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Abstract-This paper considers a pursuit-evasion game for non-holonomic systems where a number of
pursuers attempt to capture a single evader in a bounded connected domain. The problem is challenging
because all vehicles have the same manoeuvring capability and are subject to turn radius constraints
making them non-holonomic systems. The paper initially presents simple and alternate proofs for
results existing in the literature that guarantee capture for holonomic systems. These results that are
based on the minimization of safe-reachable area (the set of points where an evader can travel without
being caught) are then extended to non-holonomic systems. However, solving such a problem exactly
is computationally intractable. Therefore, the paper proposes a computationally efficient algorithm to
obtain an approximate solution to the safe-reachable area minimization problem where the pursuers aim
to minimize the safe-reachable area of the evader, while the evader chooses control actions to maximize
it. Also proposed is an alternative approach that uses a cooperative strategy based on a pure proportional
navigation law to capture the evader. In the process, an evader strategy which is superior to those based
on the minimization of safe-reachable area is identified. The paper evaluates the proposed algorithms
through numerical simulations.

Keywords: Pursuit-evasion games, safe-reachable sets, pursuit and pure proportional navigation
guidance laws, capaturability.

1. INTRODUCTION

This paper considers pursuit-evasion games for systems of
unmanned aerial vehicles (UAVs) in which multiple pursuers
try to capture a single evader. Solutions of pursuit-evasion
games are useful in many civilian and military applications.
Broadly speaking, the capture problem can be defined as two
sub-problems: (i) encircle, and (ii) grasp. In the encircling
problem, a group of UAVs is required to make a formation
around an evader. In the grasping problem, UAVs are required
to get close enough to an evader to perform some sophisticated
task. The focus of this paper is cooperative capture of an evader,
where the pursuers and the evaders have the same speed and
manoeuvring capabilities.

The problem of the pursuit-evasion game can be posed as a
differential game and the solution can be obtained by solving
the associated Hamilton-Jacobi-Isaacs (HJI) partial differential
equations (Isaacs, 1965). A single pursuit and a single evader
problem where the evader and pursuer have equal speeds is
treated from this point of view in Berkovitz (1975). However,
as is well known, HJI suffers from the curse of dimensionality
and is extremely difficult to solve, especially in real-time when
the number of players increases.

The pursuit-evasion game for holonomic systems in a polyg-
onal domain, where the pursuers and the evader have same

maximum speed constraint, was studied in Isler et al. (2005). In
Huang et al. (2011), the authors proposed a minimization of the
safe-reachable area of the evader in order to capture an evader
confined to move in a convex domain in finite-time, when the
pursuers and the evader are assumed to move with same speed.
To achieve this, they computed a gradient of the safe-reachable
area using geometric properties with a Voronoi partition ap-
proach, and made each pursuer move in the negative gradient
direction. Inspired by their work, we first propose a similar
strategy for non-holonomic systems. However, computing safe-
reachable area for a non-holonomic vehicle with minimum ra-
dius of turn is computationally intensive. In such situations, the
philosophy of Model Predictive Control (MPC) theory can be
used to reduce the computational burden. For computing a safe-
reachable set/area for non-holonomic systems, we discretize the
given domain into a fixed number of cells and determine the
number of cells that are safe to visit using Dubins distance
(Dubins, 1957) – minimum path length of a vehicle, with a
constant speed and a minimum turn radius constraint, from the
current position to a cell center. Then we propose an algorithm
based on MPC to obtain computationally efficient solutions.
The algorithm tries to provide a pursuer strategy that results
in the minimization of the safe-reachable area of the evader.
The algorithm is expected to perform well if we use a good
approximation to the safe-reachable area and have a reasonable
model of the evader’s strategy.
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Alternatively, the problem of target or evader capture can
be studied using tools from the missile guidance literature
(Zarchan, 2002; Shneydor, 1998). In missile guidance, using
geometric properties and kinematics equations, simple laws are
derived to intercept a target. The pursuit and the pure propor-
tional navigation (PPN) laws are very popular in this respect.
The idea behind the PPN guidance law is to keep the rate of
rotation of the line-of-sight (LOS), the vector between missile
and target, at zero and then to follow a collision course for
interception. The PPN guidance law applies lateral acceleration
proportional to the rate of rotation of the LOS. There are works
in the literature that have used variants of pursuit (Belkhouche
et al., 2005) and PPN (Jeon et al., 2010) guidance laws for
cooperative capture of target/evader. However, these works as-
sume that the pursuers have a speed advantage over the evader.
As missiles usually have higher manoeuvrability (and speed)
capabilities compared to a target, interception can be guaran-
teed. In this paper however, the pursuers are subject to the
same speed constraint as the evader, and therefore, they cannot
always satisfy the conditions required by PPN guidance law
to achieve interception. However, because the game is being
played in a closed domain, we can take advantage of this and try
to attain favourable conditions by employing a cooperative PPN
law. The cooperative PPN law ensures that one of the UAVs
satisfies the collision triangle conditions, and hence that capture
will occur. In order to escape, the evader reacts to the closest
pursuer by applying the inverse-PPN law. We show empirically
that the proposed strategy performs better than those based on
the minimization of safe-reachable areas.

