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∗Universidad Politécnica de Madrid (UPM), Spain
E-mail: str@dit.upm.es

Abstract: Model-driven engineering has gained widespread interest as a means to raise the
abstraction level in software development, thus lowering cost and increasing efficiency. In this
paper, a case study on using this approach to design the real-time software for UPMSat-2, an
experimental micro-satellite, is described. The functionality of the software includes attitude
determination and control, on-board data handling, platform monitoring and control, and
payload management. A mix of modelling and software engineering tools have been used,
enabling automatic code generation of most of the application software. The lessons learned
from such an approach are analysed in the paper, and the use of model-driven engineering in
real-time control systems is discussed.
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1. INTRODUCTION

Model-driven engineering (MDE) is a software develop-
ment approach that allows engineers to use high-level
abstractions to define the components of a software sys-
tem throughout the software development cycle (Schmidt,
2006). It is based on the extensive use of models to describe
and analyse the system behaviour, thus supporting reason-
ing on the system properties at an abstract level. Models
provide support for different types of problems: description
of concepts, validation of these concepts based on checking
and analysis techniques, and generation of code and other
implementation components.

This approach has been familiar to control engineers for a
long time. Control systems are customarily designed using
abstract models, based on well-established mathematical
foundations. Controller models are combined with plant
models, and their configuration and parameters can be
adjusted as necessary until a satisfactory behaviour is ob-
tained. The resulting controller can then be implemented
using a variety of technologies, including computer hard-
ware and software (see e.g. Albertos and Mareels, 2010,
for a comprehensive approach to control systems design).

The advent of modern simulation tools has provided fur-
ther support to the use of models in control systems design.
Complex systems that cannot be described with simple
linear models can be simulated, and the effect of different
control algorithms can be experimented on them in order
to get the desired behaviour. Simulation models are also
often used to validate the results of other control design
methods. Implementation code for the control algorithms
can be automatically generated from the models, thus
simplifying the development of control systems.

? This work was supported in part by the Spanish National R&D&I
Plan, project HI-PARTES (TIN2011-28567-C03-01).

The design of complex control systems usually encom-
passes much more than control algorithms. Other com-
ponents, such as external interfaces, communications, data
storage and processing, etc., contribute to a large extent to
the complexity of the system. MDE aims at using a mod-
elling approach to software development at large, including
all kinds of components of real-time control systems. It is
worth noting that not all of the above domains have as neat
a mathematical foundation as automatic control, although
rigorous notations are often available to build models.

We analyse in the following the use of an MDE approach
for designing the on-board software system for UPMSat-
2, an experimental micro-satellite mission which is being
developed at the Technical University of Madrid (UPM)
with the collaboration of several industrial companies and
research institutions. The functionality of the software in-
cludes attitude control, on-board data handling, platform
monitoring and control, and payload management.The use
of different languages to build models of various parts of
the software at different abstraction levels is illustrated,
and the tools used to support the development are de-
scribed, with special focus on the attitude control system.
The lessons learned from the work are discussed, and
the approach is compared to other kinds of development
processes.

The rest of the paper is organised as follows. The charac-
teristics of the UPMSat-2 satellite and the general struc-
ture of the control software are described in section 2.
High-level modelling activities are described in section 3.
Detailed design models and code implementation are de-
scribed in section 4. Model validation is discussed in sec-
tion 5. Finally, section 6 contains the conclusions of the
study and lessons learned.
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2. THE UPMSAT-2 SYSTEM

2.1 Overview

UPMSat-2 is a micro-satellite with a mass of approxi-
mately 50 kg and a cubic geometric envelope of 0.5×0.5×
0.6 m. The satellite will be set to a polar sun-synchronous
orbit at 600 km altitude with a period of about 97 min.
The launch is planned in 2015, and the expected life of the
satellite is two years.

The aim of the mission is to act as a technical demonstra-
tor and an educational platform for University researchers
and associated companies. The payload consists of a num-
ber of experiments proposed by research groups and indus-
trial companies, including different kinds of sensors and
actuators to be tested in a space environment.

Figure 1 shows the general structure of the spacecraft.
Power is generated from solar panels covering five sides of
the satellite. Communications with a ground station are
carried out by means of two radio links using the UHF
400 MHz band, with a maximum data transfer rate of
9600 b/s.

There is an on-board computer (OBC) that carries out
all the data handling, supervision and control functions
of the spacecraft platform and the experiments. The com-
puter is based on a LEON3 processor (Gaisler Research,
2012) implemented on a radiation-hardened FPGA with
also including 4 MB SRAM, 1 MB EEPROM, timers,
analog inputs and digital I/O, making up a system-on-
chip configuration (SoC).

