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Abstract: Markovian population models are suitable abstractions to describe well-mixed
interacting particle systems in situation where stochastic fluctuations are significant due to
the involvement of low copy particles. In molecular biology, measurements on the single-cell
level attest to this stochasticity and one is tempted to interpret such measurements across
an isogenic cell population as different sample paths of one and the same Markov model.
Over recent years evidence built up against this interpretation due to the presence of cell-
to-cell variability stemming from factors other than intrinsic fluctuations. To account for this
extrinsic variability, Markovian models in random environments need to be considered and a key
emerging question is how to perform inference for such models. We model extrinsic variability
by a random parametrization of all propensity functions. To detect which of those propensities
have significant variability, we lay out a sparse learning procedure captured by a hierarchical
Bayesian model whose evidence function is iteratively maximized using a variational Bayesian
expectation-maximization algorithm.

Keywords: Population models, stochastic chemical kinetics, extrinsic variability, sparse
Bayesian learning, variational inference.

1. INTRODUCTION

Markovian population models are ubiquitous in biology
to capture the temporal change in abundance for differ-
ent particle types (i.e. species) caused by interactions or
transformations among them. Inferring such models from
experimental data is at the core of quantitative biology.
Reconstructing models of biochemical cellular processes
using the principles of chemical kinetics is an important
example. Single-cell technologies provide unprecedented
means to perform this task, however novel computational
methods are required to deal with the complexity of single-
cell data. More specifically, such data represent a hetero-
geneous aggregate of measurements due to the fact that
cells are not exactly identical to start with. Thus, apart
from stochastic fluctuations intrinsic to the process under
study, extrinsic sources of variability contribute to the
overall heterogeneity (Elowitz et al. [2002], Colman-Lerner
et al. [2005]). The single-cell process gets modulated by
its local microenvironment, that can refer to intracellular
quantities such as initial copy numbers of participating
biomolecules (Koeppl et al. [2012]) but also cell-level quan-
tities like the cell’s local growth condition (Snijder and
Pelkmans [2011]), or its cell-cycle stage (Colman-Lerner
et al. [2005]). To capture this variability in a computational
model is challenging because the true sources and their
strength for a specific cell line are yet to be identified.
Hence, recent approaches to address extrinsic noise in
the inference procedure have to make an educated guess
which quantities of a kinetic model are modulated by
extrinsic variability (Zechner et al. [2012, 2014], Ruess
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et al. [2013], Hasenauer et al. [2011], Shahrezaei et al.
[2008]). For instance, one source of extrinsic noise in gene
expression that is believed to be significant are ribosome
copy number variations. Taking this as a starting point,
we recently developed an inference framework that relies
on a hierarchical Bayesian model, where some latent states
express the extrinsic variability of an actual model quan-
tity (Zechner et al. [2014]). The structure of this Bayesian
model is fixed beforehand and hence can not be changed
a posteriori when the data is incorporated.

Here we lay out an inference framework where the hi-
erarchical dependency structure among model quantities
and extrinsic sources is learned from the data. In order
to retrieve results that are interpretable and robust with
respect to small sample sizes (i.e. number of cells) we apply
a sparse Bayesian learning technique (Neal [1996], Tipping
[2001], Bishop [2007]) yielding the named dependency
structure with a minimal number of edges. In order to
reduce the number of unknown parameters, we make use
of the marginalized process introduced in Zechner et al.
[2014]. To infer the posterior with respect to the extrinsic
variability in an efficient manner we employ a variational
Bayesian expectation-maximization (EM) procedure (Beal
[2003], Shutin et al. [2012], Dempster et al. [1977]). The
outlined method assumes the availability of data in terms
of complete and noise free sample paths. The method can
be generalized to the more realistic incomplete and noisy
data case but the necessary computational machinery for
that would sidetrack the exposition and occlude the main
idea behind this approach. To this end, the work repre-
sents a first step towards a model-based understanding of
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how and which concurrent processes modulate a specific
cellular process under study in vivo.

