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Abstract: This paper presents a repetitive model predictive controller to reject periodic
disturbances in industrial processes. The proposed technique uses a state-space model with
embedded repetitive action to integrate most important characteristics from both repetitive
and predictive controllers. Thus, the obtained control strategy combines best characteristics
from both repetitive and model predictive control. A simulation case study is presented to
discuss several aspects related to disturbance rejection performance, parameters tuning and
constraints effects, and to compare this new control strategy with traditional repetitive and
model predictive controllers.
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1. INTRODUCTION

Many processes are subject to periodic disturbances or
references, some examples are: tubular heat exchangers
[Álvarez et al., 2007], reverse osmosis desalination [Emad
et al., 2012], casting processes [Manayathara et al., 1996]
or olive oil mills [Bordons and Cueli, 2004] among others.
Repetitive Control (RC) [Li Cuiyan, 2004] has been exten-
sively used to deal with periodic references/disturbances.
Furthermore, RC is a technique which is closely related to
other strategies like Iterative Learning Control (ILC) and
Run-to-Run (R2R) [Wang et al., 2009], which have been
successfully used in different types of process control [Xu
et al., 2009].

As an Internal Model Principle (IMP) - based strategy (see
Francis and Wonham [1976]), RC uses an Internal Model
(IM) that, guarantees tracking/rejection capabilities of
periodic references/disturbances. This IM provides infinite
or very high gain at a given frequency and its harmonics.
In order to guarantee closed-loop stability usually a plug-
in architecture is used combined with a phase-cancellation
technique. Although this formulation is simple to imple-
ment (reduced computation burden and number of tuning
parameters). In practice it is very restrictive in the closed-
loop behavior than can be achieved.

Additionally, it is well known that, in systems with ac-
tuator saturation, a controller with these characteristics
may produce a wind-up effect in which the states of the
controller can grow unbounded [Hippe, 2010]. Even if the
gain is not infinite but high, the states can overgrow
significantly making harder to recover the system to the

? This work was supported in part by CNPq - Brasil.

linear behavior. In order to overcome this problem several
anti-windup schemes have been proposed.

In order to preserve steady-state RC performance, improve
time response and handle actuator limitation properly in
this work combining repetitive control and Model Predic-
tive Control (MPC) is proposed.

MPC is a control technique which uses internally the
plant model to compute the system output predictions and
determines the optimal input according to a certain cost
function [Camacho and Bordons, 2004]. One of the nicest
properties of MPC is that it can be tuned by using very
simple and intuitive parameters. Another very important
property of MPC is its capability to handle constrains
both in the output and control action. Among others
these constraint handling capabilities implies that no anti-
windup scheme is required.

In order to guarantee null steady-state error in front
of constant (o piecewise constant) signals (references or
disturbances) most MPC schemes introduce an integrator
to augment the plant model (incremental control), this
can be obtained if closed-loop stability is ensured. This
integrator can be thought as the step IM, similarly if
the control system is dealing with periodical signals an
IM for periodical signals should be used. Combining RC
and MPC has been previously introduced in the field
of surgery [Natarajan and Lee, 2000, Ginhoux et al.,
2005]. A more formal introduction can be found in the
state-space domain in Lee et al. [2001], Gupta and Lee
[2006]. Recently these concepts have been extended to
multivariable systems [Wang et al., 2012a] and systems
with constrains [Wang et al., 2012b, 2013]. Different from
these works, in this paper we propose a new and simple
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methodology to introduce an IM in MPC to reject/track
periodical signals.

To present this new controller this paper is organized as
follows, section 2 reviews most relevant concepts on MPC
and RC, in sections 3 and 4 the proposed architecture is
explained in detail, section 5 analysis proposed controller
through a case study and finally section 6 contains the
conclusions.

2. MPC AND RC REVIEW

This section presents the principals ideas behind MPC and
RC and the mathematical background needed to develop
the proposed controller.

2.1 MPC Review

MPC algorithms use a model of the process to obtain the
control signal by minimizing an objective function. The
principal ideas of MPC are: (i) explicit use of a model to
predict the process output in a certain time horizon; (ii)
calculation of a set of future control actions minimizing an
objective function and (iii) receding strategy, where only
the first computed control action is applied and the horizon
is displaced towards the future [Camacho and Bordons,
2004].

