due to the
feedback loop from T back to model G1.

Let T = [T1, T2, . . . , TN ] be the annual baseline global-
mean surface temperature anomalies arising from an N -
year MAGICC simulation run in response to a user-
specified emissions scenario E = [E1, E2, . . . , EN ], where
Et ∈ RF and F is the number of distinct GHG forc-
ing agents, and with solar forcing S = [S1, S2, . . . , SN ].

Now let T̃ = [T̃1, T̃2, . . . , T̃N ] be the temperature pro-

file in response to perturbed solar forcing S̃ = [S1 +
s1, S2 + s2, . . . , SN + sN ], i.e. superimposed solar forcing
of [s1, s2, . . . , sN ], with the same underlying emissions
scenario E. With these definitions in place, the length-
N input and output signal records to be used for system
identification of G2 are given by u := [s1, s2, . . . , sN ] and

y := [T̃1 − T1, T̃2 − T2, . . . , T̃N − TN ], respectively.

MAGICC simulations commence in 1765, broadly cor-
responding to the beginning of the industrial era, and
the MAGICC package cannot reliably simulate much be-
yond year 2500. Moreover, to ensure reliable emulation
of climatic response from MAGICC, historical emissions
over 1765–2000 are preferred over user-specified emissions
injected for the purposes of system identification. Data
records available for system identification of G2 are conse-
quently limited to less than 750 annually sampled points
over 1765–2500. This paucity of data is especially pro-
nounced given timescales in AOGCMs, which are a priori
known to be in the range 100–400 years (Olivié et al.
[2012]).

3.2 System identification

We adopt a model-based framework wherein it is assumed
that scalar observations yt ∈ R are related to a scalar
observed input (excitation) ut ∈ R via a transfer function
description (q denotes the forward shift operator):
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yt = G(q, θ)ut +H(q, θ)et, (1)

where et is an independent and identically distributed
(i.i.d.) zero-mean noise sequence with variance E{e2t} =
σ2 < ∞, and both G(q, θ) and H(q, θ) are scalar rational
transfer functions:

G(q, θ) = q−k
B(q, θ)

A(q, θ)
, H(q, θ) =

C(q, θ)

D(q, θ)
,

where

A(q, θ) = 1 + a1q
−1 + a2q

−2 + · · ·+ ama
q−ma , (2)

B(q, θ) = b0 + b1q
−1 + b2q

−2 + · · ·+ bmb
q−mb , (3)

C(q, θ) = 1 + c1q
−1 + c2q

−2 + · · ·+ cmcq
−mc , (4)

D(q, θ) = 1 + d1q
−1 + d2q

−2 + · · ·+ dmd
q−md , (5)

for k an integer-valued delay acting on the input, and
where θ ∈ Rn is a vector specifying the model parameters
ai, bi, ci, di.

The mean-square optimal one-step ahead predictor ŷt(θ)
based on the model structure in (1) is (Ljung [1999]):

ŷt = H−1(q, θ)G(q, θ)ut +
[
1−H−1(q, θ)

]
yt,

with associated prediction error

εt(θ) = yt − ŷt(θ) = H−1(q, θ) [yt −G(q, θ)ut] .

Assuming that N samples of ut and yt are available, a
quadratic estimation criterion may be defined as

VN (θ) =
1

2N

N∑
t=1

‖εt(θ)‖2,

and then used to construct the prediction error estimate

θ̂N of θ as

θ̂N = argmin
θ∈Rn

VN (θ) . (6)

The estimate θ̂N in equation (6) is computed via a stan-
dard Gauss–Newton based search involving iterations {θk}
starting from an initial guess θ0 which is refined according
to

θk+1 = θk + µp,

where µ ∈ (0, 1] is a scalar step length, and the search
direction p is the solution of

V ′′N (θk)p = V ′N (θk),

where ·′ denotes differentiation with respect to θ.

In this paper the system G(q, θ) to be identified is climate
model G2 in Fig. 1. Attention is restricted to the output
error (OE) model structure, in which mc = md = 0, so
that C(q, θ) = D(q, θ) = 1. We also restrict attention to
the case where ma = mb =: n, and delay k = 0. The vector
of parameters to be estimated is therefore

θ = [a1, a2, . . . , an, b0, b1, . . . , bn].