The remaining part of the paper is structured as follows.
In Section 2 we derive the mathematical models and algo-
rithms. We start with a brief introduction to heterogeneous
population models (Section 2.2). Subsequently, in Section
2.3 we develop a suitable hierarchical Bayesian model
whose inference is discussed in Section 2.4. In Sections 2.5
and 2.6 we address several practical aspects of the algo-
rithm and briefly discuss how it extends to the incomplete
data scenario. The algorithm is analyzed and validated in
Section 3 using a few case studies.

2. MATHEMATICAL FRAMEWORK

2.1 Notation

Random quantities and their realizations are denoted by
upper- and lowercase symbols, respectively. Symbol p
and q are used to indicate the exact and the approxi-
mating probability density functions (PDFs), respectively
and expectations are denoted by E [A] =

∫

ap(a)da. For
convenience we also introduce expectations of the form
Ea [f(a, b)] =

∫

f(a, b)p(a)da, indicating that the expecta-
tion of f is only taken with respect to p(a). We denote the
Gamma distribution by G(α, β) with α and β as shape and
inverse scale parameters. The exponential distribution is
denoted Exp(λ) with inverse scale parameter λ. Further-
more, we express time-dependent quantities on intervals
[0, T ] by bold symbols, e.g., x = {x(t) | 0 ≤ t ≤ T }. The
symbol KL[q(x)‖p(x)] denotes the Kullback-Leibler diver-
gence between PDFs q(x) and p(x), i.e., KL[q(x)‖p(x)] =
∫

q(x) ln q(x)
p(x)dx. Abbreviations CV and SCV stand for

coefficient of variation and squared coefficient of variation,
respectively.

2.2 Population Models and Chemical Kinetics

We consider a continuous-time Markov chain (CTMC)
X describing the dynamics of a stochastic interaction
network comprising d species and ν coupled reaction or
transformation channels. The latter are associated with
a set of real-valued kinetic parameters C = {Cj | j =
1, . . . , ν}. The species’ abundances at time t defines the
random state X(t) = x, x ∈ Z

d
≥0 of the network.

Propensity functions corresponding to each channel are
general functions of the state and can often be defined
through first principles such as the law of mass-action.
Throughout the work we assume propensities to be linear
functions of their respective rate parameters, i.e. they
take the general form cigi(x), where gi(x) is an arbitrary
nonlinear function. Under knowledge of the parameters C,
the dynamics of a single cell follows a conditional CTMC
X | C.

Due to extrinsic cell-to-cell variability, acquired single-cell
trajectories can not be thought of as being different real-
izations of a single CTMC. Although sources of extrinsic
variability can be diverse, we throughout the work make
the assumption that kinetic parameters are the only source
of extrinsic variability that enters the cellular process
under study. In contrast to previous approaches where
specific parameters were subject to extrinsic variability

(Zechner et al. [2014, 2012]), we assign prior variability
to every kinetic parameter in the model. Accordingly, we
associate to C a probability distribution, i.e., C | (A =
a) ∼ p(c | a), with A a set of hyperparameters. With this,
the dynamics of the m-th cell of a population is described
by a conditional CTMC Xm | (Cm = c). We remark that
the parameter dimensionality of the heterogeneous CTMC
model increases with every considered cell and hence,
scales poorly with the population size M . Fortunately, it
was recently shown that a CTMC X | C can be integrated
over C, yielding a marginalized stochastic process X | A,
which directly depends on the hyperparameters A. While
fuller details about the construction and simulation of such
a process can be found in Zechner et al. [2013, 2014], Aalen
et al. [2008], we only introduce the key quantity needed
here, i.e., the marginal path likelihood function. We know
from Wilkinson [2006] and Kuechler and Sorensen [1997]
that the path likelihood function of an observed sample
path x = {x(t) | 0 ≤ t ≤ T } is given by

p(x | c) ∝

ν
∏

i=1

c
ri(x)
i e

−ci

∫

T

0

gi(x(t))dt, (1)

with ri(x) the number of reactions of type i that happened
in the path x. Formally, the marginal path likelihood is
obtained via the integral

p(x | a) =

∫

p(x | c)p(c | a)dc, (2)

whose tractability depends on p(c | a). For instance,
the Gamma distribution was shown to have convenient
analytical properties (Zechner et al. [2014]) and further-
more, appears plausible in the context of gene expression
Taniguchi et al. [2010]. Throughout the remaining paper
we assume

p(c | a) =

ν
∏

i=1

G(ci | αi, βi), (3)

with a = {(αi, βi) | i = 1, . . . , ν} and G(ci | αi, βi) as a
Gamma distribution over ci with shape- and inverse scale
parameters αi and βi, respectively. A suitable measure
of a reaction channel’s extrinsic variability is the squared
coefficient of variation (or normalized variance), which in
the Gamma-case is given by

