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Abstract: Existing tools used in many power system operations evaluate individual scenarios
for power injection and network configuration but fail to consider nearby regions in the operating
space. Such tools may lead to market transactions, preventive actions, or corrective actions that
are nominally efficient but poor in general. Herein the foundations of an interval method are
introduced. The presented results include an algorithm defined within a tractable optimisation
framework that computes maximal power injection sets containing power injection profiles that
are necessarily secure. The method is demonstrated on a simple 4 bus test system as well as on
a medium sized IEEE 30 bus test system.
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1. INTRODUCTION

Present day transmission systems in the European Union
are operated closer to their security limits. In part this
mode of operation is a result of unforeseen power transfers
caused by massive installations of renewable energy. In the
global effort to curb carbon emissions, governments have
proposed many ambitious renewable energy utilisation
targets Zhou and Bialek (2007); Botterud et al. (2009);
Zhou (2010) leading to installations of intermittent energy
sources at geographical locations with promising energy
potential but low energy demand. As a consequence,
there is a greater need to evaluate risk associated with
operations that may violate the network security limits.

TSOs ensure safe future operations by a priori reserving
sufficient reserve energy to makeup for any forecasted im-
balance between generation and demand. Current pricing
mechanisms of ancillary services, however, are designed to
purchase sufficient energy at the lowest price regardless
of its origin Kirby (2007). Such transactions may lead to
scenarios where reserved energy cannot be deployed before
changing the system operational point through additional
redispatch or reconfiguration.

Preventive and corrective redispatch and reconfiguration
are yet another opportunity for potentially risky opera-
tions. In pursuit of most efficient system settings, various
optimal power flow tools exist that propose changes in the
system operating point either through reconfiguration or
redispatch Platbrood et al. (2011); Hedman et al. (2009).
Such tools often propose only the final settings and ignore
the intermediate changes. In addition, such tools fail to
incorporate security margins into the optimisation process
yielding optimal but fragile states. In other words, the final
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state may satisfy security criteria but the operator has no
idea by what margin.

In general, market and power flow optimisation tools are of
the what if type. Optimal power flow tools used to clear
intraday and spot electricity markets use simple models
to price individual dispatch scenarios but fail to consider
actual system safety, availability of regulation, and flexi-
bility of corrective actions Ferrero et al. (1997); Litvinov
et al. (2004). Price sensitivities may be computed using
the approximate DC network model Bo and Li (2009)
but the relevance to the security of the actual system
is unclear. Security constrained optimal power flow tools
used to propose reconfiguration and redispatch actions in
order to increase system safety also compare individual
scenarios but fail to consider nearby regions in the op-
erating space Capitanescu et al. (2011). Stochastic load
flow tools based on analytical probabilistic models or point
estimate models can be used to investigate consequences of
deviations from the proposed operating points Morales and
Perez-Ruiz (2007); Janeček and Georgiev (2012). However,
the complexity of these tools makes their integration into
optimisation frameworks difficult.

Herein the foundations of a set based method are intro-
duced. Given a general definition of network security, the
method computes maximal interval sets of power injections
that are necessarily secure. Intervals sets are chosen for
computational and practical reasons. In real world appli-
cations, redispatch of different generators often lacks per-
fect coordination due to environmental conditions, ramp-
up/down physical constraints, and generator de-bundling.
Interval sets give information regarding operational mar-
gins for each network unit irrespective of other units’
states.
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The method is formulated in terms of deviations from the
nominal voltage, hence, even though the resulting sets are
a conservative estimate, the suboptimality is negligible,
as confirmed by Monte Carlo simulation performed on
two test bus systems. The method algorithms are also
based in a tractable optimisation framework suggesting
its scalability and implementation robustness may be
sufficient enough for market and operational deployment.

Set based tools do exist for evaluation of network transfer
capabilities Greene et al. (2002). These tools, however,
are not optimisation based. Instead, the boundaries of the
operating region are approximated by their gradients. This
can yield injections violating network security. Further-
more, combinatorial complexity typically associated with
tracing boundaries suggests the methods are limited to
modest sized problems. For approximate set-based tools
formulated using linear network models see Liu (1986).