Objective Function The following quadratic cost func-
tion is proposed:

J(k) =

Ny∑
j=1

[ŷ(k + j|k)− w(k + j)]2 +

Nu∑
j=1

λ[∆u(k + j − 1)]2 (1)

where ŷ(k + j|k) stands for the output predictions com-
puted at k+j with information available up to time k and
w(k + j) is the future reference, ∆u(k + j − 1) is a future
control increment sequence obtained from cost function
minimization, Ny define the prediction horizon, Nu is the
control horizon, λ is the control weighting.
In compact matrix form:

J = (Ŷ −W )T (Ŷ −W ) + ∆UTR∆U (2)

where

∆U = [∆u(k) ∆u(k + 1) ∆u(k + 2) . . . ∆u(k +Nu − 1)]T

Ŷ = [ŷ(k + 1|k) ŷ(k + 2|k) ŷ(k + 3|k) . . . ŷ(k +Ny |k)]T

and R = λINu is the weighting matrix with λ > 0
[Camacho and Bordons, 2004].
The parameters Ny, Nu, λ are the tunning parameters.

Plant Model and Predictions To relate the predictions
to the future control actions a linear state-space model is
used to compute the predictions:

x̃(k + 1) = Ãx̃(k) + B̃u(k)

y(k) = C̃x̃(k)
(3)

where x̃ ∈ Rn is the state, y ∈ R is the output, u ∈ R is the
control input, and Ã, B̃, and C̃ are matrices of appropriate
dimensions. In order to obtain an off-set-free controller an
incremental model can be obtained using:

x(k+1)︷ ︸︸ ︷[
∆x̃(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
Ã 0

C̃Ã I

] x(k)︷ ︸︸ ︷[
∆x̃(k)
y(k)

]
+

B︷ ︸︸ ︷[
B̃

C̃B̃

]
∆u(k)

y(k) =

C︷ ︸︸ ︷
[ 0′ I ] x(k)

(4)
with x(k) being the augmented state and ∆u(k) = u(k)−
u(k − 1).
Using the solution of the state-space system, ŷ(k + j|k)
can be written as [Camacho and Bordons, 2004]:

ŷ(k + j|k) = CAjx(k) + C

j∑
l=1

Aj−lB∆u(k − 1 + l) (5)

that is:
ŷ(k + 1|k) = CAx(k) + CB∆u(k|k)
ŷ(k + 2|k) = CAx(k + 1|k) + CB∆u(k + 1|k)

= CA2x(k) + CAB∆u(k|k) + CB∆u(k + 1|k)
...

ŷ(k +Ny |k) = CANyx(k) + CANy−1B∆u(k|k) + . . .

+CANy−NuB∆u(k +Ny − 1|k).

(6)

in matrix form

Ŷ = G∆U + fx(k) (7)

where

G =


CB 0 0 . . . 0

CAB CB 0 . . . 0

CA
2
B CAB CB . . . 0

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

CA
Ny−1

B CA
Ny−2

B CA
Ny−3

B . . . CA
Ny−NuB

 f =


CA

CA
2

CA
3

.

.

.

CA
Ny


Obtaining the Control Law In order to obtain future
control sequence the prediction model (7) is substituted
into the objective function (2). Giving:

J = ∆UTH∆U + 2FT∆U + J0 (8)

where
H = GTG+R,
F = GT (fx(k)−W ),
J0 = (fx(k)−W )T (fx(k)−W ).

The unconstrained minimization solution is obtained mak-
ing ∂J

∂∆U = 0 giving:

∆U∗ = −H−1F = (GTG+R)−1GT (W − fx(k)) (9)

thus, because of the receding horizon strategy only the first
element of ∆U∗ is applied as control action.
Although in presence of constraints the minimization
procedure needs to be done using a iterative method that
computes, on each sample time, the minimal control action
for the system.
In real applications constraints have to be considered in
the optimization, typically in the control action amplitude,
control action slew rate (variation) and process output:

umin ≤ u(k) ≤ umax; ∀k ≥ 0,

Imin ≤ u(k)− u(k − 1)≤ Imax; ∀k ≥ 0,

Ymin ≤ y(k) ≤ Ymax; ∀k ≥ 0.

That can be re-written in a compact form as a linear
inequality in the vector of future increments of the control
action [Camacho and Bordons, 2004]. With this analysis
the MPC solution is obtained by means of a quadratic
program optimization which is efficiently solved.
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2.2 RC

In a plug-in scheme, the repetitive controller is attached
to a control loop defined by an existing nominal controller
Gc(z) and the plant, Gp(z). Figure 1 shows the complete
architecture.
The repetitive controller is composed by two elements, the

Fig. 1. Block diagram of plug-in scheme.

