
Comparison of differentiation schemes

for the velocity and acceleration

estimations of a pneumatic system

Xinming Yan ∗ Muriel Primot ∗∗ Franck Plestan ∗
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1. INTRODUCTION

These last decades, numerous results have been proposed
for the control of electropneumatic systems, the main
part of these results being based on state feedback ap-
proaches: input-output linearization based control (Brun
et al. (1999)), sliding mode control (Girin et al. (2009);
Laghrouche et al. (2006); Plestan et al. (2013); Shtessel
et al. (2012); Smaoui et al. (2006 b); Taleb et al. (2013)),
backstepping control (Smaoui et al. (2006 a,b)), etc. How-
ever, these controllers require the measurement of state
variables. In practice, some state variables are not easy to
be measured directly by the sensors, like the velocity and
the acceleration, whereas they are required to compute the
control law. In order to overcome this difficulty and also
with the objective of minimizing the number of sensors,
some states estimation schemes can be proposed (Yan et al.
(2014)). One solution is the use of nonlinear state observer.
In Bornard et al. (1991), a high gain observer is proposed
for a class of nonlinear system. A sliding mode observer
is used by Pandian et al. (2002), so as to estimate the
chamber pressure for pneumatic actuators.

An alternative method to estimate the system state is
the numerical differentiation. According to the studies in
Gauthier and Kupka (1994), for an observable nonlinear
system, any state variables is a function of finite number
of time derivatives of the control and output variables.
Furthermore, the use of numerical differentiation schemes
enables a model-independent derivation. In recent years,
numerous technics have been proposed for the problem
of numerical differentiation. A robust exact differentiator
based on 2-sliding algorithm (see Levant (1993)) is pro-
posed by Levant (1998). It allows to estimate the first order
derivative of a bounded noisy signal. Such a differentiator
is used by Smaoui et al. (2005) for the acceleration esti-
mation of a pneumatic system. The sampling feature of
the differentiation computation is also taken into account
by Plestan and Glumineau (2010). The sliding mode dif-

ferentiator is generalized to the higher-order sliding mode
differentiator (Levant (2003)), which allows to estimate the
k-th order derivative of a bounded noisy signal. Moreover,
the so called chattering phenomenon is reduced through
the high order sliding mode theory. Another kind of differ-
entiator based on algebraic parametric estimation technics
is proposed by Mboup et al. (2007): a truncated Taylor
expansion and calculations in operational domain are used
to obtain the approximations of the finite order derivatives
of a noisy signal. In Liu et al. (2009), the error analysis for
such a differentiator is done.

The objective of the paper is to apply some differentiation
approaches for the velocity and acceleration estimations
of a pneumatic system. Four methods are considered here.
Two of them are based on classical approaches: one is
based on the backward-difference formula, the other is
based on a three-point formula. The third differentiator is
developed from results of Mboup et al. (2007) by using an
algebraic approach. Finally, the higher-order sliding mode
differentiator proposed by Levant (2003) is considered.
The paper is organized as follows. In the second section,
numerical differentiation methods are presented. The dif-
ferentiator based on high order sliding mode is exposed
in the third section. In the fourth one, the experimental
set-up of the pneumatic system is described. Furthermore,
experimental results of velocity and acceleration estima-
tions are presented and a comparison between the four
approaches is made with different working conditions.

2. NUMERICAL DIFFERENTIATION

2.1 Classical approach

The principle of the classical numerical differentiation
method presented in this section is to estimate the time
derivative of a function f(t) by calculating the derivative of
an interpolating polynomial that fits f(t) over an interval
I.
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The next theorem establishes a formula to approximate
f ′(t0) from the sampling points at instants t−j , . . . , t0, . . . , tk
(denote I = [t−j , tk]).