The remainder of the paper is organised as follows. The
network model is given in Section 3. The method for com-
puting the intervals of secure injection is then presented in
Section 4. First, the general problem, which is too complex
to solve but provides intuition regarding the end goals, is
defined. Then, a simplified problem and its approximate
solution algorithm are presented. Section 5 demonstrates
and validates the results through two case studies. The
paper concludes with Section 6.

2. NOMENCLATURE

N: the set of nodes,
L: set nodes with uncontrollable injections,
G: set of nodes with controllable injections,
B: set of branches,
Y : admittance matrix,
X = (Re(V ), Im(V )) = x0 + ∆: nodal voltages,
XS : set of secure voltages,
Z = (P,Q) = T̄

(
Z̄ +W

)
: power injections,

T̄ : rotational matrix,
Z̄ = z0 +A∆: linear injections,
ZS : set of secure injections,
S: branch power flows.

3. NETWORK MODEL

3.1 Notation

Capital letters are used to denote matrices and vector
variables. Lower case letters are reserved for constants
and parameter vectors. Script letters are reserved for sets.
Any vector x ∈ Rn can be written as (x1, . . . , xn), as
(xk)k∈{1,...,n}, or as x{1,...,n}. The set of real numbers
is denoted by R and the set of complex numbers is
denoted by C. Real and imaginary parts of a complex
vector y are given by Re(y) and Im(y), respectively.
The letter i is reserved for the imaginary unit. Trans-
pose and complex conjugates of a complex vector y are
given by yT and y∗, respectively. The absolute value of
a complex number y is given by |y| and the p-norm of
a vector x is given by ||x||p. For a set X, the volume
of the set is given by µ(X) =

∫
X
dx and, for two sets

X1,X2 ⊆ X and mappings T1, T2 : X→ Y, T1X1 + T2X2 =
{y ∈ Y|y = T1x1 + T2x2, x1 ∈ X1, x2 ∈ X2}. A closed in-
terval, a cartesian product of 1-dimensional closed inter-
vals from x−k to x+

k , is denoted by [x−, x+].

3.2 Network parameters

The network is described by a directed graph where each
node harbours a potential load or a generator unit and
each branch corresponds to a power line or a transformer.
The set of nodes is given by the finite set N = 1, . . . , n
and the set of branches is defined by the set B ⊂ N × N.
Node 1 is reserved for the slack bus, where the voltage is
held constant and the injected power is adjusted to meet
the network demand. The set of nodes with controllable
injections (e.g. generators providing ancillary services) but
excluding the slack is denoted by G ⊂ N and has the
cardinality g. The set of nodes with uncontrollable injec-
tions (e.g., standard loads or renewable energy sources)
including the slack bus is denoted by L ⊆ N and has the
cardinality `. The two sets G and L satisfy L ∩ G = ∅ and
L∪ G = N. The network admittance matrix is denoted by
Y ∈ Cn×n.

3.3 Network variables

It is assumed the network is operating under normal con-
ditions under which the single phase model is applicable.
Each node k ∈ N is associated with a voltage Vk ∈ C and
an injected power Pk + iQk. It is often more convenient to
list the real and imaginary parts of V separately in a real
vector X = (Re(V ), Im(V )) and the real and imaginary
parts of the injected powers in a real vector Z = (P,Q).
Each branch b ∈ B is associated with a power flow Sb ∈ C.

Distinction is made between free injections (those that are
not controllable) and controllable injections. Uncontrol-
lable injections at nodes in L are assumed to be contained
in a known set

ZL =
{

(PL, QL) | (Pk, Qk) ∈ Tk[z−k , z
+
k ], k ∈ L

}
,

where the bounds z−k , z
+
k ∈ R2 as well as the orthonormal

matrix Tk ∈ R2×2 are known. By the definition of the slack
bus, z−1 = −∞, z+

1 =∞.
Definition 1. (Nominal Operating Point). The network has
a nominal operating point x0 representing the expected
network state for the planning horizon. The realised state
at the end of this horizon is defined in terms of deviations
from this operating point, X = x0 + ∆. By the definition
of the slack bus, ∆1 = ∆n = 0.
Definition 2. (Network Security Domain). Let the state of
the network be described by X = (Re(V ), Im(V )). The
network security domain is the set XS ⊆ R2n such that,
for all X ∈ X, the network satisfies the following physical
constraints:

v−k ≤ |Vk| ≤ v
+
k ,∀k ∈ N,

|Sb| ≤ s+
b ,∀b ∈ B.