IM, IM(z), and the stabilizing controller, Gx(z). The IM
is composed by a delay function W (z), a real number σ =
{−1, 1} and a low-pass null-phase Finite-Impulse Response
(FIR) filter, H(z), in positive feedback connection.

In the plug-in architecture each element has a concrete
role:

• The nominal controller, Gc(z), is assumed to ro-
bustly stabilize the closed-loop system composed by
the conventional controller and the plant : To(z) =
Gp(z)Gc(z)

1+Gp(z)Gc(z) . It is also assumed that Gc(z) allows

to reject disturbances, D(z), in a certain frequency
spectrum.
• The delay function, W (z), and the number σ are used

to construct the IM. Depending on the values of W (z)
and σ different internal models can be constructed
depending on the specific signal to deal with.

In this work the generic N-periodic signal IM is
used : 1

zN−1
. It is obtained by placing W (z) =

z−N and σ = 1. Including this element inside the
system null steady-state error in front to N-periodic
references or disturbances is guaranteed if the system
is closed-loop stable.

• The low-pass filter H(z) is used to reduce the gain
introduced by the IM at high frequencies. The design
of H(z) is a trade-off between robustness and perfor-
mance.

Note that H(z) is implemented in series connection
with a delay function, as a consequence H(z) can be
selected to be non causal. Usually a low-pass null-
phase FIR filter is used.

• The stabilizing controller role is to guarantee closed-
loop stability.

The transfer function from R(z) to E(z) in the system
from Figure 1 can be written as :

SM (z) = So(z)SM (z) (10)

where So(z) = 1
1+Gp(z)Gc(z) corresponds to the sensitivity

function of the system without the repetitive controller

and SM (z) = 1−σW (z)H(z)
1−σW (z)H(x)(1−Gx(z)To(z)) is usually called

the modifying sensitivity function.

The transfer function (10) is stable if the following two
conditions are fulfilled:

• The closed-loop system, without repetitive controller
must be stable. This is achieved with the nominal
controller Gc(z) design.

• The following inequality is fulfilled:

‖σW (z)H(x) (1−Gx(z)To(z)) ‖ < 1.

Assuming ‖σW (z)‖ ≤ 1, this inequality can be forced
by selecting ‖H(z)‖ < 1 an choosing and appropriate
Gx(z).

A common way to design Gx(z), guaranteeing the
stability conditions, is selecting Gx(z) = krTo(z)

−1.
This approach is not appropriated for non-minimum-
phase plants. In the generic case phase-cancellation
techniques must be used [Tomizuka, 1987].

3. THE PROPOSED CONTROLLER

In this section a state-space model predictive controller
with embedded repetitive control action is proposed. This
scheme is based on a state-space model with embedded
repetitive action to compute the system predictions and
the control action.

3.1 State-Space Model With Embedded Repetitive Action

Taking the process model in state-space equations as in
equation (3), it is necessary to make a few changes in this
representation in order to add the repetitive action. These
changes are based on the same ideas of the augmented
model construction, equation (4), similarly to the devel-
opment in Wang [2009].
Many MPC algorithms are based on the control deviation
parameter (∆u(k) = u(k) − u(k − 1)) to compute the
control action. Thus the control system has a embedded
integral action (1/1−z−1). Considering the IMP and the

1
1−z−1 Process

1
1−z−N Process

∆u(k) u(k)

Constant signal

⇓

y(k)

∆Nu(k) u(k)

N -periodic signal (NTs = Tp)

y(k)

Fig. 2. Step and N -periodic internal models.

existence of periodic disturbances/references with period
Tp, a repetitive loop needs to be inserted into the model
as shown in figure 2. This IM augments the system with
all poles necessary to reproduce desirable periodic signal
and needs to be chose considering Tp = NTs.
The following variables need to be defined for the state
space model development

∆N x̃(k) = x̃(k)− x̃(k −N)

∆Nu(k) = u(k)− u(k −N)

where ∆N x̃(k) and ∆Nu(k) represent respectively state
x̃(k) and control u(k) increment from each period. Ap-
plying then on process model (3), we have the following
equation

∆N x̃(k + 1) = Ã∆N x̃(k) + B̃∆Nu(k) (11)
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where the input is the N -periodic variation of the control
action. Therefore, the model needs to be connected to
the process output making possible to express output
predictions as function of the input ∆Nu(k). Using the
expression:

y(k + 1)− y(k −N + 1) = C̃(x̃(k + 1)− x̃(k −N + 1))

y(k + 1) = C̃∆N x̃(k + 1) + y(k −N + 1)

y(k + 1) = C̃Ã∆N x̃(k) + C̃B̃∆Nu(k) + y(k −N + 1)