ηi =
1

αi

,

indicating that one can detected heterogeneity by merely
analyzing the shape parameter αi. Under assumption (3),
the marginal path likelihood function is given by (see e.g.,
Zechner et al. [2014])

p(x | a) =

ν
∏

i=1

p(x | αi, βi)

∝

ν
∏

i=1

βαi

i Γ(αi + ri(x))

Γ(αi)

(

βi +

∫ T

0

gi(x(t))dt

)−(αi+ri(x))

.

(4)

Due to the marginalization, the hidden layer corresponding
to the kinetic parameters is entirely removed and hence,
does not need to be considered in the following derivations.

2.3 Hierarchical Bayesian Modeling

Assume we have given measurements of M cells of a
heterogeneous population, i.e., xm for m = 1, . . . ,M .
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The extrinsic variability of each reaction channel i can be
quantified by inferring the hyperparameters {αi, βi} from
those measurements. According to a Bayesian scenario,
this is equivalent to finding the posterior distribution

p(a | x1, . . . ,xM ) ∝

M
∏

m=1

p(xm | a)p(a)

=

M
∏

m=1

(

ν
∏

i=1

p(xm | αi, βi)p(αi, βi)

)

,

(5)

which hence, factorizes such that

p(a | x1, . . . ,xM ) =
ν
∏

i=1

p(αi, βi | x
1, . . . ,xM ). (6)

Naively, one could just evaluate the individual terms in
(6) and check whether the corresponding values of αi are
below a certain threshold, indicating heterogeneity of the
associated reaction. However, since those values are only
accessible through the noisy measurements xm, it is not
clear how to choose such a threshold in order to obtain
maximally robust results. For instance, the heterogeneity
stemming from the intrinsic molecular fluctuations should
be ”filtered out” and yield a negative detection result. Pos-
itive detections are only desired if there is significant evi-
dence in the data. Technically, this corresponds to solving
a sparse Bayesian learning problem (Neal [1996], Tipping
[2001], Bishop [2007]). The key step to achieve sparsity
in empirical Bayesian models is to assign suitable prior -
and hyperprior distributions to the model quantities. Since
detection of heterogeneity is based on only αi, we chose

p(αi, βi) = p(αi | λi)p(βi), (7)

where λi controls the shape of p(αi | λi) and p(βi) is
assumed to be flat over the positive domain, such that
p(αi, βi) ∝ p(αi | λi). The goal is to define p(αi | λi)
such that the heterogeneity is forced to zero unless there
is significant evidence in the data. Accordingly, suitable
distributions will emphasize SCVs around zero while also
permitting high values. Here we choose p(αi | λi) such that
p(ηi) = Exp(λi). A transformation of random variables
yields

p(αi | λi) =
λi

α2
i

e
−

λi

αi . (8)

The resulting prior distributions over αi are illustrated in
Fig. 1 for different values of λi.

While standard Bayesian approaches rely on given prior
knowledge, empirical Bayes techniques aim to infer pa-
rameters as well as their hyperparameters from data. In
our case, this means that in addition to αi and βi, also
the hyperparameters λi are assumed to be unknown and
need to be estimated. In order to obtain a fully Bayesian
model, we need to specify hyperprior distributions p(λi).
Again, we assume p(λi) to be flat but remark that an
extension to arbitrary distributions is straight-forward.
With the model parameters a and their hyperparameters
b = {λi | i = 1, . . . , ν}, we aim to compute the posterior
distribution

0 5 10 15

Fig. 1. Prior distributions over αi for different values of the
hyperparameter λi. The distributions show a peak for
low values of αi and become more heavy-tailed with
increasing λi.

p(a, b | x1, . . . ,xM )

∝

ν
∏

i=1

(

M
∏

m=1

p(xm | αi, βi)

)

p(αi | λi)p(λi)

=

ν
∏

i=1

p(αi, βi, λi | x
1, . . . ,xM )

(9)

where the r.h.s. of (9) is just the joint distribution over
all model quantities. Unfortunately, it turns out that (9)
is intractable. In the next section we will develop an
variational inference scheme to approximate (9).

