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Abstract: In marine robotics, estimation of the position and orientation of an underwater agent requires 
lots of research efforts. Especially the realization of robot teams has opened new horizons, allowing for 
relative navigation based on relative range measurements between the agents. Hence, there is the need for 
a better understanding of optimal sensor placement related to the positions of the robots relative to each 
other, and for improvement of observability, based on the concrete mission scenario. In this paper, we 
study the tracking of a moving target by a Reference Objects (RO) capable of performing acoustic range 
measurements. We employ the well-known theory of the Empirical Gramians, to evaluate different 
scenarios and their influence on the observability properties. Emphasis will be put on the computation of a 
trajectory for the RO that optimizes the observability criterion. We will compare our results with others 
found in literature that were derived by different procedures, to proof the usability of the Empirical 
Gramian approach for the area of underwater robotics. 
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1. INTRODUCTION 

In the current research on underwater robotics, navigation 
plays a key role. We refer to navigation as the task of 
estimating the position and pose of a marine target, which is a 
precondition to almost all mission scenarios, as it influences 
both the control algorithms, which need navigation data as 
input, and many applications, e.g. geo-referencing. 
Underwater navigation is hindered by several issues, mainly 
the absence of a global positioning system underwater, the 
fact that inertial navigation sensors like Attitude Heading 
Reference Systems (AHRS) exhibit an error that grows over 
time, and the extremely low bandwidth and high error rate of 
acoustic communication systems that are used to measure 
distances underwater. 

In the European research project MORPH, a group of 
European experts in marine robotics aim for the realisation of 

a so-called MORPH Supra-Vehicle (MSV) that consist of 
several autonomous marine robots, referred as nodes. Being 
not physically, but logically linked, these nodes are equipped 
with heterogeneous sensors and are expected to gain new 
abilities, like the cooperative mapping of vertical and 
overhanging cliff walls, as depicted in Fig. 1. More details 
can be found in Kalwa et al., 2012. 
The requirements within MORPH, like different marine 
robots operating in close vicinity and the need to geo-
reference mappings that are recorded over unstructured 
terrain, are driving our efforts to develop new strategies for 
cooperative navigation and to improve our knowledge on 
possible navigation procedures. Acoustic based range 
measurements between underwater agents and surface objects 
with access to a global positioning system, so called 
Reference Objects (ROs), play an important role in 
underwater navigation. Range information between the target 

                            
Fig. 1: The overall concept of MORPH                  Fig. 2: A standard GIB scenario (from Alcocer (2009)) 
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and a number of ROs enable a position estimation or tracking 
of the target position by methods from estimation theory or 
filtering. Employments of these procedures led to the 
development of different solutions, like the so called GPS 
Intelligent Buoys (GIBs), where the roles of the ROs are 
adopted by surface buoys. Fig. 2 shows the principle setup. 
The concept which is explained in detail in Alcocer, Olivera 
and Pascoal, 2007 was further developed to replace the buoys 
with surface robots, e.g. for a diver assistant system 
(Glotzbach et al., 2012). 

2. BASIC TERMS, NOTATION, AND RELATION TO 
CURRENT STATE-OF-THE-ART 

2.1 Optimal sensor placement in marine robotics 

In marine navigation, optimal sensor placement comes more 
and more into focus (see e.g. the references below in this 
paragraph). Considering the acoustic range based methods as 
described above, the fact that small surface robots can play 
the role of the ROs expedites the need to find configurations 
in terms of numbers, positions and/or trajectories of the ROs 
that can be regarded as ‘optimal’ in some sense. Studies can 
be found in literature, that deal with optimal angular 
configuration of the sensors around the target (Martinez and 
Bullo, 2006), the optimal distance (Glotzbach et al., 2013), or 
an optimal trajectory to employ only a single moving sensor 
(Moreno-Salinas, Pascoal and Aranda, 2013), employing 
methods based on the minimization of the determinant or 
trace of the Fisher Information Matrix for static target, to 
name but a few. 