In the following section, the UNIT system identification
toolbox (Ninness et al. [2013]) is used to identify θ accord-
ing to the methodology described above. Custom MAT-
LAB code was written to facilitate the ready exchange of
data between MAGICC6, and the MATLAB-based UNIT
system identification toolbox.

4. RESULTS

4.1 Setup

System identification experiments were conducted using
MAGICC6 according to the procedure described in §3, us-
ing RCP4.5 as the baseline emissions scenario. Simulation
experiments commenced in 1765 and terminated in 2500,
implying input–output data series of length N = 736.

The length-N additive solar radiative forcing perturbation
was chosen as a 1 W/m2 impulse applied in the second
year: [0, 1, 0, . . . , 0]. Climate–carbon cycle feedbacks were
turned off during the identification experiments (baseline,
and baseline plus solar perturbation), and efficacy of solar
forcing set to 1 during all simulations (Meinshausen et al.
[2011a], §A4.4).

4.2 Model validation

Table 1 lists a total of 20 AOGCMs, corresponding to
19 AOGCMs in the CMIP3 ensemble, together with the
MAGICC6 default climate model. For each of these 20
AOGCMs, identification of a linear climate model of order
n = 2, 3, 4 was performed using the procedure described
in §3.

Each identified model was validated by comparing the
MAGICC6 temperature projection of the corresponding
CMIP3 model against the output of the identified model,
when both MAGICC6 and the linear model are driven by
the radiative forcing arising from the RCP8.5 emissions
scenario with the carbon cycle feedback in MAGICC6
turned on. Data for order n = ∞ in Table 1 corresponds
to using the measured impulse response to generate the
model output directly via discrete-time convolution with
the net radiative forcing input R, and therefore represents
the best achievable performance obtainable by any LTI
model under the prescribed experimental conditions.

Fig. 2 shows the results of a sample validation, in which
temperature projections of the MAGICC6 default climate
model under RCP8.5 emissions are compared with the
output of estimated linear models of order n = 2, 3, 4,∞.
While the order n = 2 model clearly fails to accurately
replicate the MAGICC6 projection, the order n = 3 model
does substantially better. Increasing n to 4 or even ∞
results in only marginal improvement.

Fig. 3 compares the output of the MAGICC6 default
model with the estimated model of order n = 4 under
each of the four RCP emissions scenarios. The model fit is
excellent for the RCP3PD, RCP4.5 and RCP6 scenarios,
and exhibits only a small residual error under RCP8.5.

Table 1 summarizes the validation results when esti-
mated models are compared with the corresponding MAG-
ICC6 model under RCP8.5, typically the most challeng-
ing emissions scenario, as per Fig. 3. Two numbers are
presented in each cell of Table 1, where each cell cor-
responds to a combination of a CMIP3 climate model,
and an estimated linear model of order n. The upper
number in each cell is the root-mean square (RMS)

prediction error: ( 1
N

∑2500
t=1765(yt − ŷt(θ))

2)1/2, while the
lower number is the worst-case prediction error, namely
maxt∈{1765,...,2500} |yt − ŷt(θ)|.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10878



Fig. 2. Temperature projections under the RCP8.5 emis-
sions scenario, using the MAGICC6 default climate
model, and estimated linear models of order n =
2, 3, 4,∞.

Fig. 3. Temperature projections under the RCP3PD,
RCP4.5, RCP6 and RCP8.5 emissions scenarios, using
the MAGICC6 default climate model, and estimated
linear models of order n = 4,∞.

AOGCMs whose names are set in italics in Table 1 exhibit
poor model fits regardless of model order n. While we
conjecture this is due to strong climate-state dependent
feedbacks within the climate models themselves (Mein-
shausen et al. [2011a], §A4.3), further research is needed
to pinpoint the precise reason(s).

4.3 Model parameters

The estimated linear model parameters for the MAGICC6
default climate model are shown in Table 2, for orders
n = 3, 4. A more comprehensive coverage of the CMIP3
multimodel ensemble is presented in Appendix A, where
the parameters of estimated linear climate models for
the CMIP3 AOGCMs marked with identification (ID)
numbers 1–12 in Table 1 are presented following the format
in Table 2, for model orders n = 3, 4.