2.4 Variational Inference

Variational inference schemes aim to approximate some
target posterior p(z | y) by some other distribution q(z).
More specifically, one chooses q(z) such as to minimize
the Kullback-Leibler divergence (KL) between q(z) and
the true distribution. For that sake, note that for every q,
the log-evidence function satisfies the decomposition (Beal
[2003], Bishop [2007])

ln p(z) = L [q(z)] +KL [q(z)‖p(z | y)] , (10)

where L [q(z)] forms a lower bound on ln p(z) which is
given by

L [q(z)] =

∫

q(z) ln
p(z, y)

q(z)
dz. (11)

Accordingly, minimizing the KL with respect to q is the
same as maximizing its counterpart L [q(z)], i.e.,

q∗(z) = argmax
q(z)∈Q

L [q(z)] . (12)

It can be seen from (10) and (11) that L [q(z)] is maximal
if and only if q(z) = p(z | y). In order to obtain a
tractable q(z), one typically imposes further constraints
on its structure. Most commonly, individual components
of z are assumed to be independent of each other, i.e.,

q(z) =

L
∏

l=1

q(zl), (13)

also known as the mean-field approximation (Beal [2003]).
In this case, it can be shown that the optimal variational
solution of the individual factors q(zi) is determined by

ln q∗(zi) = Ej 6=i [ln p(z, y)] + const. (14)
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where Ej 6=i [ln p(z, y)] denotes the expectation of the log-
arithm of the joint distribution, taken with respect to
all factors q(zj) except q(zi). Since the optimal solution
of a particular q-factor depends on all other factors, the
mean-field approximation typically induces an iterative
inference scheme, where the individual factors are updated
in a round-robin fashion. Such schemes stand in close
relation with traditional expectation-maximization (EM)
algorithms (Dempster et al. [1977]) and accordingly, are
often referred to as variational Bayesian EM (VBEM)
algorithms (Shutin et al. [2012], Beal [2003]).

In practice, eq. (14) might still be intractable, in which
case it is necessary to further restrict the corresponding
q-factor. For instance, one could assume q(zi) to be some
parameterized distribution (e.g., a Gaussian with mean
and variance) and determine its parameters θ as

θ∗ = argmax
θ∈Θ

E [ln p(z, y)] , (15)

whereas in this case, the expectation is taken with respect
to all q-factors. For instance, if one is interested solely
in maximum a-posterior (MAP) estimates, q(zi) can be
chosen to be a Dirac-delta function with unknown position.

We will now use the VBEM framework to derive an ap-
proximate iterative inference algorithm for the hierarchical
Bayesian model from Section 2.3. The goal is to compute
an approximate posterior distribution q(a, b) for which we
assume that it factorizes as

q(a, b) =

ν
∏

i=1

q(αi, βi)q(λi). (16)

We remark that in the complete-data scenario considered
here, also the true posterior factors over the individual re-
action channels i = 1, . . . , ν, however, not over {αi, βi} and
λi. For analytical simplicity, we further assume q(λi) :=

δ(λi− λ̂i) with λ̂i as an unknown position parameter. The
factor q(αi, βi) for the i-th reaction channel is determined
by

ln q∗(αi, βi) = Eλi

[

ln p(a, b,x1, . . . ,xM )
]

+ const., (17)

which becomes

ln q∗(αi, βi) =

M
∑

m=1

ln p(xm | αi, βi)

+ Eλi
[ln p(αi | λi)] + const.

(18)

when taking into account the r.h.s. of eq. (9). Together
with the marginal path-likelihood function from eq. (4),
we further obtain
ln q∗(αi, βi)

=

M
∑

m=1

αi lnβi + lnΓ(αi + ri(x
m))− ln Γ(αi)

− (αi + ri(x
m)) ln

(

βi +

∫ T

0

gi(x
m(t))dt

)

−
λ̂i

αi

− 2 lnαi + const.,

(19)

where we have used the fact that

Eλi
[λi] =

∫

λiδ(λi − λ̂i)dλi = λ̂i.

