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Abstract: While the problem of optimizing traffic light phases dates back to the fifties, in
the daily practice the optimal solutions are often still determined by means of deterministic
approaches that assume to know exactly the incoming traffic flows and the other intersection
parameters. In this framework, the problem of parameter uncertainty is normally neglected, and
the flow variability is only taken into account by the responsive traffic light plans. In this paper,
a hybrid model of traffic light dynamics, and a global sensitivity analysis approach are proposed
with the aim of providing a methodology for evaluating the performance robustness of different
traffic light optimization approaches with respect to parameters uncertainty and variability. To
this end, two well known solution approaches are compared and discussed by means of a real
world case study.

Keywords: Modeling and simulation of transportation systems; Automatic control,
optimization, real-time operations in transportation

1. INTRODUCTION

The problem of optimizing traffic light phases dates back
to the fifties (Webster [1958]). Since there, different so-
lutions and strategies (Papageorgiou et al. [2003]), have
been proposed for large scale networks. Valuable examples
are TRANSYT (Robertson [1969]) and SCOOT (Hunt
et al. [1982]), which were characterized by limited traffic-
responsive capabilities, or OPAC Gartner [1983], PRO-
DYN (Henry et al. [1984]) and RHODES (Mirchandani
and Head [2001]) which, on the contrary, implemented
traffic-response strategies.

However, in the daily practice the optimal solutions are of-
ten still determined by means of deterministic approaches
that neglect the problem of parameter uncertainty. In addi-
tion, in the common practice, the deterministic design ap-
proaches proposed by Webster [1958], Allsop [1971, 1976],
Improta and Cantarella [1984] for isolated intersections,
are still widely used.

In parallel, it has been developed the general theory of
hybrid systems, i.e., of those systems characterized by two
kinds of states: normal states whose variation is governed
by a set of differential equations, and macro-states whose
change is driven by the occurrence of particular conditions
or external events (Lygeros et al. [2003]). In this frame-
work, urban transportation networks and intersections,
together with the relevant traffic lights, can be suitably
modeled as hybrid systems with macro-states consisting of
different set of flows enabled to cross the intersection, and
different traffic light signals. The macro-state transitions

are driven by the changes of traffic light signals (Febbraro
and Sacco [2014], Basile et al. [2012], Kim et al. [2008].

In this paper, a framework for evaluating the sensitivity of
the performances of two common optimization approaches
is defined, based on the simulations of a hybrid model
of signalized intersections. In particular, the basic sensi-
tivity analysis performed in Febbraro and Sacco [2014]
is enhanced via the so called global sensitivity analysis
proposed in Saltelli et al. [2010]. As regards the signal
settings optimization models considered in this paper, they
consists of the SIGCAP model (Allsop [1976]) and the
Phases’ Lengths and Sequence (PLS) model (Improta and
Cantarella [1984]).

The main result of this paper results to be the definition
of a framework for evaluating the effects of the uncertainty
of intersection parameters on the optimal performance. In
doing so, it is worth saying that the considered approach
is not local, being able, on the contrary, to consider
all the variability range of the uncertain parameters,
without approximations (Wainwright et al. [2014]). By
means of the results of this sensitivity analysis, it is
possible to identify those parameter whose variability
should be explicitly taken into account in the statement
of traffic light optimization problems.

The paper is organized as follows: after a brief recall of
the considered traffic light optimization problems (Sec. 2)
and of the traffic light hybrid model (Sec. 3), the global
sensitivity analysis approach is introduced (Sec. 4). Then,
the proposed sensitivity analysis is applied to a real world
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Fig. 1. Shape of the flow departing from the queue at the
access i.

case study consisting of a real world intersection in the
Italian city of Benevento (Sec. 5).

2. TRAFFIC LIGHT OPTIMIZATION MODELS

In this section, the considered optimization models for
isolated intersection are briefly recalled. To this aim,
consider the shape of a generic flow ψi(t) departing from
the queue at the access i depicted in Fig. 1. With reference
to such a figure, let:

• si be the saturation flow of the access i, that is,
the maximum number of vehicles that can cross the
intersection per unit time;

• gi, ai and ri be the durations of the green, amber,
and red signals for the access i;

• tC = gi + ai + ri be the traffic light cycle time;
• γi and ǫi be the starting time of the green signal
and the ending time of the amber signal for the flow
departing from the access i, respectively;

• Ni be the total number of vehicles leaving the queue
at the access i, during a whole traffic light cycle;

• τi be the so-called lost time at the access i, repre-
senting the departing inertia of vehicles which do not
move instantaneously at the beginning of the green
signal, and the stopping inertia of vehicles which
do not stop instantaneously at the beginning of the
amber signal;

• gEi = gi + ai − τi is the so-called effective green.