The rest of the paper is organized as follows. Section 2 formally
describes the pursuit-evasion problem. Section 3 presents a cap-
turing strategy for holonomic systems based on the minimiza-
tion of safe-reachable areas. Section 4 proposes two strategies
for non-holonomic systems. The first one extends the work of
Huang et al. (2011) and the second one uses an idea from
guidance theory. Numerical results are presented in Section 5
and concluding remarks are presented in Section 6.

2. PROBLEM STATEMENT

Consider a game of N pursuers and one evader taking place in
the interior of a polytope Ω ∈ R2. The aim of the pursers is
to capture the evader by having one pursuer within Euclidean
distance rc of the evader during the game. The equations of
motion of any player (pursuer or evader) are given as

ẋi = vcosψi

ẏi = vsinψi

ψ̇i =
ui

v

(1)

where i ∈ (P,e), P = {1, . . . ,n} is the set of pursuers and e
denotes the evader. [xi, yi] ∈ Ω is the position of the ith player,
v is the speed of the ith player (we assume the same speed for
all players), ψi is the heading angle of the ith player, and ui ∈U
represents lateral acceleration, which acts as a control input for
the ith player. The set U represents a set of feasible control
inputs and we assume that all players are subject to identical
input constraints. The minimum distance from the evader to a
pursuer at time t is defined as follows

rmin(t), min
i
‖(e(t)− pi(t))‖ (2)

Assuming that a pursuer can capture at distance rc, the capture
condition for the pursuers is then given by

rmin(tc)≤ rc, for some tc ≥ 0 (3)

With this, the capture problem for a group of pursuers can now
be defined.

Problem 1. Given the initial configuration e(0), pi(0) ∈Ω with
rmin(0) > rc, find a feasible set of pursuit inputs that satisfies
the capturability condition (3) in finite time.

3. CAPTURING FOR A HOLONOMIC SYSTEM

As pursuers and evader have the same manoeuvrability capa-
bilities, the problem is challenging. For holonomic systems,
Huang et al. (2011) proposed a solution based on minimizing
the safe-reachable area. In this section, we present a solution
based on a pursuit strategy and derive the conditions for cap-
turability.

The Voronoi partition approach is an efficient tool for comput-
ing safe-reachable areas for holonomic systems if all payers
have the same speed Gavrilova (2008). A partition/cell is com-
puted for each player in the domain Ω based on the positions
of all players. In a particular Voronoi partition, the associated
player can reach any point in the partition before any of the
other players. Let V(Ω) = {Ve,V1, . . . ,Vn} be the Voronoi par-
tition of Ω generated by the points {e, p1, . . . , pn}:

Ve = {p ∈Ω ‖ p− pe ‖≤‖ p− pi ‖,∀, i ∈ P}
Vi = {p ∈Ω :‖ p− pi ‖≤

min(‖ p− pe ‖,‖ p− p j ‖),∀, i, j ∈ P, i 6= j}
From the above definition, it can be seen that the evader cell
Ve is a regular polygon and the area A of Ve can be calculated
using the coordinates of the vertices of Ve. Note that the area
A depends on the locations of the evader and its neighbouring
players. This is because neighbouring players can influence
relative positions of shared boundaries and thus control the
movement of vertices of the evader’s cell. Observing this fact,
the rate of change in A can be written as

dA
dt

=
∂A
∂e

ė+ ∑
i∈Ne

∂A
∂ pi

ṗi (4)

where Ne ⊂ P is the set of the evader’s neighbours. In order
to make dA

dt negative, we seek a strategy that enables each

player to move in a direction that is opposite to ∂A
∂ pi

, that means

ṗi =− ∂A
∂ pi

. Towards this, we propose a pursuit strategy in which
each player follows the command