Fig. 1. Structure of the UPMSat-2 satellite.

2.2 On-board software functions

The main functions to be carried out by the on-board
computer software are:

• Attitude determination and control (ADC). The atti-
tude of the satellite is determined from the data pro-
vided by magnetic sensors, and controlled by means
of magnetic actuators. Other configurations are in-
cluded as experiments.

• Platform monitoring (housekeeping), by periodically
measuring temperatures and voltages from platform
sensors. Deviations from nominal ranges may cause
switching to an error mode and sending error mes-
sages to the ground station.

• On-board data handling (OBDH), including the ex-
ecution of telecommands (TC) received from the

ground station and the generation of telemetry (TM)
messages to be sent to the ground station.

• Experiment management. The payload of the satellite
consists of a number of experiments with different
instruments an devices.

Figure 2 shows a context diagram of the OBC and its
connections to the satellite platform.

Fig. 2. Context diagram of the OBC subsystem.

2.3 Attitude determination and control

The attitude of the satellite is the orientation of the
satellite, defined as the relationship between a body ref-
erence frame and an orbit reference frame. The attitude
can be represented as the rotation matrix or —more
conveniently— by the quaternion defining the transfor-
mation between both reference frames (de Ruiter et al.,
2012).

Fig. 3. Attitude control system.

In the UPMSat2 mission, the attitude control system has
to keep the ZB axis normal to the orbit, so that the
radio antenna is always visible from the Earth. The body
of the satellite must rotate slowly around this axis, in
order to provide spin stabilization (Sidi, 1997). A simple
control algorithm has been designed to this purpose,
based on estimates of the Earth magnetic field vector
and its derivative (Farrahi et al., 2013). The control
algorithm computes the actuation signals to be fed to three
magnetorquers in order to make the required corrections
in the orientation of the satellite (figure 3).

3. SOFTWARE DESIGN

3.1 Model-based development process

The overall software architecture of the satellite was de-
signed from the context diagram shown in figure 2. The
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on-board software has been developed using a model-
based process consisting of a series of models that are
progressively refined until the implementation code can
be generated (figure 4).

Fig. 4. Model-based software process.

As a first step, a platform-independent model (PIM) is
built in order to represent the intended behaviour of the
system without taking into account the platform-specific
details, such as the computer hardware, specific devices, or
operating system characteristics. The PIM includes several
model views:

• Data view. The data types that are used in other
model views are defined here, using an implementation-
independent notation such as ASN.1 (ITU, 2008).

• Functional view. This view describes the functional
behaviour of the system components, with no refer-
ence to real-time or concurrency aspects. Simulink
(Mathworks, 2013) and SDL (ITU, 2011) have been
used to this purpose.

• Interface view. This model view describes the archi-
tecture of the software system in terms of its con-
stituent parts and the relationships between them.
AADL (Feiler, 2012) is the language of choice for
expressing the architecture and gluing together the
system components.

The PIM can be used to reason about properties of the
system at an abstract level. From it, a platform-specific
model (PSM) can be derived, taking into account the
characteristics of the computer platform to be used. This
model consists of two main views:

• Deployment view. This view is used to model the
platform itself, including processors, memory, inter-
connection buses and networks, and operating sys-
tems. The software components making up the inter-
face view are mapped to platform components in the
deployment view.

• Concurrency view. This view models the concurrency
and real-time aspects of the system. Its elements
are concurrent tasks with real-time attributes, shared
data objects and other kinds of software components
that can be implemented in terms of operating sys-
tem services. This view can be generated from the
interface view and the deployment view provided the

former includes the real-time requirements to be guar-
anteed at the interface level.

AADL has been used for both PSM views, as it supports
modelling of low-level hardware and software elements in
addition to abstract model views.

The concurrency view, together with PIM views, contain
enough information to automatically generate the imple-
mentation code for the software system.

We have used the TASTE 1 toolset (Perrotin et al., 2012)
to support the above development process. The toolset
includes graphic and textual editors for AADL and ASN.1,
and supports automatic building of the concurrency view
and Ada code generation.

3.2 High-level models of the UPMSat-2 software

The views in the UPMSat-2 PIM have been built using a
variety of modelling languages. Some examples of model
elements are given in the following paragraphs.

