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Abstract: A closed-loop control scheme is here investigated, for the Euglycemic Hyperinsuline-
mic Clamp (EHC), the gold standard experiment to estimate the individual insulin sensitivity.
During the EHC large amounts of insulin are administered intra-venously to the subject, and
plasma glycemia is maintained at a normal, baseline level by means of an exogenous glucose
infusion, according to established protocols. Based on a Delay Differential Equation (DDE)
model of the glucose-insulin system, a closed-loop control has been recently proposed by the same
authors showing that, in way of principle, it is possible to design an observer-based control law
for the exogenous glucose profile, by solely exploiting real-time plasma glucose measurements.
This note further investigates the closed-loop control scheme in order to validate it in spite of
the many sources of uncertainties and malfunctioning that inevitably arise. The main feature
is to close the feedback onto a different, large-scale multi-compartmental model (standing for
a Virtual Patient, VP), instead of the small-scale, DDE model adopted to design the control
law. The chosen large-scale model for the VP has been recently accepted by the Food and Drug
Administration as a substitute to animal trials for the preclinical testing of control strategies
in artificial pancreas. A benchmark based on a population of heterogeneous virtual patients has
been implemented and the very good results show the robustness of the proposed methodology.

Keywords: Delay Differential Equations; Glucose-Insulin System; Nonlinear Observer; Glucose
Control.

1. INTRODUCTION

The Euglycemic Hyperinsulinemic Clamp (EHC) consists
of the rapid administration of decreasing boli of insulin,
followed by a constant insulin administration, in order to
maintain an elevated, constant insulinemia, supposed to
stimulate peripheral tissues to clear glucose from plasma
and produce hypoglycemia. At the same time, an intra-
venous infusion of glucose is administered, at a variable
rate, in order to maintain glycemia at a normal, baseline
level, see DeFronzo et al., 1979. The EHC is widely con-
sidered in the diabetological community as the gold stan-
dard for the determination of insulin sensitivity, since its
interpretation requires no modeling and no mathematics
? The first two authors equally contributed to the manuscript. The
work is supported in part by the Italian MIUR Project PRIN 2009
and by the Center of Excellence for Research DEWS.

beyond the computation of the average glucose infusion
rate.

According to the great availability of data coming from
the EHC-based experiments, mathematical models of the
EHC have been recently published (see e.g. Picchini et
al., 2006 and references therein); nonetheless, the daily
conduction of the experiment on patients makes use of
the empirical algorithm, described in DeFronzo et al.,
1979, whose aim is to attain steady glycemia levels by
the end of two hours, the typical duration of the EHC. In
Palumbo et al., 2013, a model-based control is proposed
to automatically design the exogenous glucose profile to
keep the actual plasma glucose concentration as close as
possible to the normoglycemia level. To this aim a small-
scale Delay Differential Equation (DDE) model has been
adopted, and the control law suitably exploits a state
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observer for nonlinear DDE systems to design the feedback
by solely glucose measurements.

The novel contribution of the present paper is the con-
struction of a virtual environment in order to effectively
test the feedback control law proposed in Palumbo et
al., 2013. Since it is synthesized by suitably exploiting
a small-scale DDE model, the control law requires to be
tested in closed-loop onto a different, large-scale, multi-
compartmental model of the glucose-insulin system. In
silico tests are usually needed to be thoroughly carried
out on a Virtual Patient (VP, shortly) or, better yet,
on a population of VPs, making it possible to evaluate
a possibly exhaustive set of different scenarios, including
cases of measurement error and other failures, see Chassin
et al., 2004, before arranging a set of reliable clinical
experiments (which are usually costly, time-consuming and
confounded by ethical issues). The large-scale model cho-
sen for the VP is Dalla Man et al., 2007, which describes in
great details the glucose-insulin evolution with respect to
possible exogenous perturbations. Based on these model
equations, a computer simulator of the diabetic patients
has been recently accepted by the Food and Drug Ad-
ministration (FDA) as a substitute to animal trials for
the preclinical testing of control strategies in artificial
pancreas (Kovatchev et al., 2008). The crucial point to
ensure attainable experiments is to make the two models
consistent with each other. Such a task is performed by
considering a virtual Intra-Venous Glucose Tolerance Test
(IVGTT) on the VP in order to identify the small-scale
model parameters which best fit the glucose-insulin evo-
lutions. Then, the model-based control law is synthesized,
and the control parameters are tuned by simulations on the
small-scale DDE model, just as it should be done on an
individualized insulin therapy before to apply the control
law to a real patient. Finally, the control law is applied in
closed loop to the VP.