(1)

The exact formulation of the network security domain is
not important for the results of this paper. Hence, the
above defined conditions can be easily expanded to account
for other physical constrains or contingency scenarios, e.g.,
N − 1. Power injection limits are also omitted as they are
part of the problem formulation.
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4. OPTIMIZATION

Power injections, for all k ∈ N, are computed from X by
the formula Lavaei and Low (2012)

Pk = Zk = XTYkX,Qk = Zk+n = XTYk+nX, (2)
where the matrices Yk are defined as

Yk =
(

ekRe(yk) −ekIm(yk)
ekIm(yk) ekRe(yk)

)
, (3)

Yk+n =
(
−ekIm(yk) −ekRe(yk)
ekRe(yk) −ekIm(yk)

)
, (4)

with {ek}k∈N being the set of standard basis vectors in
Rn and yk being the kth row of the admittance matrix Y .
Note the matrices are not symmetric. This is intentional
for reasons that will be made clear below.

4.1 General Problem

The problem addressed in the remainder of the paper is
defined next.
Problem 3. (General ISI). Consider the network security
domain XS and the set of injections from the free buses
ZL. Find a set of secure injections Z∗G satisfying

Z∗G = maxµ(ZG), subject to
Z = {(P,Q)| (PG, QG) ∈ ZG, (PL, QL) ∈ ZL} ,

ZG =
{

(PG, QG) | (Pk, Qk) ∈ Tk[z−k , z
+
k ], k ∈ G

}
,

Z ⊆
{
Z|Zk = XTYkX, k ∈ {1, ..., 2n} , X ∈ XS

}
. (5)

The matrices Tk are rotation matrices satisfying TT
k Tk =

I. The set ZS = {(P,Q) | (PG, QG) ∈ Z∗G, (PL, QL) ∈ ZL}
is referred to as the interval of secure injections.

The input to the general ISI problem is the network se-
curity domain XS and the network topology given by the
admittance matrix Y . The output is the set of secure injec-
tions ZG, the Cartesian product of intervals [z−k , z

+
k ] ⊂ R2

in the range space of the orthonormal matrix Tk. Hence,
ZG is itself an interval in R2g. The choice of intervals for
the set of secure injections has both computational and
practical reasons. In real world applications, operation of
different generators is often hard to coordinate. Generators
may be renewable energy sources, whose power injections
are influenced by environmental conditions. Generators
may be ancillary service providers or sources re-dispatched
in corrective actions, whose operation is limited by com-
plex physical constraints dependent on internal hardware
limitations. Coordination of such actions may be difficult
in practice and unsafe in case of communication failures.
Note, the intervals are not defined in the standard basis.
Instead, they are defined in a rotated coordinate frame to
capture potential power factor settings of different devices.

The above problem seeks to find the limits of injection
in all directions and hence is more general than the well
known AC OPF problem with a linear criterion, which
seeks to maximise injections projected in a single direction.
The AC OPF problem is known to be NP hard Lavaei
and Low (2012) suggesting the general ISI problem is not
easily solvable. A simpler version of the general problem
is formulated below and is solved in Section 4.3.

4.2 Simplified Problem

The simplified problem (simply referred to as ISI) is
defined next.

Problem 4. (ISI). Solve Problem 3 under the following
assumptions:

A1:XS = {X|X = x0 + ∆, D∆ ≤ d, d ∈ Rm}: the network
security domain is taken to be a bounded convex
polytope, where ∆{1,n} = 0,

A2: the transformation mappings Tk, k ∈ G, are fixed,
A3:Z = T̄ (z0 +A∆ +W ): the injections are expanded

around the nominal point x0 and separated into affine
terms (referred to as the linear injections) and purely
quadratic terms. The quadratic terms W are treated
as a disturbance acting to violate Condition 5 in the
definition of Problem 3.