A unique property of these procedures is that the optimal 
configuration is a function of the overall setup as well as the 
target position which must be known in advance. Therefore, 
these studies are often criticized for being without practical 
use. This argument can be countered by the following 
arguments: 

 This research is a first step into understanding the 
dependencies between general scenario setup, sensor 
positions and expectable results in terms of estimation 

error. When performing real sea trials, the need to face 
several real world problems like multi beam propagation 
or limited reliability and bandwidth of acoustic systems 
makes it reasonable to start with a scenario that is adapted 
to an ‘optimal’ configuration. 

 In practical use, the overall process might be iterative, or 
the ROs might have to follow a moving target. Also, there 
are studies on scenarios where the target position is only 
known with some uncertainty, e.g. Isaacs, Klein and 
Hespanha, 2009. In these cases, the aiming for an optimal 
configuration at least with respect to the best current 
available estimation of the target position can be expected 
to improve the overall results. 

Fig. 3 depicts the procedures of the classical estimation 
theory (above) and the efforts for improvement using 
Observability Analyses / Optical Sensor Placement (below). 
In the upper case, even if we consider that state of the art 
navigation algorithms in terms of filtering currently resort to 
Bayesian Estimation which uses prior knowledge on all 
estimated variables, the target position must be considered to 
be unknown or, to be more meticulous, to exhibit a very large 
level of uncertainty. In the lower case, it is aimed to improve 
the outcome of the estimation by computing optimal sensor 
positions, movement strategies for target and ROs, or other 
parameters (e.g. to which effect can the estimation result be 
improved if a certain state of the target can be measured), 
while the target position or trajectory is assumed to be 
known, with no or only small uncertainty. 

2.2 System Modelling and Mission Scenario 

We look at a scenario which is common for studies of 
navigation tasks based on acoustic range measurements in 
marine robotics and was used in previous works, e.g. 
Alcocer, Olivera and Pascoal, 2007 or Glotzbach et al., 2012. 
We assume that an underwater agent, like a robot or a diver, 
is moving in a defined area, and its position shall be tracked 
by means of acoustic range measurements to ROs. The ROs 
are located at a position where they have full access to a 
global positioning system like GPS, and they are able to 
exchange data constantly. In the marine scenario, they are 
placed at the sea surface, and are in a constant contact with a 
computer which runs a model of the target to track. We will 
concentrate on scenarios with a single RO only that has to 
move in order to be able to observe the target position. 

As the depth of the target can easily be measured by means of 
a standard depth cell, the tracking model is considered as a 
2D kinematic model. We use the Random Walk with 
Constant Turning Rate (RWCTR), as described in Alcocer, 
2009, both for target and RO. In this approach, the target is 
described by a state vector x with five states, namely the 
current position in a global coordinate systeme, x and y, 
magnitude and angle of the linear velocity vector in the xy-
frame, v and , and the rate of change of the letter one, r. 
Note that  might be different from the target’s heading, as 
for marine vehicles heading and moving angle might differ. 
To enable the target to move on a path which is unknown to 
the tracker, no inputs are defined for the system, as it is 
unknown what the target does online. The possibility of the 

 
Fig. 3. The overall concept of Observability Analyses / 
Optimal Sensor Placement with respect to the Classical 
Estimation 
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target to change velocity, course angle and its rate is 
expressed by means of process noise ξ, which is assumed to 
be independent and identically distributed Gaussian with 
standard deviations σv, σ, and σr respectively. The discrete-
time kinematic model is given by 

        kkkk GξxxFx 1 , (1) 

where 
            Tkrkkvkykxk :x  
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and 

        Trv kξkξkξk :ξ . 
As we perform an observability analyses, we set the standard 
derivations for the process noise to 0. The model for the RO 
is similar; it additionally features two inputs for v and r to 
enable the control, and we let xRO represent the state vector 
for the RO to differentiate it from the target state vector. 

The formulation of a realistic measurement model for the 
marine scenarios is sophisticated. One needs to take into 
consideration the runtimes of the acoustic signals, the delays 
caused by the modems, the relatively high error rate as well 
as the fact that when the RO receives an acoustic ping from 
the target, the target has already moved in the meantime. To 
address the latter, a back-and-forward approach as described 
for instance in Glotzbach et al., 2012 can be employed. At 
this point, we will simplify the measurement model as much 
as possible, as our emphasis is on the observability analyses. 
We will assume that after every time instance tstep, a range 
measurement between target and RO is performed and is 
immediately available at the RO, that is, 

           22 kykykxkxt ROROk y . (2) 

In simulation, the measurement is computed from the known 
positions of target and RO at the time of measurement. More 
details can be found in Section 4. 