Uncertainties on blood glucose measurements, as well as
malfunctioning on glucose delivery devices are considered,
according to the standard technology, in order to obtain
an effective benchmark for the closed-loop control and to
show the robustness of the proposed approach. Criteria of
safety and efficacy inspired to Chassin et al., 2004, will be
adopted in order to stress the robustness of the control
methodology with respect to a population of VPs.

The idea to validate a glucose control algorithm on a
virtual patient modeled by a different, large-scale system
has been presented in Palumbo et al., 2011, in the different
framework provided by Type 2 diabetic patients.

2. PRELIMINARIES

In this section we report for the reader’s convenience the
main results presented in Palumbo et al, 2013, which will
be used in the next sections.

2.1 A mathematical model for the Clamp

Denote G(t), [mM], I(t), [pM], plasma glycemia and insu-
linemia, respectively. The glucose-insulin model considered
for the EHC is a slight modification of the DDE one
in Panunzi et al., 2007, Palumbo et al., 2007, already
exploited with the purpose of glucose control in Type 2

diabetic patients (see Palumbo et al., 2009, Palumbo et
al., 2011, Palumbo et al., 2012 for the details on the model
parameters):

dG(t)

dt
= −Txg

G(t)

G(t) + G̃
−KxgiG(t)I(t)

+
Tghmax
VG

e−λG(t)I(t) +
u(t)

VG
,

dI(t)

dt
= −KxiI(t) +

TiGmax
VI

f
(
G(t− τg)

)
+
d(t)

VI
,

(1)
where the nonlinear function f(·) models the pancreas
insulin delivery rate as:

f(G) =

(
G
G∗

)γ
1 +

(
G
G∗

)γ . (2)

The present model differs from the DDE model of Panunzi
et al., 2007, Palumbo et al., 2007 in two terms of the
first equation of (1) related to the insulin-independent
glucose elimination and to the liver glucose production.
The elimination term properly accounts for the brain and
the nerve tissues uptake, and it may well be approximated
by a constant term except for very low values of plasma
glycemias. On the other hand the production term de-
scribes the Hepatic Glucose Output (HGO) as dependent
on circulating plasma glucose and insulin: liver glucose
production is suppressed and glycogen-synthesis is en-
hanced in the presence of high plasma glucose and insulin
concentrations. Motivations for the exponential fashion
of the HGO term can be found also in OGTT models
(see the recent De Gaetano et al., 2013). Both the terms
have already been considered in a previous model of the
EHC, Picchini et al., 2006, with a different mathematical
framework (stochastic instead of deterministic).

The signal d(t), [(pmol/kgBW)/min], is the piecewise-
constant insulin infusion rate, the known disturbance per-
turbing the system. The signal u(t), [(mmol/kgBW)/min],
is glucose infusion rate, the control input to be designed
in order to control the level of plasma glycemia in spite of
the exogenous insulin perturbation.

Initial conditions are:

G(τ) = G0(τ), I(τ) = I0(τ), τ ∈ [−τg, 0], (3)

corresponding to the plasma glucose/insulin concentra-
tions before the exogenous inputs u(t) and d(t) are applied.
According to the EHC experimental framework, they can
be assumed equal to the constant basal levels (Gb, Ib).

2.2 Observer-based glucose control

The goal of the closed-loop regulator proposed in Palumbo
et al., 2013 is to keep plasma glucose concentration fixed
at its basal level Gb, despite the exogenous insulin per-
turbation. To this aim, the following control law has been
proposed:

u(t) = VG

(
Txg

Ĝ(t)

Ĝ(t) + G̃
+KxgiĜ(t)Î(t)

−Tghmax
VG

e−λĜ(t)Î(t) − r
(
Ĝ(t)−Gb

))
,

(4)

with r a tunable control positive parameter and Ĝ(t), Î(t)
the glucose and insulin estimates provided by the following
state-observer for nonlinear DDE systems:
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[
˙̂
G(t)
˙̂
I(t)

]

=

−Txg
Ĝ(t)

Ĝ(t) + G̃
−KxgiĜ(t)Î(t) +

Tghmax
VG

e−λĜ(t)Î(t)

−KxiÎ(t) +
TiGmax
VI

f
(
Ĝ(t− τg)

)


+

[
u(t)/VG
d(t)/VI

]
+

[
1 0

p1(Ĝ(t), Î(t)) p2(Ĝ(t), Î(t))

]−1

·Γ(G(t)− Ĝ(t)),
(5)

with p1, p2 : R2 7→ R given, for (x, y) ∈ R2, by

p1(x, y) = −Txg
G̃

(x+ G̃)2
−Kxgiy − λy

Tghmax
VG

e−λxy,

p2(x, y) = −Kxgix− λx
Tghmax
VG

e−λxy,

(6)
and the observer gain Γ ∈ R2×1 suitably chosen such that
the following matrix H is Hurwitz (see Ciccarella et al.,
1993)

H =

[
0 1
0 0

]
− Γ [ 1 0 ] (7)

The observer allows to synthesize the glucose control with-
out real-time insulin measurements, that are expensive and
less accurate than glucose measurements.