A1 is a technical assumption. One may consider unions
of polytopes to expand the domain. A2 is a conservative
assumption supposing coordination of injections is absent.
In practice, coordination is possible but often limited due
to environmental conditions, physical constraints, and de-
centralised operation caused by de-bundled architectures.
Power factor characteristics of generator units are de-
scribed by the known rotation matrices Tk. In A3, the
power vector is expanded around the nominal point so
that Zk = xT0 Ykx0 + xT0 Yk∆ + xT0 Y

T
k ∆ + ∆TYk∆. The

expression is then separated into affine and quadratic
terms expressed in the rotated coordinate frame, where
T̄{k,k+n},{k,k+n} = Tk. The quadratic term is then taken
to be a disturbance reducing network security. In practice,
||∆||∞ < 1 in the per unit scale, implying the quadratic
terms are likely to be small. One of the key problems
resolved in this paper is finding tight bounds on ∆.

In the next section, an approximate solution of ISI is
presented. The solution involves three basic steps, each
solving one of the following two subproblems. The first
subproblem considers a set of nodes C ⊆ N and sets out to
find limits on the injections Z with the disturbance W set
to zero, i.e., limits on the linear injections Z̄ = z0 +A∆.
Problem 5. (ISI1 : C). Consider a set C ⊂ N and the
network security domain XS described by the pair (D, d).
Suppose the parameters z̄−k and z̄+

k are given for all k ∈
N \ C. Find the limits z̄−,∗C , z̄+,∗

C that solve the following
optimisation problem:

max
z̄−
C
,z̄+

C

∏
k∈C

µ([z̄−k , z̄
+
k ]), subject to DZ ⊆ DD,

DZ =
{

∆|z̄− ≤ z0 +A∆ ≤ z̄+
}

(6)
D∆ = {∆|D∆ ≤ d} , z− ≤ z0 ≤ z+. (7)

ISI1 is not trivial if the injection intervals are generalised
to polytopes. The problem is then equivalent to finding
a maximal polytope embedded in another polytope. So-
lution to such a problem requires using an exponentially
increasing number of constraints.

The second subproblem considers a set D of admissible ∆
together with a set of nodes C and sets out to find limits
on the quadratic terms W .
Problem 6. (ISI2 : C,D). Consider a set C ⊆ N and a
convex bounded polytope D. Find the limits w−,∗k and
w+,∗

k that solve the following optimisation problem:
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minµ
([
w−{k,k+n}, w

+
{k,k+n}

])
subject to

W{k,k+n} ∈
[
w−{k,k+n}, w

+
{k,k+n}

]
,∀∆ ∈ D.

The structure of the matrices Yk is used in the next section
to approximate the bounds. Finding the exact bounds
requires maximising a nonconvex quadratic function over
a polytope, an NP hard problem.

4.3 Solution

The ISI solution algorithm presented in this section is
outlined in Figure 1. The individual steps as well as some
facts useful for efficient solutions of ISI1 and ISI2 are
described next.

Compute bounds on Z̄{k,k+n}, k ∈ L One of the inputs
is the set of injections from the free buses ZL. This set
constraints the possible values of ∆ through Equation 2.
These constraints, however, are not amenable to efficient
optimisation methods. Hence, the first step is to map the
bounds on the injections Zk into bounds on the linear
injections Z̄k (see previous section for definition) without
tightening the constraints on ∆. Note, there is no need to
consider the slack bus since its injections are unlimited.

Any number of ways may be used to approximate the
bounds on the linear injections. The following fact yields
upper and lower bounds on the quadratic terms and hence
can be used to over-approximate the set of linear injections
produced by the free buses.
Fact 7. Consider a polytope D, and, for any k ∈ N and
` ∈ {k, k + n}, the set

D` =
{

∆|h−` ≤ Ȳ`∆ ≤ h
+
`

}
⊇ D,

where

Ȳk = (Tk)
−1
1,1 Yk + (Tk)

−1
1,2 Yk+n,

Ȳk+n = (Tk)
−1
2,1 Yk + (Tk)

−1
2,2 Yk+n.