Theorem 1. (Burden and Faires (2011)) Let n = j+k and
f(t) ∈ Cn+1(I). Then, the first order derivative at t = t0,
f ′(t0) is given by the following (n+ 1)-point formula

f ′(t0) =

k∑

i=−j

f(ti)L
′
n,i(t0) +

f(n+1)(ξ)

(n+ 1)!

k∏

i=−j,i6=0

(t0 − ti) , (1)

where ξ ∈ I is an unknown instant and the Lagrange
polynomial Ln,i associated with t−j, . . . , tk, is defined, for
i = −j, . . . , k by

Ln,i(t) =

k∏

l=−j,l6=i

t− tl
ti − tl

. (2)

Proof. By the Lagrange interpolation theorem, for all
t ∈ I, there exists ξ ∈ I such that the following equation
holds

f(t) =

k∑

i=−j

f(ti)Ln,i(t) +
(t − t−j) . . . (t − tk)

(n+ 1)!
f(n+1)(ξ) . (3)

Then, the (n + 1)-point differentiation formula can be
obtained by differentiating both sides of (3) at t = t0.

Remark 1.

• With two sampling points, i.e. j = −1 and k = 0, one
obtains the classical backward-difference formula

f ′(t0) =
f(t0)− f(t0 − h)

h
+

h

2
f ′′(ξ) (4)

where h = t0 − t−1 represents the sampling period.
The term h

2 f
′′(ξ) which is proportional to the sam-

pling period h, gives the approximation accuracy.
• In order to improve the accuracy, more sampling
points are considered. Assume now that j = −2,k = 0
and the sampling period is uniform (i.e. t0 − t−1 =
t−1−t−2 = h). Then, one gets the three-point formula

f ′(t0) =
3f(t0)− 4f(t0 − h) + f(t0 − 2h)

2h
+

h2

3
f(3)(ξ) .

(5)
In this expression, the accuracy is proportional to h2.
Since the sampling period h is generally smaller than
1s, one gets a better accuracy.

Note that the smaller h is, the better accuracy one gets.
However, in the case of a noisy signal f(t), the differentia-
tion becomes more sensitive to this noise. From a practical
point of view, in controlled systems, the sampling period
should be tuned to satisfy the control law. So as to improve
these differentiators, one adds a parameter H = nh where
n is a positive integer. From expressions (4)-(5), one thus
deduces two formulations for the estimate of the first
derivative f̂ ′(t) of a signal f at current time t.

f̂ ′(t) =
f(t)− f(t−H)

H
(6)

and

f̂ ′(t) =
3f(t)− 4f(t−H) + f(t− 2H)

2H
. (7)

Expressions (6)-(7) will be experimentally tested on the
pneumatic system (Section 4), in order to estimate the
velocity and the acceleration.

2.2 Algebraic approach

An alternative approach to estimate the derivatives of a
(possibly noisy) signal is proposed by Mboup et al. (2007).
It is based on Taylor expansion and Laplace transform and
provides the advantage of simultaneously getting estimates
of the higher order derivatives of the signal. Next theorem
presents this differentiator.

Theorem 2. (Mboup et al. (2007)) Let N be a positive
integer. Assume that y(t) = f(t) + n(t) is a noisy signal
defined on [0,+∞], which consists of a basic signal f(t)
and a noise n(t).
Then, the estimates of the i-th order time derivatives

f̂ (i)(0), i = 0, . . . , N of f(t) at t = 0 are given by the
following general expression

P (T )




f̂(0)

f̂ ′(0)
...

f̂ (N)(0)


 =

∫ T

0

Q(τ)y(τ)dτ (8)

where T is the size of the estimation window. The nonzero
elements of the triangular matrix P (T ) are given, for
i = 0, . . . , N , j = 0, . . . , N − i, by

P (T )i,j =
(N − j)!

(N − i− j)!

T i+j+1

(i + j + 1)!
, (9)

and the elements of the integral term are

Q(τ)i =
i∑

l=0

(
i
l

)(
N + 1

l

)
(T − τ)l(−τ)i−l (10)

with i = 0, . . . , N .

Remark 2.