(12)

one can observe that the output y(k+1) from the current
period is related to the output y(k−N + 1) from the past
period. Therefore, the vector

x(k) = [∆N x̃(k)T y(k) y(k−1) y(k−2) . . . y(k−N+1) y(k−N)]T

represents the state vector from the state-space model
with embedded repetitive action, which can be described
by the following set of equations:

x(k + 1) = Ax(k) +B∆Nu(k)
y(k) = Cx(k)

(13)

where:

A =


Ã 0 0 . . . 0 0

C̃Ã 0 0 . . . 1 0
0 1 0 . . . 0 0

0 0 1
. . . 0 0

0 0 0 . . . 0 0
0 0 0 . . . 1 0

 ;B =


B̃

C̃B̃
0
...
0
0

 ;C =
[
0 1 0 . . . 0 0

]

With this model it is not only possible to make model
predictions for controller design, but also do it with the
advantage of a embedded repetitive action that reproduces
N period signals.

3.2 Unconstrained Closed-loop Control System

The unconstrained control law, considering receding hori-
zon strategy, is the first element of ∆NU as the N in-
cremental control, with (considering the reference equal
within all prediction horizon)

∆Nu(k) = [1, 0, . . . , 0](GTG+R)−1GT (1r(k)− fx(k))
(14)

= Krr(k)−Krmpcx(k) (15)

whereKrr(k) refers to the set-point change and−Krmpcx(k)
to the state feedback gain.
Using the state-space model with the IM the closed-loop
system is obtained as

x(k + 1) = Ax(k)−BKrmpc(k) +BKrr(k)
= (A−BKrmpc)x(k) +BKrr(k)

(16)

The closed-loop system can be represented as shown in fig-

Fig. 3. Unconstrained closed-loop block diagram

ure 3 where the state-feedback gain Krmpc, has been sep-
arated in two different gains: [Kx] that refers to the process
states period variation ∆N x̃, and [Ky Ky−1 Ky−2 . . .Ky−N ]
that refers to the process outputs within past period.

4. CONSTRAINTS TREATMENT

In order to use QP optimization in the proposed con-
troller MPC constrains must be written as a function of
∆Nu(k) = u(k)− u(k −N) and described as:

Aineq∆
Nu 6 bineq (17)

Hereafter typical constraints are written like that.

4.1 Input Amplitude Constraint

These constraints are specified as

umin 6 u(k) 6 umax

The relation between u(k) and ∆Nu(k) is
u(k)

u(k + 1)
u(k + 2)

...
u(k +Nu − 1)

 =


u(k −N)

u(k −N + 1)
u(k −N + 2)

...
u(k −N +Nu − 1)

+


∆Nu(k)

∆Nu(k + 1)

∆Nu(k + 2)
...

∆Nu(k +Nu − 1)


in matrix form

U = U(k −N) + ∆NU (18)[
I
−I

]
∆NU 6

[
Umax − U(k −N)
−Umin + U(k −N)

]
(19)

4.2 Slew-rate constraint

This constraint restricts the control action variation in one
sample time, represented by:

Imin 6 ∆u(k) 6 Imax

In this case it is necessary to describe ∆u(k) using
∆Nu(k), which is the main variable for the minimization
problem. With the equality:

∆u(k) = ∆Nu(k)−∆Nu(k − 1) + ∆u(k −N) (20)

the variables are related as

∆U = S0∆NU − co∆Nu(k − 1) + ∆U(k −N) (21)

where

S0 =


I 0 0 . . . 0
−I I 0 . . . 0
0 −I I . . . 0
...

...
...

. . .
...