Then, ∀∆ ∈ D ∩D`,W` is bound by

W` ≥
(

∆−{k,k+n}

)T
h+
` +

(
∆+
{k,k+n}

)T
h−`

W` ≤
(

∆−{k,k+n}

)T
h−` +

(
∆+
{k,k+n}

)T
h+
` ,

where
∆−{k,k+n} = min

(
∆{k,k+n}, 0

)
,

∆+
{k,k+n} = max

(
∆{k,k+n}, 0

)
.

Computation of the smallest set Dk ⊇ D is a linear
program. It follows from Fact 7 that an approximate
solution to ISI2 is also a linear program. The computed
bounds w−,∗k , w+∗

k may subsequently be transformed into
bounds on the linear injections for all nodes k ∈ L.[

z̄−,∗k , z̄+,∗
k

]
=
[
z−k , z

+
k

]
+
[
w−{k,k+n}, w

+
{k,k+n}

]
. (8)

Optimise bounds on linear injections for nodes k ∈ G
The second step is to take known bounds on linear

injections and maximise the bounds on the remaining
linear injections. This is done by solving ISI1 using the
following fact.

I N P U T

COMPUTE:

O P T I M I S AT I O N

O P T I M I S AT I O N

OU T P U T

I N P U T

COMPUTE:

O P T I M I S AT I O N

Fig. 1. ISI solution algorithm flowchart.

Fact 8. Define the submatrices
D−1 = DN,N\{1}, A−1 = AN\{1},N\{1}

and consider the two sets DZ and DD defined in Prob-
lem 4. The condition DZ ⊆ DD holds if and only if

D+
(
z̄+ − z0

)
+D−

(
z̄− − z0

)
≤ d, (9)

where
D+ = max

{
0, D−1A

−1
−1

}
, D− = min

{
0, D−1A

−1
−1

}
.

Fact 8 expresses the polytope inclusion constraints in ISI1
as linear constraints on the limits z̄− and z̄+. Subse-
quently, if we take the logarithm of the utility function,
ISI1 is converted into a convex optimisation problem.
Note, the inverse of A−1 exists if the nominal voltages are
different from zero and the network is connected, which is
always the case in real world systems.

Estimate bounds on quadratic injections for nodes k ∈ G
The computed set DZ is used in this step to bound the

quadratic terms of the controllable nodes. The procedure is
the same as in Step 1, with the input set being DZ instead
of the larger set D∆. Note, the bounds on all the quadratic
terms could have been computed at the outset to yield a
greater overapproximation. Similarly, the bounds on the
quadratic terms of the free buses could be recomputed to
yield a lesser overapproximation.

Contract bounds on injections for nodes k ∈ G The al-
gorithm terminates once the appropriate bounds on linear
injections of controllable nodes are found. The final step
is to contract the injection sets of the controllable nodes
to obtain conservative bounds on the actual injections.[

z−k , z
+
k

]
=
[
z̄−,∗k + w+

{k,k+n}, z̄
+,∗
k + w−{k,k+n}

]
. (10)
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The final bounds z−G and z+
G approximate the solution

to ISI while ensuring that any injection Z{k,k+n} ∈
Tk[z−k , z

+
k ], k ∈ G, does not produce an unsafe network

state, as long as the injections at the other nodes (free
nodes and controllable nodes) are also within their pre-
scribed bounds.
Theorem 9. Consider the set

ZS =
{

(P,Q) | (Pk, Qk) ∈ Tk[z−k , z
+
k ], k ∈ N

}
,

where z−k , z
+
k are given for k ∈ L and computed by

following Steps 1- 4 for k ∈ G. Then, for any Z ∈ ZS ,
the resulting voltage lies in the network security domain
XS defined in Problem 4.