• A more general result is proved in Mboup et al. (2007)
with an additional parameter ν . For simplicity, we
assume here ν = N + 2 and we retain this choice
throughout the remainder of the paper.

• The expansion (8) is not a causal differentiator: it
requires the signal values y(t) for t > 0 in order to
reconstruct the derivatives at t = 0. It means that
the future signal values should be known to estimate
the derivative in the current time.

So as to estimate the derivatives at the current time t
from y(τ), τ < t, one adapts the differentiator (8) by the
following way.

Corollary 1. Consider the same assumptions as in Theo-

rem 2. The estimates f̂ (i)(t) for i = 0, . . . , N , are given by
the expression

P̃ (T )




f̂(t)

f̂ ′(t)
...

f̂ (N)(t)


 =

∫ T

0

Q(τ)y(t− τ)dτ (11)

with

P̃ (T )i,j = (−1)jP (T )i,j (12)

and P (T )i,j , Q(τ)i defined by (9) and (10).
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Proof. Consider the expression (8), and replace y(τ) by
the signal g(τ) defined as

g(τ) = y(t− τ), τ ∈ [0, T ] .

Then, one formally has

g(i)(0) = (−1)iy(i)(t), i = 0, . . . , N .

It follows that the estimate of the i-th order time derivative
from the observed signal g at the origin equals

(−1)if̂ (i)(t) .

The corollary is proved.

In the sequel, the objective is to estimate the velocity and
the acceleration, then only the case N = 2 is considered.
One gets

P̃ (T )




f̂(t)

f̂ ′(t)

f̂ ′′(t)


 =

∫ T

0

Q(τ)y(t− τ)dτ (13)

where

P̃ (T ) =




T −
T 2

2

T 3

6

T 2
−

T 3

6
0

T 3

3
0 0




Q(τ) =

(
1

3(T − τ) − τ

3(T − τ)
2
− 6(T − τ)τ + τ

2

)
.

Remark 3. For the numerical implementation, the integral∫ T

0
Q(τ)y(t − τ)dτ will be performed using the midpoint

method.

The expression (13) will be implemented and tested on the
experimental set-up of the pneumatic system (see Section
4).

3. DIFFERENTIATION BASED ON HIGH ORDER
SLIDING MODE

The derivative estimation problem can also be solved by
the arbitrary-order exact robust differentiator proposed by
Levant (2003).

Theorem 3. (Levant (2003)) Let the input signal f(t) be
a function defined on [0,+∞] and consisting of a bounded
Lebesgue-measurable noise with unknown features and an
unknown basic signal f0(t), whose k-th time derivative has
a known Lipschitz constant L > 0. Its time derivatives

f
(i)
0 (t), i = 0, 1, . . . , k, can be estimated by the differentia-
tor
ż0 = v0

v0 = −λ̂kL
1/k+1|z0 − f |k/k+1 × sign(z0 − f) + z1

żi = vi

vi = −λ̂k−iL
1/k−i+1|zi − vi−1|

k−i/k−i+1

×sign(zi − vi−1) + zi+1

żk = −λ̂0L sign(zk − vk−1)

i = 0, . . . , k − 1

(14)

with zi the estimation of f
(i)
0 and λ̂0, . . . , λ̂k the differen-

tiator parameters.

Remark 4. According to Levant (2003), a possible choice

for k ≤ 5 is {λ̂i}
k−1
i=o = 1.1, 1.5, 2, 3, 5, 8, . . ..

By substituting expressions vi in (14), one gets the non-
recursive form

żi = −λk−iL
(i+1)/(k+1)|z0 − f |(k−i)/(k+1)

×sign(z0 − f) + zi+1

żk = −λ0Lsign(z0 − f)
(15)

with λ0, λ1, . . . , λk > 0 the new coefficients calculated from
(14).