3. OBSERVABILITY ANALYSES AND EMPIRICAL 
GRAMIAN  

The theory of observability of linear time-invariant systems is 
well known (see e.g. Rugh, 1996). This method cannot be 
directly extended to nonlinear systems, as the unobservable 
space depends on the actuator-sensor-configuration. The only 
existing result for the evaluation of local weak observability 
is given by Herman/ Krener, see Hermann and Krener, 1977. 
However, this is a sufficient condition, and it fails to provide 
any insight when the rank condition fails, and hence it 
requires further investigation. We resort to the method of the 
Empirical Gramian (see next paragraph and the references 
therein) in order to evaluate its usability to explore 
trajectories for RO that are rich in some sense for marine 
robot navigation. 

Observability analysis proves which of the model states in x 
can be estimated from the system’s measurement y. For that 
purpose, the observability Gramian matrix WO can be 
determined, which quantifies the generalized energy transfer 
EO from the initial state x(0) to the output within an infinite 
time horizon for LTI-systems: 

)0()0()()(
0

xWxyy O
TT

O dE 


   (3) 

For the case of a nonlinear system as defined in (1), WO can 
be approximated by the empirical Gramian, as suggested 
from Lall, Marsden, and Glavaški, 1999, and Hahn and 
Edgar, 2002. For that purpose the output y(t) has to be 
determined in a numerical simulation. 

In advance, a nominal reference output trajectory y0(t) is 
determined. For this purpose we use the initial state 

nom0 xx   (4) 

and solve the state differential equation by numerical 
integration to obtain the nominal output y0(t) as a reference. 
Next, the initial conditions are modified by a number of imax 
small perturbations xi  

ii xxx  nom,0  (5) 

with i = 1, ... , imax, and the corresponding outputs yi(t) are 
determined again numerically. The perturbations are 
composed as: 

T
ii c tSx   with  S = diag(xmax) (6) 

Therein, the scalar constant c [0…1] is used to scale the 
amplitude within the maximum range specified by the 
diagonal matrix S that comprises the maximum value of each 
state. For small perturbations around the reference trajectory, 

e.g., c = 0.01 can be a good choice. The row vector T
it in n 

is made up of combination of the elements −1 and +1. In 
order to cover all possible imax = 2n combination in the sense 
of a full-factorial experimental design we choose 

 111/1 max1  iTt  

 111/1 max2  iTt  

 111/1 max3  iTt  

 111/1 max4  iTt  

  
 111/1 maxmax

 iT
it  

such that 
  

max1 ittT   (7) 

is an orthonormal matrix, and ITT T  (Geffen et al., 2008). 

The observability Gramian matrix WO characterizes the 
energy transfer from initial states x0,i(t) to the outputs yi(t) in 
a neighborhood of the nominal trajectory y0(t) within an 
infinite time horizon: 

    1

0

1
, )( 


  StΨtSW cdttc jij

T
iijO

, (8) 

with     )()()()()( 00 ttttt i
T

iij yyyyΨ  . 

In total, the observability Gramian WO is obtained from the 
superposition of the complete experimental design with i, j = 
1,…, imax.  
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For a sampled system with t = tstep·k of an finite horizon tfinal 
= tstep·kmax, the empirical observability Gramian is 

    1

1
0

1
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jij
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 (9) 

with    )()()()()( 00 kkkkk i
T

iij yyyyΨ   

For nonlinear systems observability is not only a system 
property, but it also depends on the specific choice of inputs. 
A singular value decomposition of the empirical observability 
Gramian )( OW  allows assessing observability, as long as a 

‘typical’ trajectory in the sense formulated in Lall, Marsden, 
and Glavaški, 1999, is used. The largest singular value 

)(max OW  rates the energy transfer from a single state with 

the best possible observability. On the other hand, the 
smallest singular value  quantifies the energy transfer from 
the least observable state to the outputs. It characterizes the 
“bottleneck” of observability and will be considered in the 
following. A system is unobservable, if is zero.  