Model order n
Model name (CMIP3) ID 2 3 4 ∞
CCSM3 2.39 1.97 1.87 1.88

3.84 3.17 2.85 2.87

CGCM3.1(T47) 1 0.73 0.16 0.18 0.16
1.48 0.50 0.50 0.28

CNRM-CM3 2 0.60 0.15 0.17 0.16
1.23 0.50 0.50 0.34

CSIRO-Mk3.0 3 0.60 0.20 0.23 0.23
1.00 0.60 0.60 0.63

ECHAM5/MPI-OM 7.88 7.19 7.10 7.11
12.4 11.3 11.0 11.0

ECHO-G 4 0.49 0.13 0.16 0.15
0.98 0.47 0.47 0.28

FGOALS-g1.0 3.70 3.24 3.14 3.15
5.79 5.06 4.74 4.76

GFDL-CM2.0 2.44 1.94 1.84 1.85
4.13 3.28 2.98 2.99

GFDL-CM2.1 2.10 1.61 1.56 1.57
3.31 2.46 2.20 2.22

GISS-EH 5 0.42 0.19 0.21 0.21
0.71 0.46 0.46 0.50

GISS-ER 2.76 2.32 2.25 2.26
4.79 4.04 3.76 3.78

INM-CM3.0 6 0.55 0.09 0.16 0.15
1.00 0.41 0.41 0.25

IPSL-CM4 7 0.98 0.08 0.10 0.09
2.18 0.48 0.49 0.19

MIROC3.2(H) 8 1.69 0.35 0.37 0.38
2.37 0.98 1.04 1.04

MIROC3.2(M) 9 1.30 0.49 0.52 0.53
2.37 0.98 1.04 1.04

MRI-CGCM2.3.2 10 0.61 0.11 0.20 0.19
1.09 0.40 0.40 0.33

PCM 11 0.34 0.06 0.08 0.06
0.65 0.42 0.42 0.12

UKMO-HadCM3 12 0.92 0.14 0.16 0.13
1.79 0.42 0.42 0.27

UKMO-HadGEM1 2.47 1.83 1.79 1.80
4.29 3.16 2.94 2.96

Default 13 0.79 0.09 0.17 0.15
1.486 0.37 0.39 0.27

Table 1. Validation results for 20 estimated
climate models (order n = 2, 3, 4,∞) against
MAGICC6 emulation of the corresponding
model. Radiative forcing input to estimated
models is from MAGICC6 simulation run
driven by RCP8.5 emissions. Each cell contains
RMS error (top) and worst-case error (bot-
tom) over 1765–2500. Estimated parameters
for models with an identification (ID) number
are presented in Table 2 (model 13, default)

and Appendix A (models 1–12)
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n = 4 n = 3

b4 -0.01537259 a4 0.16417502 b3 0.01534760 a3 -0.28985763
b3 -0.01948524 a3 -1.26896279 b2 0.06668731 a2 1.47594899
b2 0.22347806 a2 3.03391175 b1 -0.22572618 a1 -2.18481788
b1 -0.33316479 a1 -2.92905991 b0 0.14459237
b0 0.14459237

Table 2. Estimated parameters of MAGICC6
default climate model, with model order n =

3, 4. Coefficients ai, bi are from the model
(2)-(3), with ma = mb = n

5. CONCLUSIONS

The results in this paper establish that the majority of
climate models in the CMIP3 multimodel ensemble are
very accurately represented using low-order LTI models.
The models presented in Table 2 and Appendix A have
been shown to have high accuracy when validated against
MAGICC6 over centennial timescales and a wide range of
GHG emission scenarios (RCP3PD through RCP8.5). It is
therefore anticipated that the models in the present paper
will serve as a valuable resource for researchers seeking to
employ feedback control-based approaches to mitigation
and/or climate engineering such as those presented in
(Jarvis et al. [2012]) and (MacMartin et al. [2013]), for
which low-order LTI models are highly desirable.

While the focus of the present paper is the identification
of input–output climate models, it is natural to speculate
on the underlying physical interpretation of the models
so obtained. A key result in this direction is reported
by Levitus et al. [2012], in which it is established that
the world ocean accounts for approximately 93% of the
warming of the earth system that has occurred since 1955.