For the same reason as in the previous section, one takes
k = 2. Then, the second order time differentiator reads as

˙̂
f0 = −λ2L

1/3|f̂0 − f |2/3sign(f̂0 − f) + f̂ ′
0

˙̂
f ′
0 = −λ1L

2/3|f̂0 − f |1/3sign(f̂0 − f) + f̂ ′′
0

˙̂
f ′′
0 = −λ0Lsign(f̂0 − f)

(16)

with f̂ ′
0 the estimation of f ′

0 and f̂ ′′
0 the estimation of f ′′

0 .
As previously, the differentiator (16) will be applied on the
pneumatic system in the following section.

4. APPLICATION TO THE PNEUMATIC SYSTEM

4.1 Description of the experimental set-up

The scheme of the pneumatic system is displayed in Fig.1.
The system is composed by two antagonists actuators.
The one, on left hand side, named “main” actuator, is
a double acting electropneumatic actuator controlled by
two servodistributors and is composed by two chambers
denoted P and N . The pneumatic jack horizontally moves
a load carriage of mass M . This carriage is coupled
to the second electropneumatic actuator, the so-called
“perturbation” one. The goal of this latter is to produce a
dynamical load force on the main actuator.

An adaptive twisting controller proposed by Taleb et al.
(2013) is used for the “main” actuator position control;
it forces the “main” actuator to track a position reference
with high accuracy, in spite of perturbation force produced
by the “perturbation” actuator. From the fundamental
mechanical theorem, the dynamics of the “main” actuator
position read as

dy

dt
= v

dv

dt
=

1

M
(S(pP − pN )− bvv − Fext)

(17)

with y the piston position, v the piston velocity, S the
piston surface, pP , pN the pressures in chamber P and N,
bv the viscous friction coefficient, and Fext the unknown
perturbation force. The complete model has been given in
Girin et al. (2009).

The “main” actuator controller requires real-time deriva-
tives of the position: in the sequel one focuses on the
estimations of the velocity and the acceleration for the
“main” actuator. The differentiatiors (6), (7), (13) and
(16) have been experimentally evaluated.

4.2 Experimental results

In the experimental tests, the position reference trajectory
used by the controller designed in Taleb et al. (2013) is a
sinusoidal signal yref (t) = 0.04sin(2πfeqt). The frequency
feq takes values from 0.1Hz to 1Hz. A sinusoidal external
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Datagate DS 1104

Control Control

PID Controller

ServodistributorsPressures sensors

Position sensor

Force sensor

Main actuator Perturbation actuator

Chamber P Chamber N

Moving mass M

Fig. 1. Scheme of pneumatic system.

force with a magnitude equal to 500 N and a frequency of
0.17Hz is produced by the perturbation actuator.

First, the frequency of reference trajectory is fixed to be
0.5Hz. Fig. 2 shows the measured position signal, which
overlaps with the reference trajectory. The velocity is not
measured directly; therefore, the analytic time derivative
of yref is used as the standard to compare with the esti-
mations. The objective is to get velocity and acceleration
estimations with good filtering and minimal delay. In order
to get the best performance, the differentiator parameters
have been tuned after a series of experimental tests. The
optimal configurations were obtained as

• Classical differentiators (6) and (7)

H = 100h; (18)

• Algebraic differentiator (13)

N = 2, T = 200h; (19)

• High order sliding mode differentiator (16)

L = 10 (20)

with the sampling period h = 1 ms.

Fig. 3 shows the velocity estimations obtained by these
four differentiators. In these working conditions, the esti-
mation by algebraic differentiator is smoother. The effect
of the measure noise is rejected due to the numerical inte-
gration in (13). However, its advantage is not obvious. In
order to estimate the acceleration, the classical differentia-
tors have been implemented in series as a second order dif-
ferentiator. The acceleration estimations results are shown
in Fig. 4. It appears that the three points formula makes
wild oscillations, whereas the algebraic differentiator gives
well filtered and more accurate results.