Proof. Define the following sets:
XL1 = {X| (PL, QL) ∈ ZL} ,
XL2 =

{
X|Z̄{k,k+n} ∈

[
z̄−,∗k , z̄+,∗

k

]
, k ∈ L

}
,

XG1 =
{
X|Z̄{k,k+n} ∈

[
z̄−,∗k , z̄+,∗

k

]
, k ∈ G

}
,

XG2 = {X| (PG, QG) ∈ ZG} .
To prove the theorem, it must be shown that XL1∩XG2 ⊆
XS . It follows from Fact 7 and ISI2, that XL2 ⊇ XL1 and
that XL2 ∩ XG1 ⊇ XL2 ∩ XG2. Hence, XL2 ∩ XG1 ⊇ XL1 ∩
XG2. The theorem follows from Fact 8 and ISI1 since
XL2 ∩ XG1 ⊆ XS .

5. CASE STUDY

1 2

3 4
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26
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29 30
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1716

12 13

14

15

19

18

1 2

3

4

a)

b)

Fig. 2. Test system topologies. The slack bus is always
located at node 1 and all other nodes are taken to
be controllable. a) The truncated IEEE 14 bus test
system containing only nodes 1,2,4, and 5 with their
respective branches. b) The IEEE 30 bus test system.

The purpose of the case study is to show possible ap-
plications of the ISI method on two widely used IEEE
test systems 30 Bus Power Flow Test Case. For easy
visualisation, the first test system is the IEEE 14 bus test
system truncated to 4 nodes. The IEEE 30 bus test system
is used to demonstrate the applicability and computation
tractability for a medium sized power system. Figure 2
illustrates the topologies. The slack bus is always located
at node 1 and all other nodes are taken to be controllable,
e.g., providers of ancillary services supplying both positive
or negative injections to meet system demands (i.e., L = 1
and G = {2, ...n}). While, allowing all nodes to be con-
trollable is an exaggeration, it provides a comprehensive
study giving properties of all nodes in the system.

The test systems are considered in the p.u. scale with
the base of 100 MVA. Power injections, impedances, line
flow constraints, and topologies are taken from 30 Bus
Power Flow Test Case; Kodsi and Canizares (2003). The
case study is divided into two parts. First the intervals of
secure injection for the 4 node the 30 node systems are
computed and plotted. Second the results are verified by
Monte Carlo simulation. All optimisation was performed
in Matlab using the tool CVX CVX Research (2012).

5.1 Network Security Domain

The network security domain given in Definition 2 is,
for the purposes of this case study, simply approximated
from the test system line flow constraints f+ and voltage
constraints x−, x+. For the sake of simplicity, the standard
DC approximation is used to model line flow constraints.
Line flows, rewritten using the DC approximation for some
branch b = (k, `) ∈ B, is written as |Im (Yk,`) (θk − θ`)| ≤
f+
b , where θk and θ` are the voltage phase angles at nodes
k, ` ∈ N. For small phase angles differences

θk − θ` ≈ R
(
X{k,k+n} −X{`,`+n}

)
,

Rk,` = ||x̄||2
(
x̄1 −x̄2
x̄2 x̄1

)−1
, x̄ = X{k,k+n}.

The voltage constraints are approximated by an interval
±5% of the nominal state x0 computed from the published
power injections using the deterministic Gauss-Seidel load
flow method Kirtley (2003). In other words, x−{k,k+n} =

−0.05
∣∣x0,{k,k+n}

∣∣ and x+
{k,k+n} = 0.05

∣∣x0,{k,k+n}
∣∣ ,∀k ∈

N \ {1}. These approximations of the voltage and flow
constraints are in no way maximised as this is not the
objective of this paper.

Hence, the network security domain XS is taken to be all
vectors X satisfying X ∈ [x−, x+] and∣∣Im (Yk,`)R

(
X{k,k+n} −X{`,`+n}

)∣∣ ≤ f+
(k,`), (k, `) ∈ B.

5.2 Secure injection sets and weighed distance maps

The computed intervals of secure injection for the 4
and 30 node systems are shown in Figures 3 and 4.
The injection sets are filled with weighed distance maps,
generated through Monte Carlo simulation, that illustrate
the relative security of the given injection pair for all
simulated values. The distances are normalised so that the
maximum distance is equal to 1.