It may not be necessary that all states are observable. If 
certain states are known from measurement or should not be 
estimated they can be excluded from the state vector. The 
remaining states that have to be observable are summarized 
in xE. For the tracking of an underwater target only its 
position is of interest and we select the first two states from 
the model in (1): 

 TE yxx  (10) 

To analyze the observability corresponding to the 
components of the state vector in xE, the rows and columns in 
WO corresponding to those state variables not included in xE 
are removed.  

4. PATH PLANNING FOR A SINGLE RO 

We consider the trajectory planning for a single RO by 
optimizing a measure of observability, according to last 
Section. We assume there are a target and one Reference 
Object. Both will be simulated using the RWCTR model as 
described in Section 2.2. We further assume that the RO is 
capable of measuring the range to the target every constant 
time interval according to the measurement model of Section 
2.2. The target will either be stationary at the origin of a 
Cartesian coordinate system (Section 5.1) or move along a 
straight line which equals the x-axes of the coordinate system 
(Section 5.2). Our goal is to find a trajectory for the RO that 
is optimal in some sense with respect to the observability of 
the target position. In order to formulate a problem that is 
mathematically traceable, we need to discretise the control 
options of the RO. The controller can choose an action u 
from an admissible set U that will be used as initial condition 
for a time interval with n samples. The controller should 
maximize observability such that  

 )(max* min E
Uu

u x


  (11) 

yields. Therefore, the time is divided into intervals with the 
length of T seconds. During T, the RO will be able to perform 
n range measurements to the target, one measurement every 
tstep seconds. During a time interval T, time t runs from t0 to t0 

+ T, the first measurement will be done at t0 + tstep; the last 
one at t0 + T. At the beginning of every time interval T, a 
control algorithm computes the values for velocity v and/or 
gradient of movement vector r (see Section 2.2), which will 
remain constant during the time interval T. 

To find an optimal trajectory, the control algorithm can set r 
to either 0, or to a positive or negative value, ±r. This 
results in three possible trajectories, as depicted in Fig. 4 a. 
For each trajectory, the positions where the RO will be when 
a range measurement will be performed can be computed 
(marked with small circles for one option in Fig. 4 a). For 
each trajectory and the corresponding measurement positions, 
the Gramian is computed according to (9), and the minimum 
eigenvalue for x- and y-position of the target is determined. 
The algorithm will then choose the trajectory with the largest 
minimum eigenvalue of W0. 

Additionally, we also tried a more advanced algorithm that 
can also adapt the velocity. With the options to remain at the 
present velocity or to increase or decrease it by a predefined 
value v, and together with the three options for r, there were 
nine different trajectories to evaluate. We experienced that 
the algorithm always tried to raise the velocity to values that 
were much higher than the target velocity. As both objects 
are marine crafts, their velocities have to be in similar ranges. 
Therefore, we decided to use the simpler approach described 
above and to set the velocity of the RO to a constant value 
that is 2–3 times of the target velocity. An additional 
numerical simulation in order to find an optimal velocity is 
described in Section 5.3. 

5. SIMULATIONS AND RESULTS 

5.1 Stationary Target 

A stationary target is placed at the origin of a Cartesian 
coordinate system. One RO is simulated according to the 
described RWCTR model, with an initial state vector of 

   TT
init ssmmm005.1025 x , (12) 

and r equals 0.1 °/s. The length of the time interval T was 
set to 10 s, with five range measurements (tstep = 2 s). 