In addition, fi is the is the instantaneous input flow
arriving at the access i, pk, k = 1, 2, . . . ,K, is the length
of the kth phase of the traffic light, and ∆ is the phase
matrix, whose generic element δi,k is equal 1 if the flow at
access i is enabled to cross the intersection during phase
k, and 0 otherwise. With this definition, it is possible to
state

gi + ai =

K
∑

k=1

δi,kpk, ∀i. (1)

Finally, let M be the compatibility matrix, whose generic
element mi,j is equal 1 if both the flows at accesses i and
j can safely cross the intersection at the same time, and 0
otherwise.

As regards the intersection performances, consider the
intersection capacity defined as

ξ = min
i
{ξi} = min

i

{

sigEi

fitC

}

, (2)

that is, the minimum among the ratios between the
number of vehicles departing from access i during the
green/amber phase and the number of vehicles arriving
at i during a cycle, computed for all the accesses.

In the following, two particular capacity maximization
problems are described. In doing so, for the sake of simplic-
ity, only the fixed cycle time formulation are considered,
although it is easy to extend the proposed sensitivity
analysis to other more general optimization problems.

To conclude, it is worth underlining that the optimal
timings are computed by setting the incoming flows, the
saturation flows, and the lost times to their nominal value.
Therefore, these models provide nominal values of the
optimal capacities.

2.1 Capacity Maximization (SIGCAP)

The first considered optimization model consists of the
maximization of the intersection capacity given the phase
matrix ∆. The Linear Programming (LP) formulation of
this problem is

max
pk

min
i
ξi

s.t. tC =
∑

k

pk

gEi =
∑

k

δi,kpk − τi ∀i

ξi =
sigEi

fitC
∀i

gEi ≥ 0 ∀i

(3)

where the phase lengths pk, k = 1, 2, . . . ,K are the op-
timization variables. Such a problem, known as SIGCAP,
has been proposed in Allsop [1976].

2.2 Phases’ Lengths and Sequence (PLS) Optimization

The second considered problem consists of the general-
ization of the problem in Eqs. (3), by means of the fur-
ther optimization of the sequence of the phases (Improta
and Cantarella [1984]). Considering two consecutive traffic
light cycles are considered at a time, the Linear Integer
Programming (LIP) formulation of this problem results to
be

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8776



max
pk

min
i
ξi

s.t. gEi = ǫi − γi − τi ∀i
{

ǫj ≤ γi +Mωi,j

ǫi ≤ γj +M(1− ωi,j)
∀i, j|mi,j = 0

ξi =
sigEi

fitC
∀i

gEi ≥ 0 ∀i

ǫi ≥ γi ∀i

ǫi ≥ 0 ∀i

ωi,j ∈ {0, 1} ∀i

−tc ≤ γi ≤ tC ∀i

(4)

where the optimization variables are the starting time (γi)
and ending time (ǫi) of the interval during which the access
ican cross the intersection, ∀i. In this formulation, M is
an high constant representing infinite, and ωi,j are binary
“switching” variables associated to the null elements of
the compatibility matrix. If ωi,j = 1 (resp., ωi,j = 0), the
access i is enabled before (resp., after) the incompatible
access j.

3. THE SIMULATION MODEL

In this section, after a brief introduction on hybrid sys-
tems, the model of the hybrid dynamics of a generic
intersection is described.

3.1 Basics on Discrete Event and Hybrid Systems

Hybrid Systems (HS) can be thought of as the most general
systems, gathering ordinary Time Driven Systems (TDS),
and Discrete Event Systems (DES) at a time.

In this framework, on one hand, TDS are the well-known
systems whose state variables assume real numeric values,
and whose dynamics is described by differential equations.
The dynamics of flows along road stretches is a valuable
example of TDS.

On the other hand, DES can be defined as discrete-state
event-driven systems where the evolution of the state vari-
ables, which are not necessarily numeric, depends entirely
on the occurrence of asynchronous, sometimes stochasti-
cally predictable, events. In DES, events can be identified
with specific actions (for instance, somebody presses a
button), with spontaneous occurrences dictated by nature
(for instance, a computer goes down for whatever reason
too difficult to figure out), or with the results of several
conditions which are suddenly all met (for instance, the
fluid in a tank exceeds a given value).