ψ∗i = tan−1
(

yci− yi

xci− xi

)

(5)

where (xci,yci) is the centre point of the shared boundary (line
of control) and ψ∗i is the commanded heading. The above strat-
egy guides a pursuer towards the centre point of the shared
boundary. Next we prove that with the above mentioned strat-
egy, capture will occur. We first recall the following lemma
from Huang et al. (2011).

Lemma 3.1. For any i ∈ Ne, the gradient vectors in the local
frame are as follows.
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∂A
∂pi

= [αhi αvi ]

∂A
∂e

= [αhi −αvi ]

where αhi =−
Li
2 and αvi =

l2
i −(Li−li)2

2‖ri‖ . Here, Li is the length of
the line of control Bi, li is the length of the segment below the
LOS, and ‖ri‖ is the length of the LOS. These are also shown
in a schematic given in Figure 1.

Proof. The proof of the above lemma is given in Huang et al.
(2011).

p

e

c

Refθ
ψ

p
r

L - 
l

2
L

x (m)

y (m)

l

Figure 1. Pursuer-evader engagement geometry

For simplicity, we will drop subscript i from here onwards in
this section, and show that capture is possible even with just
one pursuer for a holonomic system.

Lemma 3.2. The pursuit guidance points in the negative of the
gradient direction ∂A

∂p .

Proof. Let α be the angle of the gradient vector ∂A
∂p , then

tanα =
αv

αh
=

l2−(L−l)2

2‖r‖
−L
2

=−2l−L
‖r‖

Let β be the angle in the relative frame which point towards the
mid point of the line of control B, then

tanβ =
(L/2)− l
(‖r‖/2)

=
L−2l
‖r‖

As αh ≤ 0 and −π
2 ≤ α ≤ π

2 , we have

β = π +α

Hence, the proposed strategy points in the direction of − ∂A
∂p .

Lemma 3.3. Under the proposed pursuit strategy, the area A sat-
isfies dA

dt ≤ 0 for any admissible evader control input. Further-
more, dA

dt = 0 if, and only if, the evader follows the following
command

ψ∗e = π + tan−1
(

yci− yi

xci− xi

)

Proof. The rate of change in A is given by

dA
dt

=
∂A
∂e

ė+
∂A
∂ p

ṗ

= [αh αv]

[

vcos(ψp−θ)
vsin(ψp−θ)

]

+[αh −αv]

[

vcos(ψe−θ)
vsin(ψe−θ)

]

where θ is the LOS angle and is depicted in Figure 1.

dA
dt

= [αh αv]

[

vcosβ
vsinβ

]

+[αh −αv]

[

vcos(ψe−θ)
vsin(ψe−θ)

]

= [αh αv]











−v
αh

√

α2
h +α2

v

−v
αv

√

α2
h +α2

v











+[αh −αv]

[

vcos(ψe−θ)
vsin(ψe−θ)

]

=−v
√

α2
h +α2

v +[αh −αv]

[

vcos(ψe−θ)
vsin(ψe−θ)

]

≤ 0

where equality holds if, and only if,

cos(ψe−θ) =
αh

√

α2
h +α2

v

sin(ψe−θ) =− αv
√

α2
h +α2

v

This can be achieved by setting

ψ∗e = π + tan−1
(

yci− yi

xci− xi

)

In order to demonstrate that capture occurs, we show that
the relative distance r between the pursuer and the evader is
decreasing even when the area A is kept constant. For this we
need the following lemma.