0 0 0 . . . I

 , c0 =


I
0
0
...
0


and[

S0

−S0

]
∆NU 6

[
Imax + co∆Nu(k − 1)−∆U(k −N)

−Imin − co∆Nu(k − 1) + ∆U(k −N)

]
(22)

4.3 Output Constraint

This constraint imposes a min-max boundary for the
process output using the prediction model. Considering
that

ymin 6 y(k) 6 ymax
and the prediction model (7) follows

Ymin 6 G∆NU + fx(k) 6 Ymax (23)

and, in matrix form[
G
−G

]
∆NU 6

[
Ymax − fx(k)
−Ymin + fx(k)

]
(24)
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4.4 Adding Constraints to the Optimization Problem

It is possible to combine all constraints (22, 19, 24) in one
linear inequality (17)

S0

−S0

I
−I
G
−G


︸ ︷︷ ︸
Aineq

∆NU 6


Imax + co∆Nu(k − 1)−∆U(k −N)

−Imin − co∆Nu(k − 1) + ∆U(k −N)
Umax − U(k −N)
−Umin + U(k −N)
Ymax − fx(k)
−Ymin + fx(k)


︸ ︷︷ ︸

bineq

(25)

Having a quadratic objective function, the minimization
problem becomes a classic quadratic programming prob-
lem

min
∆NU

(∆NUTH∆NU + 2FT∆NU + J0)

Subject to: Aineq∆
NU 6 bineq

(26)

This computation must be done on every sample time,
as well as the update of the variables F and bineq using
previous control action.

5. SIMULATION RESULTS

Considering the following scenario

• Process Model:

G(s) =
16.152

0.457s+ 1
; G(z) =

0.0353

z − 0.9978
(27)

(discretization with zero order hold - zoh)
• Change in the set-point from 0 to 4 at t = 1s.
• Disturbance Signal:
d(t) = 2sin( 2π

Tp
t) + 0.5sin( 4π

Tp
t) + 0.1sin( 8π

Tp
t),

applied on the output with Tp = 0.25 from t = 0s to
the end.
• Amount of samples N = 250, and the sample time is
Ts = Tp/N = 0.25/250 = 10−3s
• Controllers Parameters:

· RMPC: Ny = N = 250, Nu = N/25 = 10, R = 0.005
· MPC: Ny = 100, Nu = 5, R = 5
· RC Plug-in: N = 250, kr = 0.7, Gc = 1.8z−1.796

z−1

The simulations are separated in three blocks. The first
one is for the comparison between the proposed RMPC
and a classical MPC. Second one, compares RMPC with
the RC plug-in. And the last one, shows how the proposed
controller can treat constraints and the effects of them in
the system response.

5.1 Comparison between RMPC and MPC

Figure 4 shows the results of the comparison of RMPC and
MPC tuned for the same transient response. As expected,
only RMPC rejects the periodic disturbance in steady-
state, while the settling time and overshoot are similar
in the two responses.

5.2 Comparison between RMPC and RC plug-in

The comparative analysis between RMPC and RC plug-
in focus in the transient response, as in this case both
controllers reject the periodic disturbance in steady-state.
Note that RC plug-in has bigger settling time and over-
shoot, figure 5, because the only tunning parameter kr
does not give enough degrees of freedom to tune the
transient response.

Fig. 4. System output (top) and control action (bottom)
from both RMPC and MPC controllers

Fig. 5. System output (top) and control action (bottom)
from both RMPC and RC plug-in controllers

5.3 Constrained RMPC

Previous sections shows how RMPC overperforms MPC
and RC plug-in basic strategies as it has enough degrees
of freedom to achieve both, a desired steady state and
transient performance.
Hereafter the effect of constraints in RMPC performance
is evaluated. Two cases are analyzed. In the first one,
shown in figure 6, constraints in U are imposed. The
limits for U are Umin = −1 and Umax = 1, which do
not allow the control action to attempt the necessary
steady-state amplitude, therefore the disturbance can not
be completely rejected.

In the second case, illustrated in figure 7, only constraints
in the slew rate are considered: ∆Umin = −0.15 and
∆Umax = 0.15. These constraints limit only the control
action during the transient making the system to have a
slow response but rejecting the disturbance in steady state.
U and ∆U constraints actuate directly on the control
action (amplitude and deviation) they impose limits to
these variables that, looking with a repetitive point of
view, could compromise the control system capability of
tracking/rejecting some periodic signals.
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Fig. 6. Constrained RMPC dynamic response with U
constraint active.

Fig. 7. Constrained RMPC dynamic response with ∆U
constraint active.

6. CONCLUSIONS

The proposed RMPC controller combines the advantages
of the MPC strategy such as constraint handling and
flexible tunning with the repetitive control properties.
This new control strategy has enough degrees of freedom
to obtain desirable closed-loop disturbance rejection dur-
ing the transient and in steady-state for periodic distur-
bances with constraints satisfaction. Simulations results
have shown the advantages of RMPC over MPC and RC
plug-in, therefore the proposed strategy seems to be an

important tool to control process affected by periodic
disturbances and constraints.
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