Traffic lights are valuable examples of DES, being char-
acterized by discrete states corresponding to the different
“colors” shown to queues at the accesses of the signal-
ized intersection. The transitions among these states are
instantaneous and, in general, asynchronous, especially
when traffic lights perform responsive plans, i.e., when the
lengths of the phases are changed continuously to optimize
the traffic behavior, based on real time traffic measures.

δi,kqi(t) = fi -si

qi(t) = 0

e2
e1

x2

x1

Fig. 2. State diagram with time-driven dynamics of a single
access.

In conclusion, HS are those systems gathering different
time-driven dynamics, each represented by a different set
of differential equations associated with a single state
macro-state; when the macro-state changes due to the
occurrence of an event, the time-driven dynamics results
to be represented by a different set of equations. In the
following section, it will be shown the representation of
intersection dynamics via a HS model.

3.2 Hybrid Model of an Isolated Intersection

The queue dynamics at a generic access i of an intersection,
during the generic phase k of the traffic light, is modeled
by the equation

q̇i(t) =

{

fi − siδi,k if qi(t) > 0

0 if qi(t) = 0
∀i (5)

and can be represented by means of the state diagram in
Fig. 2, where::

• e1 is the event representing the reaching of the con-
dition q(t) = 0, when δi,k = 1;

• e2 is the green-to-red switch event of the signal of the
access i, when qi(t) = 0.

Note that not all these events are feasible in all the states:
in particular, the event e1 can occur only when the access
i is enabled and qi(t) > 0, whereas e2 can occur only if
qi(t) = 0. Moreover, e2 can occur only at fixed instants
determined by the signal plan, whereas the event e1 can
occur at a variable time depending on the values of fi, si,
and qi(t).

As regards the model of the whole intersection in Fig. 3,
the relevant model has been already introduced in Feb-
braro and Sacco [2014], where the complete state diagram
is also reported and discussed.

By means of this model, it is possible to compute the
samples that feed the sensitivity indexes computation
described in the following section.

4. SENSITIVITY ANALYSIS

As mentioned, the problems described in Sec. 2.1 and
Sec. 2.2 assume that all the intersection parameters are
perfectly known and constant. Nevertheless, in real world,
they are not. In fact:

• the incoming flows fi are estimated by measures or
by assignment processes. In any case, while the mean
values are generally considered in the traffic light
optimization, such flows vary continuously;
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Fig. 3. An example of intersection in the city of Benevento,
Italy.

• the saturation flows si mainly depend on the geomet-
rical layout of the intersection and on the composition
of the queues (i.e., on the kind of vehicles), that can
not be perfectly forecast;

• the lost times τi depend on the geometrical layout
of the intersection and on the “aggressiveness” of
drivers. Hence they are difficult to determine and are,
in general, variable.

The target of the following analysis is to asses the impor-
tance of the incoming flows, the saturation flows, and the
lost times (hereafter generally indicated as input param-
eters), on the intersection capacity. In this analysis, it is
assumed that the traffic light timing is a-priori determined
via the optimization problems in Sec. 2.1 and Sec. 2.2,
whose solution has been computed by considering the
nominal values of the input parameters.

In the next section, the definition of the considered indexes
are briefly recalled. For a further comprehension of such
indexes, the reader may refer to Saltelli et al. [2010], where
the theoretical background is defined, or to Wainwright
et al. [2014] where a comparison between different indexes
is performed.

4.1 Indexes definition

Consider the intersection capacity ξ in Eq. (2). The fol-
lowing analysis aims at understanding what happens to ξ
when an input variable is set to a specific value, whereas
the others are free to vary randomly. To fix the ideas,
assume that the incoming flow at access i is fixed, that
is, fi = f i, whereas the other incoming parameters are
considered to be stochastic variables.

Then, let σ2

∼fi
(ξ|f i) be the residual variance of ξ com-

puted with respect to the variability of all the parameters
except fi. Obviously, such a variance is conditioned by the
particular value f i assumed by the flow fi.

Moreover, let σ2(ξ) be the total variance of ξ, computed
when all the inputs can vary. With these definitions,
σ2

∼fi
(ξ|f i) is expected to be as smaller than σ2(ξ) as bigger

is the contribution of variability of fi on the variability
of ξ. In other words, fixing the parameter that affects
the capacity the most, greatly reduces the variance of the
capacity.