Convergence results for the observer are resumed by the
following theorem, that holds true under the assumption,
satisfied in the EHC experiment, that signals d(t) and u(t)
are non-negative, bounded and piece-wise constant. For
further details the reader may refer to Palumbo et al.,
2013, and references therein.

Theorem 1. (Palumbo et al., 2013). Let α be any positive
real. Then, there exist positive reals δ, M and a suitable
choice for the observer gain Γ ∈ R2×1 such that if the

observer initial states Ĝ0, Î0 satisfy the inequalities∥∥∥∥G0(τ)− Ĝ0(τ)

I0(τ)− Î0(τ)

∥∥∥∥ ≤ δ, τ ∈ [−τg, 0], (8)

then, it is:∥∥∥∥G(t)− Ĝ(t)

I(t)− Î(t)

∥∥∥∥ ≤Me−αt · sup
τ∈[−τg,0]

∥∥∥∥G0(τ)− Ĝ0(τ)

I(τ)− Î(τ)

∥∥∥∥ ,
(9)

for t ≥ 0.

Motivated by the convergence results provided by Theo-
rem 1 and by the necessity to cope with sampled glucose
measurements, a digital control scheme will be adopted
and accurately validated in the next section.

3. VALIDATION OF THE CONTROL ALGORITHM

The basic idea of the paper is to use a small-scale (though
accurate) model of the glucose-insulin system to synthesize
a model-based glucose control for the EHC experiment,
and to use a different, large-scale, multi-compartmental
model to test the control law on a realistic virtual envi-
ronment, built according to the following rules:

i) define an Average Virtual Patient (AVP), identified
by choosing a set of parameters for the large-scale
model;

ii) identify the best-fitting small-scale model for the AVP
in order to make the two models consistent with each
other;

iii) synthesize the glucose control law for the small-scale
chosen model;

iv) generate a population of heterogenous VPs with aver-
age model parameters given by the ones of the AVP;

v) test the same, fixed control law versus the population
of VPs.

3.1 The Average Virtual Patient (AVP)

As far as the first item is concerned, the chosen glucose-
insulin model is the one developed in Dalla Man et
al., 2007, described by means of a two-compartmental
subsystem for the glucose kinetics (plasma and tissues
glucose masses), a two-compartmental subsystem for the
insulin kinetics (insulin masses in plasma and in the
liver) and a two-compartmental subsystem for the insulin
production (including the flow through the portal vein into
the liver). The model includes also a two-compartmental
subsystem for the endogenous glucose production and a
further compartment for the insulin in the interstitial
fluid, assumed to be responsible for the insulin-dependent
glucose uptake. The overall system consists of a 9th order
ODE model with about 30 parameters. The AVP is a
healthy subject, identified by the parameters taken from
Table I of Dalla Man et al., 2007, whose corresponding
basal glycemia and insulinemia are Gb = 5.1mM and Ib =
25.59pM. Refer to Dalla Man et al., 2007 and references
therein for the many contributions which allowed to build
up the model.

3.2 Small-scale model identification

Once the AVP is chosen, the DDE model parameters are
estimated in order to approximate the AVP by means of
eq.s(1). To this aim, a virtual IVGTT experiment is sim-
ulated on the AVP, which consists in administering intra-
venously a glucose bolus Dg after an overnight fast and,
then, sampling blood glucose and insulin concentration at
fixed instants during the following 3 hours. According to
the usual IVGTT models, the bolus Dg, administered at
time t = 0, produces an instantaneous increase in both
glycemia and insulinemia, so that:

G(0) = Gb +
Dg

VG
I(0) = Ib + I∆

Dg

VG
(10)

with I∆, a further parameter to be estimated. By fol-
lowing standard IVGTT clinical criteria, Dg is set at
300mg/kgBW and blood samples are acquired every 2
minutes for the first 10-minute interval, every 5 minutes
for the next 30-minute interval, every 10 minutes for the
next 20-minute interval and finally every 20 minutes for
the last 120-minute interval (an overall sampling period of
3 hours).