For example, take an injection (P2, Q2) in the plotted
interval Tk

[
z−2 , z

+
2

]
with a weighed distance of 0.05. Then

there exist injections (Pk, Qk), in the plotted intervals
Tk
[
z−k , z

+
k

]
, k = 3, 4, such that (P,Q) the corresponding

to a voltage X ∈ XS and is spaced 5% of the cross-
width from the border of XS . Therefore, the uniformly
shaded intervals suggest the corresponding injections are
not main determinants of security. Whereas, intervals with
large gradients suggest there are settings for that node
that yield a generally more secure network regardless of
the other injections. Note that all three intervals contain
points within five percentage points away from the border.
In the next section, the mapped voltages corresponding to
the secure sample injections of the Monte Carlo simulation
are plotted with respect to the network security domain
to provide a more visual verification of the algorithm.
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Fig. 3. Computed intervals of secure injection for the controllable nodes of the IEEE 4 bus test system overlaid with the
corresponding weighed distance map, where the colours indicate the minimum distance from the boundary of the
network security domain XS computed by Monte Carlo simulation. The distances vary between 0.05 and 0.45 (i.e.,
approximately 5% and 45% of the network security domain cross-width). Lighter bands running down the middle
illustrate areas of increased security. Axis of all plots have equal scales indicating node 3 is clearly most robust to
injection variation.

To verify the applicability to larger power systems, ISI
was implemented for the IEEE 30 bus test system. Figure
4 shows the computed intervals of secure injection filled
with the weighed distance maps. The computation time
for the 30 node system scaled approximately linearly when
compared to the 4 node system (computer time of 24.8sec
for the 4 node system and 224.4sec for the 30 node system
on a desktop PC with an AMD Athlon(tm) 64 X2 Dual
Core Processor 4400+ 2.3 GHz 4GB of Ram).

5.3 Network security domain verification

The ISI solution algorithm was verified through Monte
Carlo simulation using 100 thousand and 10 thousand
points for the 4 and 30 node systems, respectively. Samples
are taken from the computed intervals of secure injection
and mapped to voltages using the deterministic Gauss-
Seidel load flow method. Membership of the resulting
vectors X in the network security domain XS was then
tested by computing the normalised minimum distance
to the border. For a voltage vector X, the distance was
computed by min {d−D (X − x0)}, where each constraint
defined by the pair (d,D) is normalised so that the
maximum distance of interior points is equal to 1.

Figure 5 displays the results in the voltage vector space.
For the 4 node system, the security domain is approxi-
mately a Cartesian product of sets containing Re (V ) and
Im (V ). Hence, by leaving out the slack bus, the location
of the mapped voltages within XS can be shown in two
separate three-dimensional plots. Furthermore, for the 4
node system, Re (V ) and Im (V ) are also approximately
proportional to the voltage magnitude and phase, respec-
tively. Figure 5, therefore, shows injection variation has
little effect on the voltage magnitudes but great effect on
voltage phase.

6. CONCLUSION

A framework and a sufficient solution algorithm for com-
puting intervals of secure injection was presented. Given
a nominal operating point, the method parametrises sets
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Fig. 4. Computed intervals of secure injection for the IEEE
30 bus test system. All axis have equal scale. Results
indicate network security robustness, e.g., nodes 5,6,
and 28 are major hubs where large injection variations
are possible. Nodes 9-27 and nodes 29, 30 are located
on the medium voltage portion of the network. Monte
Carlo simulation was used to validate all regions. The
normalised distances ranged from 0.02 to 0.5 (i.e.,
approximately 2% to 50% of the network security
domain cross-width).
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a)

b)

Fig. 5. Monte Carlo verification of the ISI algorithm
for the 4 node system. The plotted points indicate
samples from the intervals of secure injections mapped
to voltages. All points lie in XS . a) The network
security domain projected onto the real parts of nodal
voltages. b) The network security domain projected
onto the imaginary parts of nodal voltages.

of injections that necessarily comply with general network
security criteria for AC systems. Monte Carlo simulation
was subsequently used to validate the algorithm on two
IEEE test systems. The injection sets were shown to be
close to maximal and the algorithm was shown to scale
linearly with the number of nodes. The method has the
potential to be foundational for a new set of market and
operational tools mindful of security margins and opera-
tional flexibility.
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