Physical models capturing the response of global mean
surface temperature to net anthropogenic radiative forc-
ing would therefore be expected to reflect the primal
importance of the ocean as a thermal reservoir. As one
example, Geoffroy et al. [2013] develop a simple energy
balance model in which the climate system is split into
two thermal reservoirs, one capturing the rapid warming
of the atmosphere, land and the upper-ocean, and a second
reservoir representing the much slower uptake of heat by
the deep-ocean. Future research will consider more general
control-relevant model structures for global climate, and in
particular the use of semi-infinite and box-diffusion climate
models (MacMartin et al. [2013], Caldeira and Myrhvold
[2013]) in which the modeling of the ocean as a diffusive
vertical column leads to fractional-order transfer functions.
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Appendix A. ESTIMATED MODEL PARAMETERS
FOR SELECTED CMIP3 CLIMATE MODELS

ID n = 4 n = 3

1 -0.00780072 0.20375718 0.00370935 -0.30124226
-0.09631684 -1.41499445 0.14517899 1.50420005
0.41582418 3.20899220 -0.35382780 -2.20176025
-0.51756821 -2.99769633 0.20591106
0.20591106

2 0.01592588 0.20386138 -0.03387374 -0.33553157
-0.20599448 -1.42565902 0.26106108 1.58971512
0.59357524 3.23135785 -0.46076570 -2.25335441
-0.63768129 -3.00951497 0.23421046
0.23421046

3 -0.00914905 0.21258038 0.00790198 -0.36121999
-0.02267960 -1.45029042 0.05682645 1.64358820
0.16944878 3.25489213 -0.16425962 -2.28156809
-0.23757148 -3.01714959 0.09997050
0.09997050

4 -0.04241777 0.28895013 0.04487183 -0.31420472
0.03468512 -1.72714979 0.01291055 1.51997245
0.21047896 3.58257221 -0.21203183 -2.20395527
-0.35817491 -3.14434758 0.15544568
0.15544568

5 0.02734503 0.21406417 -0.05390142 -0.38037532
-0.23751993 -1.45950794 0.29506456 1.68971595
0.60428981 3.26898360 -0.45548735 -2.30863965
-0.60880153 -3.02350201 0.21470817
0.21470817

6 -0.02545083 0.17494871 0.02940834 -0.24148825
0.01019870 -1.29373276 0.03162233 1.34699418
0.19677062 3.04920279 -0.20698760 -2.10321676
-0.32875013 -2.93032353 0.14728929
0.14728929

7 0.01066938 0.21977902 -0.03423855 -0.42283438
-0.17275176 -1.48793808 0.25275604 1.79207265
0.52540780 3.30988756 -0.43470044 -2.36888547
-0.57983924 -3.04170285 0.21654100
0.21654100

8 -0.02820442 0.22906519 0.03107884 -0.37773452
0.01118717 -1.51835846 0.05082674 1.69244732
0.21703712 3.34217721 -0.24270183 -2.31422552
-0.36149698 -3.05284520 0.16153780
0.16153780

9 -0.01499312 0.20899664 0.01314203 -0.40474516
-0.01475243 -1.44942086 0.06898568 1.75090996
0.19801802 3.26466519 -0.21008688 -2.34574107
-0.29664267 -3.02421031 0.12840392
0.12840392

10 -0.01827930 0.14780051 0.02020585 -0.25077246
-0.00734917 -1.19783739 0.05238234 1.37488297
0.20978083 2.93845106 -0.21864590 -2.12221640
-0.33135413 -2.88833030 0.14725787
0.14725787

11 0.01721115 0.16496239 -0.03642790 -0.29599621
-0.19450789 -1.27115200 0.24795693 1.48732555
0.54527531 3.03619138 -0.42325615 -2.18996957
-0.58031364 -2.92994393 0.21236334
0.21236334

12 -0.02761938 0.18976996 0.03225028 -0.28145114
0.02129309 -1.35885088 0.02567519 1.45444623
0.17767306 3.13736467 -0.20067854 -2.17159758
-0.31510298 -2.96821547 0.14381019
0.14381019

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10881