Although eq. (19) is not of standard form, it can be eval-
uated analytically or using a suitable sampling algorithm.

The q-factor corresponding to λi is found by solving the
parametric (instead of variational) optimization

λ∗
i = argmax

λ̂i∈R

E
[

ln p(a, b,x1, . . . ,xM )
]

= argmax
λ̂i∈R

E [ln p(αi | λi)] .
(20)

The expectation inside the maximum operator is given by

E [ln p(αi | λi)] = −λ̂iEαi

[

α−1
i

]

+ln λ̂i−2Eαi
[lnαi] , (21)

whose maximum is found to be

λ∗
i =

1

Eαi

[

α−1
i

] . (22)

2.5 Implementation Aspects

As mentioned earlier, the VBEM scheme leads to an itera-
tive algorithm, where every individual q-factor is estimated
given the most recent estimates of all other q-factors (e.g.,
in a round-robin fashion). For a particular reaction channel
i, this means that we first determine q(αi, βi) given the

most recent value of λ̂i and subsequently re-estimate λ̂i

given q(αi, βi) and so forth. Since q(αi, βi) is not of stan-
dard form, we can compute its required statistics either
via numerical integration or Monte Carlo sampling. Here
we focus on the latter approach and employ a standard
Metropolis-Hastings (M-H) sampler with log-normal pro-
posal distributions to draw samples from q(αi, βi). Those
samples are also used for updating the corresponding
hyperparameters λi, i.e., the expectation in eq. (22) is
replaced by a Monte Carlo average. Moreover, we found

that replacing Eαi

[

α−1
i

]

by Eαi
[αi]

−1
yields a similar

estimation performance, while significantly reducing the
number of required divisions per iteration.

Note that the parameters corresponding to the homoge-
neous reaction channels will be driven to infinity, which
in theory, causes the algorithm to diverge. Practically –
however – one can check whether αi (or λi) is above a
critical threshold (e.g., around 10e5), in which case the i-
th reaction is considered homogeneous and excluded from
the remaining analysis.

Algorithm 1 summarizes the main structure of the pro-
posed scheme.

Algorithm 1 VBEM algorithm for detecting heterogene-
ity in stochastic interaction networks.

1: Initialize λ̂i for i = 1, . . . , ν
2: while not converged do
3: for i = 1, . . . , ν do
4: Draw samples from q(αi, βi) using eq. (19) and

the current value of λ̂i

5: Update λ̂i using eq. (22)
6: end for
7: end while

2.6 Extension to the Incomplete Data Scenario

In principle, the above algorithm can be easily extended
for the incomplete data scenario, i.e., if the measurements
consist of sparse and noisy readouts Yn of the Markov
chain X at times tn. Intuitively, this can be understood
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as adding another layer on top of the states xm in the
hierarchical Bayesian model. In this case it turns out that
the variational expressions from Section 2.4 also involve
expectations with respect to so-called smoothing distribu-
tions, e.g., p(xm | ym1 , . . . , ymN , a) when considering the m-
th cell. Computing such distributions (and computing its
statistics) is a challenging task on its own and a variety of
numerical and analytical approaches have been proposed
(Amrein and Künsch [2012], Opper and Sanguinetti [2007],
Zechner et al. [2014]). Apart from that, the VBEM frame-
work can be readily applied to the more complicated case
of incomplete and noisy measurements.

3. SIMULATIONS

We performed several simulation studies in order to
demonstrate and evaluate the proposed method. For each
of the case studies, we used the simple reaction network
of eukaryotic gene expression illustrated in Fig. 2a. Exem-
plary trajectories of such a model are shown in Fig. 2b.
The model comprises six reaction channels with kinetic
parameters c1, . . . , c6, which are either homogenous or
heterogeneous – depending on the particular case study.
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6

a b

Fig. 2. A simple model of eukaryotic gene expression. (a)
Schematic diagram of the reaction network. The num-
bered arrows indicate chemical events taking place:
upon activation of the gene (arrow 1), mRNA can be
transcribed (arrow 3) which in turn gets translated
(arrow 5) into protein. The remaining arrows indicate
gene-deactivation (arrow 2) and degradation events
(arrows 4 and 6). (b) Exemplary protein traces of
a heterogeneous network. In this case, heterogeneity
was simulated by introducing a Gamma-type variabil-
ity in the translation rate.