Lemma 3.4. If dA
dt = 0, then under the proposed pursuit strategy

the following holds

d
dt

r2 =−4v
r2

√
r2 +4s2

≤ 0

Proof.

d
dt

r2 = 2r(ė− ṗ)

= 2r(vcos(ψe−θ)− vcos(ψp−θ))
=−4rvcos(ψp−θ)

=−4v
r2

√

r2 +(L−2l)2
≤ 0

In this section, we have shown, using mathematical tools bor-
rowed from missile guidance theory, that capture based on a
pursuit guidance law can be achieved in finite time for a holo-
nomic pursuer-evader setting in a closed domain; see Huang
et al. (2011) for more details. We will use the evading strategy
presented in Lemma 3.3, with the addition of minimum turn
radius constraint, to evaluate the performance of our proposed
algorithm for a non-holonomic system in Section 5.
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4. CAPTURING FOR A NON-HOLONOMIC SYSTEM

This section first extends the idea of minimizing the safe-
reachable area to non-holonomic systems. The resultant prob-
lem is computationally intensive, and therefore we propose a
computationally efficient algorithm to obtain solutions. The
solution strategy involves the use of Model Predictive Con-
trol (MPC) philosophy and an efficient algorithm to approxi-
mately compute the safe reachable area. For the non-holonomic
pursuer-evader problem, we also propose a cooperative strategy
based on a Pure Proportional Navigation (PPN) guidance law
that is simple and easy to implement.

4.1 A cooperative algorithm to minimize safe-reachable areas

The idea of safe-reachable area minimization works in two
steps: (i) computing the safe-reachable area; and (ii) finding
control commands for each pursuer that minimize the safe-
reachable area of the evader. Towards this, we first define the
safe-reachable set of an evader in a non-holonomic setting as
follows

Se = {p ∈Ω | D(p, pi)−D(p,e)> 0} (6)

where D represents a function measuring the Dubins distance
from an evader (or a pursuer) to a point p Dubins (1957).
We now define a joint control input vector of all pursuers
u = [u1, . . . ,un]

T and pose the following optimization problem
for capturability:

J(u) = min
u∈Un

max
ue∈U

A(Se) (7)

where U is the set of allowable controls. U is bounded and
accounts for the non-holonomic constraint of minimum turn
radius or maximum turn rate. Here A(Se) represents the area
of the safe-reachable set Se. The main difficulty in solving
(7) is that there is no explicit method available to compute
A(Se). Secondly, any optimization algorithm would require the
evaluation of J(u) repeatedly to find the optimal solution J∗(u).
This makes the problem extremely difficult to solve, especially
in real-time. To obtain approximate solutions, we make ap-
proximations to A(Se) and then solve a simplified optimization
problem. Towards this, we present a computationally efficient
algorithm to approximately compute the safe reachable area of
the evader (see Algorithm 1). Then we solve the optimization
problem in (7) using MPC framework.

Algorithm 1 Safe Reachable Area Computation
Input: a set of discrete grids G ∈Ω, pi, e ∈Ω, ψi, ψe, O= /0,C= /0, the area
of one cell Ac

1: ie ← Find Cell(e,G)
2: if Dubins Cost(ie) ≥ 0 then
3: O← Include Cell(O, ie)
4: else
5: Ne← Find Neighbor(ie)
6: if Dubins Cost( j ∈ Ne,∀ j ∈ Ne) ≥ 0 then
7: O← Include Cell(O, j)
8: end if
9: end if

10: while O is not empty do
11: Ne ← Find Neighbor(O(1));
12: if Dubins Cost( j ∈ Ne,∀ j ∈ Ne) ≥ 0 then
13: O← Include Cell(O, j)
14: end if
15: C← Trans f er Element(O(1))
16: end while
17: Return the total area Â = Ac× | C |

The safe-reachable area for a non-holonomic system can be
computed using Dubins distance to all the points in Ω. As
Dubins distance from the ith player to point p depends both
on position and heading of the ith player, the task is computa-
tionally expensive. Moreover, the complexity increases as the
size of Ω increases. To compute the safe-reachable area in an
efficient way, we propose an algorithm that discretizes Ω into a
fixed number of grid cells G and determines the number of cells
that are safe to visit. The approximate area Â(Se) is obtained by
multiplying the area of a single cell with the number of safe
cells. Whether a cell c is safe to visit or not is determined using
the following cost function

JD(c) = min
i∈ P

D(c, pi)−D(c,e), c ∈G= 1, . . . , |G| (8)

If JD(c)> 0, then the cell c is declared safe to visit; this means
that the evader can reach the centroid of c before any other
pursuers. To determine the number of cells that are safe to visit
in G, one may have to compute the cost JD(c) at each grid point,
which is cumbersome when Ω is large. We employ a Dijkstra
type algorithm to calculate efficiently the number of cells that
are safe to visit without computing the cost at every grid point,
but checking the safe-reachability of only the neighbouring
cells of already checked cells, starting from the current cell or
a known safe cell.