As described above, the RO evaluates three possible 
trajectories, as shown in Fig. 4 a. The trajectories themselves 
and the positions at which the range measurements would 
take place are computed and shown in the figure by circles. 
The measurement positions are used to determine the 
Empirical Gramian according to (9) for all three options. The 
option which results in the largest minimum eigenvalue will 
be realised. In the shown example and according to Table 1, 
this is the action ‘left’ (whereas the action ‘right’ option 
would result in the same eigenvalue, so one option needs to 
be preferred), which is marked with a solid line. At the end of 
 

Table 1.  Largest Minimum Eigenvalues of Empirical 
Gramian at selected time instances 

 Time Straight Left Right 
Fig. 4 a 10 s 0,000 0,086 0,086 
Fig. 4 b 20 s 0,782 0,546 0,990 
Fig. 4 c 200 s 0,777 0,560 0,940 
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the current time interval, the process is redone, shown in Fig. 
4 b. From now on, the measurement positions are only shown 
in the figures for the option that was finally selected. For the 
second evaluation, the action ‘right’ is chosen (see also Table 
1). In any further evaluations, always the action ‘right’ will 
deliver the best result; the RO moves on a circle around the 
target in a clockwise direction. Fig. 4 c depicts the situation 
after three turns are executed. The target, marked as a star, is 
not in the centre point of the circle, which may be due to the 
discretized control options of the RO. 

It shall be noted at this point that the values for the 
parameters were chosen both to be in realistic ranges for 
maritime robots (e.g. concerning velocity) and to produce 
demonstrative results. E.g., the relation between T and r 
was chosen to allow the RO to turn for about 45 degrees in 
one time interval. Different employed settings resulted in less 
demonstrative results which might need more time to 
converge to a stable situation, but at the end the RO was 

always moving on a trajectory which looped around the 
target. 

It is interesting to compare this result with another one from 
Literature. In Moreno-Salinas, Pascoal, and Aranda, 2013, 
the authors also investigated an optimal trajectory for a single 
RO and a static target. Their methodology was to trace back 
the problem to the optimal placement of several (static) ROs 
(by employing the Maximum Likelihood method) and to 
make the single RO to choose a trajectory through the 
computed positions. In their example, the RO was 
approaching the target and also ended up circling around it. It 
is worth to mention that the different two employed 
methodologies led to the same result. 

5.2 Moving Target 

In a second mission scenario, the target is moving along the 
x-axis of the coordination system. Its initial state vector is set 
to 

   TT
init ssmmm005.000 x . (13) 

All other parameters are the same as for the scenario 
described in Section 5.1, except for the constant velocity of 
RO, which was reduced to 1.2 m/s. 

Fig. 5 a–c show the trajectory generated by the described 
algorithm. The RO moves parallel to the trace of the target, 
uses its higher velocity to overtake it and performs a circular 
movement around it. This behaviour is repeated, resulting in 
a Pretzel-shaped trajectory. The values of the largest 
minimum eigenvalues for the time instances shown can be 
found in Table 2. 

Table 2.  Largest Minimum Eigenvalues of Empirical 
Gramian at selected time instances 

 Time Straight Left Right 
Fig. 5 a 130 s 0,953 0,728 1,145 
Fig. 5 b 360 s 0,042 0,025 0,049 
Fig. 5 c 970 s 0,019 0,017 0,015 

 

Engel and Kalwa, 2009, were investigating a similar problem, 
where two cooperative marine vehicles were intended to 
perform relative navigation based on range measurements. 
Exploiting the Hermann-Krener rank condition for local week 
observability (see Hermann and Krener, 1977 for details), 
they concluded that a situation where one vehicle is circling 
around the other one yields an extreme case for satisfied local 
observability condition. It is worth mentioning that our 
employed approach with Empirical Gramians generates a 
similar trajectory. 

5.3 Investigation on optimal velocity 

As it was stated in Section 4, the scenario used here is of very 
theoretical nature. Therefore, we set T to 1 s and tstep to 0.1 s, 
without adding an upper limit for the velocity of the RO. 
These values are not realistic for marine robots and acoustic 
range measurements; the intention is to get a general 
understanding of a theoretical velocity optimization. 