Unless otherwise specified, the mean values of the kinetic
parameters are chosen according to Table 1.

Table 1. Mean values of the kinetic parameters.

Parameter c1 c2 c3 c4 c5 c6

Mean (s−1) 0.500 0.050 0.100 0.001 0.030 0.008

We first analyzed convergence of the VBEM algorithm
using the network from Fig. 2a and assuming a hetero-
geneity over three out of the six parameters (i.e., c3, c5 and
c6). The results from Fig. 3 indicate that the algorithm is
able to correctly identify the extrinsic noise parameters
αi and βi in presence of heterogeneity. In case of the
homogeneous reactions, both αi and βi diverge towards
infinity, corresponding to a CV of zero and a finite mean
of αi/βi. Furthermore, we find that in case of the hetero-
geneous reactions, only very few iterations are necessary
until convergence is achieved.
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Fig. 3. Convergence of the VBEM algorithm. The al-
gorithm was applied to M = 30 cell trajectories
between zero and 200min with c3, c5 and c6 being
heterogeneous with CVs 0.5, 0.3 and 0.4, respectively.
The algorithm was ran for 50 update iterations. The
curves correspond to expected values of the respective
quantity (i.e., αi, βi).

Correct identification of the heterogeneous reactions de-
pends on several parameters such as the population size
M or the degree of intrinsic noise. In Fig. 4 we analyze
the detection robustness of a single reaction (i.e., the
gene-activation event) as a function M . In particular,
we computed the ratio of positive detections using 20
independent runs (see figure caption for fuller details). In
accordance with our expectations, the results demonstrate
that a robust detection of extrinsic variability is possible
if enough cells are in place (e.g. around M > 100 in this
case).
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Fig. 4. Detection robustness as a function of the popu-
lation size. Probabilities for correct detections were
computed for different population sizes (i.e., between
5 and 200 cells) using 20 independent runs. Circles
denote mean values and whiskers indicate their stan-
dard errors (SEM).

Similarly, Fig. 5 shows the probability of successful detec-
tion as a function of both intrinsic and extrinsic variabil-
ity. Note that intrinsic noise of a reaction firing process
scales inversely with its kinetic parameter. Again con-
sidering the gene-activation reaction, we computed the
detection probabilities for three different values of c1 (i.e.,
the intrinsic noise of the expression system) and several
degrees of heterogeneity (see figure caption for further
details). The parameters c2 corresponding to the gene-
deactivation event was adjusted such as to yield a constant
ratio c1/c2.
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Fig. 5. Detection robustness as a function of intrinsic
and extrinsic noise. We computed the rate of positive
detection for different values of c1 yielding different
levels of intrinsic noise. For each c1 we computed the
detection robustness for several degrees of extrinsic
variability (i.e., CVs between 0.05 and 1) using 20
independent runs. Circles denote mean values and
whiskers indicate their standard errors (SEM).

We found that in presence of significant intrinsic noise
and only moderate degrees of extrinsic noise, the algo-
rithm facilitates the sparsity constraint and hence, yields
negative results. In contrast, when decreasing the level of
intrinsic noise, the algorithm is widely able to detect the
heterogeneity (see Fig. 5).

4. CONCLUSION

Recent inference approaches that account for extrinsic
variability (Zechner et al. [2012, 2014]) are based on static
model assumptions, which means that one has to antici-
pate the events that are heterogeneous among individual
cells. In this work we lay out a computational framework to
automatically detect the events that are characterized by
extrinsic variability using time-lapse data. We show that
such a scenario can be understood as a sparse learning
problem, which we solve using a variational Bayesian infer-
ence scheme. We validate the approach under the simplify-
ing assumption of complete data, generated from a model
of eukaryotic gene expression. The framework is currently
extended for the use with real-world experimental data.
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