Interface view. Figure 5 shows the interface view, with
all the components making up the software architecture of
the OBC represented as subsystems in the graphic AADL
notation, and the interfaces between them represented as
data flows. The software architecture reflects the structure
of the main functions listed in section 2.1, with an addi-
tional component, the orchestrator, which coordinates the
operating modes of the satellite.

The different subsystems are modelled in the respective
functional views, and the data types used in the interface
are modelled in the data view.

Functional view. In order to model the functional be-
haviour of the different components, different notations
have been used. In particular, SDL has been used for the
state-driven components, such as the payload manager and
the TMTC 2 controller, and Simulink models have been
used for continuous time functions, such as the attitude
control. As an example, we provide more detail on the
attitude determination and control subsystem.

Figure 6 shows the top-level Simulink model that has been
used to adjust the attitude control law. The model includes
the different torques that affect the attitude of the satellite,
including the magnetic field of the Earth, the controlling
torque, and some disturbances. The torques are input to
a model of the rotational dynamics of the spacecraft, from
which the attitude (both in quaternion and rotation matrix
forms) and the angular speed vector are output.

The block labelled controller represents the control algo-
rithm. Several kinds of control laws and different parame-
ter values have been used in order to select the best con-
trol performance with the available sensors and actuators,
which are also modelled as part of this block. See Farrahi
et al. (2013) for a detailed explanation.

Data view. All the data types used in the interface
view have been modelled using ASN.1. Listing 1 shows

1 taste.tuxfamily.org
2 Telemetry and telecommand.
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Fig. 5. Interface view of the UPMSat-2 software.

Fig. 6. Functional model of the attitude dynamics in Simulink.
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an example of the definition of the types used by the ADC
system.

MagnetometerAxisType ::= SEQUENCE {
x MagnetometerType,
y MagnetometerType,
z MagnetometerType

}

MagnetometerType ::= REAL (0.0 .. 5.0)

MagnetorquerAxisType ::= SEQUENCE {
x Boolean,
y Boolean,
z Boolean

}
−− etc

Listing 1. Data model of the ADC system types in ASN.1.

This kind of definition can be completed with encoding
rules, in order to precisely define the protocol that is being
used for telecommands. The ACN 3 notation (Mamais
et al., 2012) has been used to this purpose. Listing 2 shows
an example of ACN encoding for magnetometer values.
Notice that the specification of the encoding, although
low-level in nature, does not make any assumptions on
the hardware platform that will be used in the implemen-
tation.

...
MagnetometerType[size 32, encoding IEEE754−1985−32]
...

Listing 2. Example of magnetometer values encoding rule.

4. DETAILED DESIGN AND IMPLEMENTATION

4.1 Platform-specific modelling

The deployment view models the implementation platform
using the AADL platform components (Feiler, 2012). Its
main purpose is to allocate the architectural components
identified in the interface model to platform components.
Since the UPMSat-2 OBC only has a processor board, this
view is easily generated, as shown in figure 7.

The concurrency view is generated from the interface and
deployment views. It models the concurrent and real-time
behaviour of the system as a set of threads and data
objects. Listing 3 shows an extract of the concurrency view
in AADL, including the definition of the attitude controller
as a periodic thread.

4.2 Code generation

The implementation code has been automatically gener-
ated from the model views. The implementation language
is Ada 20005 (ISO, 2007), with the Ravenscar profile
restrictions for tasking (Burns et al., 2004). The appli-
cation code runs on a dedicated runtime, based on the
PolyORB-HI middleware (Hugues et al., 2006) and the
GNAT/ORK+ kernel for bare LEON computers (de la
Puente et al., 2008).
3 ASN.1 Control Notation

Fig. 7. Deployment view of UPMSat-2.

PROCESS IMPLEMENTATION ConcurrencyView Async.others
SUBCOMPONENTS

Controller Cyclic FV : THREAD Controller Cyclic FV.others;
...
−− etc

END ConcurrencyView Async.others;

−−−−−−−−−−−−−−−−−−−−−−
Controller Cyclic FV
−−−−−−−−−−−−−−−−−−−−−−

THREAD Controller Cyclic FV
FEATURES

Magnetometer : REQUIRES DATA ACCESS Magnetometer;
Magnetorquer : REQUIRES DATA ACCESS Magnetorquer;

END Controller Cyclic FV;

THREAD IMPLEMENTATION Controller Cyclic FV.others
CALLS {

getMagnetometerValues :
SUBPROGRAM Magnetometer.getMagnetometerValues;

setMagnetorquers :
SUBPROGRAM Magnetorquer.setMagnetorquers;

};
PROPERTIES

Initialize Entrypoint => ”Controller.executeControl”;
Dispatch Protocol => Periodic;
Period => 1000 ms;
Deadline => 100 ms;

END Controller Cyclic FV.others ;
...
−− etc

Listing 3. Extract of concurrency view in AADL.