To avoid the dependence of the variance σ2

∼fi
(ξ|f i) on

the specific value f i, the relevant mean Efi [σ
2

∼fi
(ξ|f i)],

computed over all the admissible values of fi, is considered
in place of it. Again, the more significant is contribution
of the variability of the flow fi on the variability of the
capacity, the smaller is the expectation Efi [σ

2

∼fi
(ξ|f i)],

since it results to be the mean of only small (positive)
values.

Furthermore, since

σ2(ξ) = Efi [σ
2

∼fi
(ξ|f i)] + σ2

fi
(E∼fi [ξ|f i]), (6)

it turns out that for fi to be an important factor on the
variability of the capacity, the term Efi [σ

2

∼i(ξ|fi = f i)]

has to be small and, consequently, σ2

fi
(E∼fi [ξ|f i]) tends

to coincide with the total variance σ2(ξ).

Therefore, is it possible to define the first-order sensitivity
index of fi as

Sfi =
σ2

fi
(E∼fi [ξ|f i])

σ2(ξ)
∈ [0, 1]. (7)

which is always positive and as closer to 1 as greater is the
influence of fi on the capacity ξ.

Then, while the index in Eq. (7) considers only the first
order influence of the variable fi, in many cases the effects
of the variability of such a parameter may be hidden in
other parameters, thus resulting into second, or higher,
order effects. In other words, a low value of Si does not
necessarily imply that the corresponding parameter has
scarce effect on the output variance. In fact, since it might
considerably contribute to the total output variance, by
means of its combination with the other parameters.

To tackle with this problem, consider the total sensitivity
index

STfi = 1−
σ2

∼fi
(Efi [ξ| ∼ fi])

σ2(ξ)
(8)

which provides the sum of the effects of any order in which
the factor fi is involved, is also considered. In Eq.(8), the
term Efi [ξ| ∼ fi] is the mean (over all the values of fi) of
the values of the capacity obtained fixing fi and allowing
all the input parameters to vary, and σ2

∼fi
(Efi [ξ| ∼ fi]) is

the relevant variance.

The more ξ is sensitive to fi, the more Efi [ξ| ∼ fi] and
σ2

∼fi
(Efi [ξ| ∼ fi]) are small. Hence, in this case, the total

sensitivity index STfi tends to 1.

To conclude, it is worth saying that the numerical values of
these indexes can be computed by means of approximated
formulas based on N repeated simulations that suitably
provide samples for applying the sample mean and sample
variance expressions, as explained in Saltelli et al. [2010].

5. CASE STUDY

In this section, the application of the sensitivity analysis to
a real world case study is described. To this end, consider
the scheme depicted in Fig. 3 representing a real world
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Table 1. Parameters characterizing the inter-
section in Fig. 3.

O/D pairs A/B A/D C/D E/B E/D

Index i = 1 i = 2 i = 3 i = 4 i = 5

f
i
(veh/hour) 127 142 13 391 440

si (veh/hour) 1200 1200 1200 1200 1200

τi (s) 3 3 3 3 3

Table 2. Green time for the accesses of the
intersection in Fig. 3.

i = 1 i = 2 i = 3 i = 4 i = 5

SIGCAP 11.29 s 11.29 s 28.71 28.71 s 28.71 s

PLS 11.29 s 10.42 s 28.71 s 25.84 s 28.71 s

Table 3. Capacities of the accesses of the in-
tersection in Fig. 3. The whole intersection

capacity is put into evidence in bold.

i = 1 i = 2 i = 3 i = 4 i = 5

SIGCAP 1.69 1.9596 59.32 1.97 1.69

PLS 1.75 1.75 59.3181 1.75 1.75

intersection in the city of Benevento, Italy. The relevant
nominal incoming flows f i have been determined by means
of an assignment process on the whole transportation net-
work of Benevento, and are reported in Tab. 1. Moreover,
the nominal saturation flows si have been determined by
ad-hoc measures. As regards the traffic light plans, they
have been computed via the aforementioned SIGCAP and
PLS optimization models. Then, the relevant phase and
compatibility matrices are

∆fix =











1 0
1 0
0 1
0 1
0 1











, and M =











1 1 1 0 0
1 1 1 0 1
0 1 1 1 1
0 0 1 1 1
0 1 1 1 1











. (9)

In this framework, ∆fix is the fixed matrix considered in
the implementation of the SIGCAP optimization problem,
whereas the optimal phase matrix determined with the
PLS problem results to be

∆opt =











1 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 1 1











(10)

Then, for what concerns the optimal timings, the solu-
tions of the problems in Sec. 2.1 and Sec. 2.2, computed
assuming tC = 40 s, i reported in Tab. 2 and Tab. 3.