Influence of the sampling period
The sampling period plays an important role in the numer-
ical differentiation problem. In order to analyze the influ-
ence of the sampling period, some tests have been made
with h = 5 ms (Fig.5-6). With the increase of the sampling
period, the derivative estimations are more filtered, but a
delay is unavoidable. To evaluate the performances of the
differentiators, the mean square error and the standard
deviation of the estimation error are computed for the
steady state (on the time interval [5, 20] sec) as follows.

• Mean square error

MSE =
1

N

N∑

i=1

(exi)
2 (21)

with ex the estimation error of the velocity or accel-
eration and N the hits during [5, 20] sec.

• Standard deviation of estimation error

STD =

√√√√ 1

N

N∑

i=1

(exi − E(ex))2 (22)

with E(ex) the mean value of the estimation error.

The comparison between h = 1ms and h = 5ms is
summarized in Table.1. It appears that the sliding mode
differentiator (SM) is much less sensitive to the change
of sampling period. With greater sampling period, the
accuracy of acceleration estimation by three points dif-
ferentiator is improved. However, its performance is still
far behind the other three methods.

Table 1. Comparison between h = 1ms and
h = 5ms

Backward 3 points Alg SM

Change of MSE(v) 950% 1023% 4267% 5%
Change of STD(v) 223% 232% 560% 3%
Change of MSE(a) 211% -49% 621% 5%
Change of STD(a) 76% -29% 169% 3%

Influence of the frequency of reference signal
Suppose now that the sampling period is fixed at h = 1ms.
The same tests have been made with feq taking values
from 0.1Hz to 1Hz. Fig. 7-8 show the results of velocity
estimations, and the results of acceleration estimations
are displayed by Fig. 9-10. It appears that, obviously,
the estimation errors grow with the frequency. Up to
feq = 0.8Hz, the best performed solution is the algebraic
differentiator; however, for the high frequency working
condition feq > 0.8Hz, the sliding mode differentiator
shows its advantage.
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o
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o
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m
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Time (s)
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Reference

0 2 4 6 8 10 12 14 16 18 20
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g
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(a)

(b)

Fig. 2. Position signal. (a): measured position signal (y-
solid line) (m) and position reference trajectory (yref -
dotted line) (m) versus time (sec). (b): tracking error
(m) versus time (sec)

5. CONCLUSION

In this paper, four differentiation approaches – classical
differentiators, algebraic differentiator and high order slid-
ing mode differentiator – are studied in the context of
velocity and acceleration estimations for a pneumatic
system. The classical differentiators are easy to implement.
However, their estimation results are sensitive to the
measurement noises and a delay is unavoidable for the high
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Fig. 3. Velocity estimation. Time derivative of position
reference (ẏref -dotted line) (m/s) and velocity esti-
mations (v̂-solid line) (m/s) versus time (sec), with
h = 1ms. Estimation by (a): backward differentiator;
(b): three points differentiator; (c): algebraic differ-
entiator; (d): sliding mode differentiator.
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Estimation by (a): double backward differentiator;
(b): three points differentiator; (c): algebraic
differentiator; (d): sliding mode differentiator.
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Fig. 5. Velocity estimation. Time derivative of position
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mations (v̂-solid line) (m/s) versus time (sec), with
h = 5ms. Estimation by (a): backward differentiator;
(b): three points differentiator; (c): algebraic differ-
entiator; (d): sliding mode differentiator.
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Estimation by (a): double backward differentiator;
(b): three points differentiator; (c): algebraic
differentiator; (d): sliding mode differentiator.
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frequency working condition. Algebraic and high order
sliding mode differentiators appear to be the most efficient
solutions. Indeed, the algebraic differentiator does not
require any information about the input signal. For its
part, the high order sliding mode differentiator is a closed-
loop one which shows its advantage in the high frequency
working condition. Furthermore it is less sensitive to the
change of sampling period. However, an upper bound for
Lipschitz’s constant of higher order derivatives is required.
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Future works will use these differentiators in the design of
feedback controller in order to get high quality estimation
of the state variables.
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