Skeletons of real-time tasks and shared data objects are
generated from the concurrency view using the TASTE
code generator. The functional code comes from the func-
tional view models using the appropriate code generation
tools. For example, the functional code of the attitude
controller has been generated with the Simulink code
generator. Listing 4 shows an extract of the Ada code
generated for the attitude controller, and the import of
the functional code generated from Simulink.
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package body Controller is

−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Required interface ”getMagnetometerValues”
−−−−−−−−−−−−−−−−−−−−−−−−−−
procedure getMagnetometerValues(magnetometeraxis:

access asn1sccMagnetometerAxisType);
pragma import(C, getMagnetometerValues,

”Controller RI getMagnetometerValues”);

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Required interface ”setMagnetorquers”
−−−−−−−−−−−−−−−−−−−−−−−−−−−
procedure setMagnetorquers(magnetoqueraxis:

access asn1sccMagnetorquerAxisType);
pragma import(C, setMagnetorquers,

”Controller RI setMagnetorquers ”);

−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Import Simulink−generated control function
−−−−−−−−−−−−−−−−−−−−−−−−−−

procedure Control;
pragma Import (C, Control, ” Controller ”);

−−−−−−−−−−−−−−−−−−−−−−−−−−
−− main function
−−−−−−−−−−−−−−−−−−−−−−−−−−
procedure executeControl is

Magnetometers : aliased asn1sccMagnetometerAxisType;
Magnetorquers : aliased asn1sccMagnetorquerAxisType;

pragma Export (C, Magnetometers, ”control U”);
pragma Export (C, Magnetorquers, ”control Y”);

begin
getMagnetometerValues(Magnetometers);
Control ;
setMagnetorquers(Magnetorquers)

end executeControl ;

end Controller ;

Listing 4. Controller code skeleton with control function
in Ada.

The functional skeleton code is automatically inserted into
a run-time container that includes the required concurrent
and communication entities in terms of Ada tasks.

5. VALIDATION APPROACH

Software validation is carried out at different levels of the
model-based development process. Models are validated
through simulation, when possible, or by inspection when
not. For example, the design of the attitude controller
has been validated, and its parameters adjusted, using the
Simulink model in figure 6 above.

Alternatively, some properties of the system are validated
using static analysis tools. In particular, the timing be-
haviour of the system is analysed using MAST, a real-
time analysis tool (González Harbour et al., 2001), and
RapiTime (Bernat et al., 2005), an execution-time analysis
tool. Both tools have been integrated with the TASTE
concurrency view Pérez et al. (2008) and together provide
accurate estimates of worst-case response times of every
real-time task, which can be used to validate real-time
requirements.

The implementation code is validated by testing on an
engineering version of the computer board, built with com-
mercial hardware that is not protected against radiation

Fig. 8. ADCS test configuration.

in order to reduce costs. Embedded systems should be
validated with respect to their real physical environment.
However, the environment of space systems is not avail-
able for testing, and therefore it has to be simulated. We
have used a dynamic hardware-in-the loop (HIL) facility
to this purpose. Figure 8 shows the software validation
structure for the ADCS software. The spacecraft dynamics
and its environment are simulated on the simulation com-
puter, while the control software runs on the engineering
board. The configuration has also been used to estimate
execution-time data that are fed back to the response-time
analysis tools (Garrido et al., 2012).

6. CONCLUSION

The UPMSat-2 software, in particular the attitude control
system, is an excellent testbed for Model-Driven Engineer-
ing of real-time control software. It is complex enough
to raise non-trivial problems in software systems design,
and on the other hand its size is not too large, enabling
the development process to be manageable for a research
activity.

MDE has allowed us to describe the software architecture
and the main design details at an abstract level, as
promised. The possibility to integrate validation tools
with software modelling tools has proven to be especially
interesting to check that the real-time behaviour of the
design is adequate to the control requirements.

Model-based testing, as implemented in the HIL soft-
ware validation facility, has also proved to be a valuable
strategy, saving us significant time and facilitating fixing
problems in the software at an early stage of development.

Plans for the near future include testing with real sensors
and actuators, as well as radio communication links in-
stead of the serial line connections between the satellite
board and the software validation facility that are being
currently used. The development of the on-board software
system and the software validation facility is scheduled to
be completed by mid 2014. The ground station software
system is planned to be developed based on the latter.
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