Like in Panunzi et al., 2007, the Generalized Least Square
method has been applied, with:

- parameters Gb and Ib measured before the experi-
ment (they enter the model as covariates);
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Table 1. DDE model parameters of the AVP

Txg 0.02 mM/min

G̃ 5.38·10−4 mM

Kxgi 6.55 · 10−5 min−1pM−1

Tghmax 0.0081 (mmol/kgBW)/min

VG 0.24 L/kgBW

λ 1.3 · 10−3 mM−1pM−1

Kxi 0.0567 min−1

TiGmax 4.606 (pmol/kgBW)/min

τg 36.5 min

γ 4.33 -

- VI = 0.25L/kgBW and G? = 9mM fixed by the
investigator and kept constant;

- VG, Txg, G̃, Kxgi, Kxi, γ, τg, λ free model parameters
to be estimated;

- TiGmax, Tghmax determined from the other param-
eters according to the algebraic steady-state condi-
tions.

Estimated small-scale DDE model parameters are re-
ported in Table 1 for the AVP.

3.3 Glucose control synthesis

Once the DDE model parameters are identified for the
AVP, the control scheme may be designed. According
to the clamp experimental framework (DeFronzo et al.,
1979), numerical simulations are carried out by assuming
a staircase insulin input as described in Fig.1, with the
insulin boli delivered each minute for 10 minutes, before
administering a constant insulin infusion. By exploiting
the theory developed in Palumbo et al. 2013 (and briefly
reported in SubSection 2.2), the control law is designed by
suitably choosing the control parameter r in (4) and the
eigenvalues of matrix H in (7). Such a task is performed
by means of simulations run by closing the loop on the
DDE model itself (not on the AVP), since the regulator
needs to be tuned and checked in silico before to be applied
on a real/virtual patient. Below are reported the chosen
parameters that will be adopted to design the controller
when applied to the VPs:

r = 0.5 eig(H) = {−0.5,−0.6} (11)

Fig. 1. Exogenous insulin administration for the EHC
experiment.

Fig.2 shows the very good results when the closed-loop
control law is applied to the DDE model, and the reg-
ulator works in a continuous-time fashion. The observer

initial estimates have been given with an error of 5%
and 15% with respect to the real basal glycemia and
insulinemia, respectively. Indeed, there are no significative
glucose oscillations (with corresponding dangerous cases
of hypoglycemia), as well as no periods of theoretical
negative glucose administration, which would be treated
as a temporary switch off of the control law (undesired as
well, since the patient glucose-insulin system would be left
in free evolution, while it would require negative glucose).
Notice that the exogenous insulin administration holds for
the first 120min; nevertheless, the rest of the simulation is
still under the control law.

Fig. 2. Glucose (panel A) and insulin (panel B) profiles
when closing the loop on the DDE model. Panel C
reports the exogenous glucose administration.

3.4 Population of VPs

Once the control law parameters have been fixed, such a
unique control law is applied to a population of 1,000 het-
erogenous VPs, whose model parameters are distributed
according to a log-normal distribution with population
means given by the values taken from the AVP, and Coef-
ficients of Variation (CV) set at 5%. It has to be stressed
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that, by doing so, the patient characteristics may change
so far that the resulting subject may not be any more a
healthy subject. For this reason each virtual patient of the
population has been chosen with a resulting basal glycemia
between 4.5mM and 5.5mM.

3.5 The virtual environment

In real cases glucose measurements are not available in
continuous time, but only at given sample times (whose
frequency is limited by the time needed to analyze plasma
glucose on a bed-side analyzer, see Chassin et al., 2004),
nor the controller may work in continuous time, instead
glucose is administered by means of piecewise-constant
infusions.

Both these technical limitations will be taken into account
to build the virtual environment. Indeed, let T be the
sampling time according to which glucose measurements
are acquired at times t = kT , and constant glucose and
insulin infusion rates are administered, during intervals
[kT, (k + 1)T ), k = 0, 1 . . .. Then, the regulator (4) is
modified as follows, with the sampling time for simulations
chosen equal to the sampling time adopted in the EHC
experiment for the exogenous insulin administration: T =
1min.

u(t) = uk, kT ≤ t < (k + 1)T, k = 0, 1, 2 . . . ,

uk = VG

(
Txg

Ĝ(kT )

Ĝ(kT ) + G̃
+KxgiĜ(kT )Î(kT )

−Tghmax
VG

e−λĜ(kT )Î(kT ) − r(Ĝ(kT )−Gb)
)
,

(12)

where Ĝ(t), Î(t) are the estimates provided by the observer
(5) with sampled-data measurements, i.e.[

˙̂
G(t)
˙̂
I(t)

]

=

−Txg
Ĝ(t)

Ĝ(t) + G̃
−KxgiĜ(t)Î(t) +

Tghmax
VG

e−λĜ(t)Î(t)

−KxiÎ(t) +
TiGmax
VI

f
(
Ĝ(t− τg)

)


+

[
u(t)//VG
d(t)/VI

]
+

[
1 0

p1(Ĝ(t), Î(t)) p2(Ĝ(t), Î(t))

]−1

·Γ
(
G(kT )− Ĝ(kT )

)
,

(13)
with functions p1, p2 defined in (6) and the observer gain
Γ ∈ R2 suitably chosen such that matrix H in (7) is
Hurwitz.