As regards the input data for the sensitivity analysis, it is
worth saying that:

• the traffic flows fi arriving at the incoming direction
i, ∀i, are assumed to be stochastic variables with
uniform distribution Ui(0.7f i, 1.3f i), ∀i;

• the saturation flows si of the incoming direction i,
are assumed to be stochastic variables with uniform
distribution Ui(0.7si, 1.3si), ∀i;

• the lost times τi of the incoming direction i, are
assumed to be stochastic variables with uniform dis-
tribution Ui(0.7τ i, 1.3τ i), ∀i.
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Fig. 4. Total sensitivity of incoming flows.

5.1 Numerical Results

As regards in numerical results, consider the graph de-
picted in Fig. 4 and Fig. 5, and the values reported Tab. 4
and Tab. 5. Note that, due to the negligible incoming flow
at the access i = 3, the relevant indexes results to be null.
Such a phenomenon depends of the fact that the capacity
of the whole intersection never coincides with the one of
access i = 3, which is very high (Tab. 3). In other words,
the intersection capacity is insensitive to the uncertainty
of the parameters characterizing such an access. For this
reason, the relevant graphs are not reported.

As regards the depicted graphs, they shows the shapes of
the total sensitivity indexes of the incoming flows, com-
puted with respect of the number of simulated samples. It
is easy to note that, three thousand samples can be enough
for computing stable indexes, allowing to consider the
N th sample as representative of the relevant indexes. Note
that similar results are obtained for the all the computed
sensitivity indexes.

For what concerns the index values, in Tab. 4 and Tab. 5
it is possible to note that:

• the variability of the lost time is negligible in all the
cases. This is the reason why the relevant graphs are
not reported;

• in general, the sensitivity indexes computed with the
PLS optimal solution are better than those computed
with the SIGCAP optimal solution;

• the access i = 2 is characterized by the highest
indexed in all the cases;

• the indexes are greater for the accesses with higher
traffic flows (i = 2, i = 5).

As a general comment, it is worth saying that the to-
tal sensitivity indexes of incoming and saturation flows
are relatively high, meaning that the relevant variabil-
ity should be explicitly considered in the optimization
problem statement. On the contrary, the possibility of
neglecting the lost times can allow a significant reduction
of the optimization variables in stochastic programming
formulations of capacity optimization.
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Table 4. Sensitivity index (in bold the highest index of each parameter).

f1 f2 f3 f4 f5 s1 s2 s3 s4 s5 τ1 τ2 τ3 τ4 τ5

SIGCAP 0.012 0.148 0 0.048 0.07 0.058 0.154 0 0.056 0.119 0.008 0.011 0 0.003 0.003

PLS 0.014
0.095

0 0.027 0.027 0.032
0.097

0 0.031 0.063 0.007
0.0009

0 0.002 0.00
(-35%) (-37%) (-18%)

Table 5. Total sensitivity index (in bold the highest index of each parameter).

f1 f2 f3 f4 f5 s1 s2 s3 s4 s5 τ1 τ2 τ3 τ4 τ5

SIGCAP 0.124 0.293 0 0.154 0.234 0.145 0.342 0 0.185 0.268 0.022 0.057 0 0.004 0.004

PLS 0.078
0.231

0 0.108 0.158 0.094
0.279

0 0.137 0.183 0.015
0.039

0 0.002 0.003
(-21%) (-18%) (-31%)
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Fig. 5. Total sensitivity of saturation flows

6. CONCLUSIONS

In this paper, a hybrid model of signalized intersection has
been introduced and used for evaluating, via simulation,
the performances and the relevant sensitivity of two well-
known optimization approaches. The performed analysis
shows that the PLS optimization approach provides, in
general, the best results in terms of both performance
and robustness. In addition, it has been shown how the
proposed modeling and analysis framework can be suitably
used for identifying those parameters that have to be
determined with high accuracy or explicitly considered in
the optimization problems, and those whose uncertainty is
negligible. In this connection, to tackle with the parameter
uncertainty and variability, work is in progress to refor-
mulate the considered optimization problems in a suitable
stochastic stochastic programming framework.
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