 

 

 
Fig. 4 a – c (top to bottom): Optimised trajectory 
for one RO; static target position marked by star. 
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We consider that the RO has to move on the circumference of 
a circle with a fixed radius r0 of 10 m (arbitrarily chosen) 
around the position of the stationary target. The RO is 
capable of changing its velocity v. At the same time, it always 
has to adapt its gradient of moving vector r in order to stay 
on the circumference. The utilized algorithm is omitted at this 
place due to space limitations. The changes of velocity are 
realized by a similar algorithm as presented in Section 4. At 
the beginning of each time interval T, three possible 
trajectories for the next T seconds are evaluated: keeping the 
current velocity or increasing or decreasing it by a defined 
amount, v. An example is shown in Fig. 6. The RO starts at 
position (–10, 0) m at the beginning of T and moves 
counterclockwise. Maintaining at the current velocity of 20 
m/s would result in the green trajectory, where the asterisks 
mark the range measurement positions. The control algorithm 
also has the options to increase or decrease the velocity by 3 
m/s, which results in the blue trajectory with the triangle-

markers, or the brown trajectory with the diamond markers, 
respectively. According to (9), the algorithm chooses the 
option that generates the largest minimum eigenvalue of the 
Empirical Gramian, which is the option that increases the 
velocity, see Table 3 

We initialized our simulations with a starting velocity of 1 
m/s and a v of 1 m/s. The controller increased the velocity 
to a value of 31 m/s and maintained there. To improve the 
result, we performed a second run with a starting velocity of 
31 m/s and a v of 0.001 m/s. The velocity was raised to and 
maintained at a final value of 31.416 m/s. Note that, for T = 1 

                

 
Fig. 5 a – c (left to right, top to bottom): Optimised trajectory for one RO; trace of moving target (in positive x direction) 

marked by circles. 

 
Fig. 6: Possible trajectories for RO around the target 

position (marked by the red star) 

 
Fig. 7: Trajectory after the final velocity is reached 

 

Table 3: Largest Minimum Eigenvalues of Empirical 
Gramian at selected time instances 

 Time Increase Maintain Decrease 
Fig. 6 1 s 0,34 0,27 0,21 
Fig. 7 417 s 0,499983 0,499999 0,499985 
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s and radius r0 = 10 m, that means that during one time 
interval T, the RO is moving along half the circumference of 
the circle (r0 times ). Fig. 7 shows a trajectory for one time 
interval T after the final velocity is reached. Note that the first 
marker (tagged as 0) is the starting position at which no 
measurement takes place in the current interval. The 
following 10 markers show the positions at which 
measurements will be performed. In Table 3, it becomes 
obvious that maintaining the velocity is the best option. 

It is interesting to compare these results with those presented 
by Martinez and Bullo, 2006, for non-marine scenarios. They 
were seeking optimal angular configurations for a number of 
n range measuring devices to be placed on a convex structure 
around the target position, employing the Maximum 
Likelihood procedure. They proofed that the placement of the 
n sensors at positions on the circumference of a convex 
object surrounding the target with the polar coordinates 

   ninii ,...,1   ,1    (14) 

for the sensors yields an optimal solution. Our optimal 
solution in Fig. 7 corresponds exactly to this equation, if we 
start counting at the first measurement position (marker 1). 

6. CONCLUSIONS 

We employed the Empirical Gramian approach to investigate 
observability properties and to compute optimal trajectories 
for a range-measuring Reference Object in several simplified 
mission scenario inspired by application from marine 
robotics. For three different situations, we could achieve 
similar results as in other papers from literature, where 
different methodologies were employed. We believe that our 
results are of practical use, especially in comparison to the 
two other methods presented. Using the Herman/ Krener rank 
condition, it can only be evaluated whether a system is 
locally weak observable or not; there is no way to compare 
several solutions that are observable in order to find an 
optimal one. Using the Maximum Likelihood Method, an 
optimal configuration can be computed, however, there is no 
guarantee that a specific marine vehicle used as RO features 
the necessary manoeuvrability to execute the calculated 
trajectory. The convenience of the method proposed in this 
paper is that the manoeuvrability of the RO can be considered 
right from the beginning by only using executable trajectories 
for the optimization progress. Furthermore, the Empirical 
Gramian method is based on a dynamical system model, 
which might be more realistic if the target is considered to be 
moving. 

Therefore, the Empirical Gramians can be seen as a 
promising option for the usage in marine robotics, as it can 
easily be implemented into the existing control hardware. 
Future research activities will aim to realise applications of 
Empirical Gramians in real sea trials to further validate its 
usability. 
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