Remark 2. It has to be stressed that the Ĝ(kT ) in (12)
can be replaced by G(kT ). Indeed, when using two distinct
models (one for synthesizing the control law, the other for
the VP onto the control loop is closed), as a matter of fact,
the use of available (though noisy) glucose measurements
instead of the ones estimated by means of an unmatched
model, could be a successful heuristic. Of course, as far
as the insulin is concerned, only the estimated one can be
used.

Finally, glucose measurement errors and glucose pump
malfunctioning have also been considered. The CVs used

.
Table 2. Safety and efficacy results on 1,000

VPs

Severe hypoglycemia (0%)

Hypoglycemia (0%)

Excellent efficacy (93.01%)

Good efficacy (6.88%)

Satisfactory efficacy (0.1%)

Unsatisfactory efficacy (0.01%)

for real-time glucose measurements and the glucose deliv-
ery rate have been assumed equal to 5% and 7%, respec-
tively.

4. TESTS ON THE VIRTUAL ENVIRONMENT

Once the virtual environment has been designed, criteria
for the evaluation of the proposed methodology need to
be given, in order to properly test the effectiveness of the
control scheme. The utility criteria chosen in order to state
whether the proposed control reveals to be sufficiently
safe and provides efficient results with respect to the
population of VPs are inspired by Chassin et al., 2004,
and are the following. As far as safety, the control law
applied to a VP could cause:

- severe hypoglycemia: plasma glycemia falls to 2mM or
lower, within the simulation period;

- hypoglycemia: plasma glycemia falls to 3.3mM or
lower, but always remains above 2mM, within the
simulation period.

Then, a set of simulations provides excellent safety if
neither hypoglycemia nor severe hypoglycemia cases occur;
it provides good safety if less than 5% of simulations show
hypoglycemia, with no cases of severe hypoglycemia; it
provides satisfactory safety if less than 20% of simulations
show hypoglycemia, with no cases of severe hypoglycemia.
In any other case the simulation is unsafe.

As far as efficacy, the control law applied to a fasting state
virtual patient may provide

- excellent efficacy : plasma glycemia is constrained
below 6.0mM within the simulation period;

- good efficacy : plasma glycemia is constrained below
7.0mM within the simulation period, and it exceeds
6.0mM in some points;

- satisfactory efficacy : plasma glycemia is constrained
below 8.0mM within the simulation period, and it
exceeds 7.0mM in some points;

- unsatisfactory efficacy : plasma glycemia exceeds the
value of 8.0mM in some points.

Fig.3 reports plasma glycemia/insulinemia and the exoge-
nous glucose infusion rate for one representative of the
population of heterogenous virtual patients. The simula-
tion period lasts for 240min: 120min during the EHC and
the following 120min. Notice that despite the many errors
affecting the measured glycemias, the input actuator and
the discretization of the regulator, there are no episodes
of hypoglycemia and excellent efficacy results.

Such a trend is obtained on a wide range of virtual
patients, as it comes out from Table 2
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Fig. 3. Glucose (panel A) and insulin (panel B) profiles
when closing the loop on a virtual patient. Panel C
reports the exogenous glucose administration.

5. CONCLUDING REMARKS

In this work a virtual environment is set in order to test a
DDE-model-based glucose control law in the experimental
framework of the Euglycemic Hyperinsulinemic Clamp.
The simulations are run in as much realistic details as pos-
sible, compatible with the available technology of glucose
sensors and pump actuators. The control law is evaluated
by closing the loop on a virtual patient, whose model
equations have been recently accepted by the Food and
Drug Administration (FDA) as a substitute to animal
trials for the preclinical testing of control strategies in
artificial pancreas.

Despite the many sources of uncertainties, simulations on a
rather heterogenous population of virtual patients revealed
to be very encouraging, since no cases of hypoglycemias
occurred, with the plasma glucose concentration quite
never exceeding a too high level of hyperglycemia (only
1 case of unsatisfactory efficacy over a set of 1,000).
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