The algorithm first checks whether the evader’s own cell is safe
or not. If the evader’s cell is safe to visit, then it is included
in an open set called O. If the cell is not safe to visit, then
it is discarded and cells that are in the neighbourhood of the
evader’s cell are evaluated to decide whether they are safe to
visit. Cells that are safe are included in O (steps 1-4). If no
cell is safe to visit, this implies that the evader cannot escape if
the group of pursuers employs an appropriate pursuit strategy.
Next, neighbours of the first element of O are processed to
decide whether or not to include them in O. Those neighbours
who have a positive cost are included in O and the rest are
discarded. Then the first element of the set O is moved into
another set C called the closed set. The process of evaluating
neighbours of the first element of O (to decide whether or not to
include them in O) and moving the corresponding first element
of O into C is continued until the set O becomes empty. At
the end, the set C contains all the cells which have positive
cost and are safe to visit. The approximated area is obtained by
multiplying the number of those cells in the set C with the area
of a single cell. Note that the accuracy of this approximation
depends on the discretization of Ω. With this, we can write the
simplified optimization problem from (7) as follows

Ĵ(u) = min
u∈Un

max
ue∈U

Â(Se) (9)

However, the problem still remains intractable. This is because
the optimization problem is combinatorial in nature, which
requires computing Ĵ(u) for all feasible control inputs and for
combinations of all these inputs. For the pursuers to success-
fully capture the evader, we have to drive A(Se)≈ Â(Se) to zero.
Instead of solving (9), we aim to find control actions for each
pursuer that ensure Â(Se)(t + 1) < Â(Se)(t). For this purpose,
we use the MPC philosophy in which we look ahead for fixed
steps and compute control commands sequentially. The steps of
the algorithm are given in Algorithm 2.

The algorithm presented above sequentially computes control
commands for each pursuer by solving the following simplified
optimization problem for each pursuer

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1980



Algorithm 2 Solving optimization to compte control inputs
Input: a set of discrete grids G ∈ Ω, pi(t), e(t) ∈ Ω,
ψi(t), ψe(t).
1: for i = 1 to n do
2: Set u j(t +1 : t +N−1|t) = 0,∀ j ∈ {i+1, . . . ,n,e}
3: Generate p j(t +N|t),ψ j(t +N|t), e(t +N|t),ψe(t +N|t)
4: Solve minui∈UD Â
5: Set ui(t +1 : t +N−1|t) = u∗i
6: Generate pi(t +N|t),ψi(t +N|t)
7: end for
8: Solve maxue∈UD Â
9: Return u and ue

Ji(ui(t)) = min
ui∈Ud

Ât+N(Se) (10)

where Ud , {−umax,− umax
2 ,0, umax

2 ,umax} is the discrete control
set, and we choose ui from the fixed set Ud to speed up the
algorithm. Although we have chosen five points for discretiza-
tion, one can choose more or less to obtain reasonable results.
When solving (10), we use a prediction horizon of N steps.
The optimization process assumes that while computing control
inputs for the ith player, the control inputs for the remaining
players are constant, and are given by

u j(t + k|t) =
{

0 j > i
u∗j(t) j < i. ∀ k = [1, . . . ,N−1], j 6= i (11)

Note that u∗j(t) is the optimal control input, already obtained

for the jth player by solving (10). Using the control inputs,
p j(t+N|t),ψ j(t+N|t), e(t+N|t) and ψe(t+N|t) are generated
to calculate Ât+N(Se) at time step (t +N). As the prediction
horizon (N steps) and the control set Ud are of fixed lengths,
it is possible to characterize a priori trajectories for each
input ui ∈ Ud . We compute trajectory templates T off-line for
each ui ∈ Ud and use them in the optimization process to
obtain pi(t +N|t),ψi(t +N|t) directly. This further speeds up
the algorithm as the optimization process chooses a template
trajectory that minimizes the cost function rather than running
the whole optimization with state equations as the constraint.
If no trajectory (template) satisfies Â(Se)(t + N) < Â(Se)(t),
then the corresponding player continues to travel in the same
direction.

In this subsection, we have presented a computationally ef-
ficient algorithm to solve the pursuit-evasion game while ac-
counting for turn radius constraints. However, the performance
of the algorithm will depend on the discretization of Ω to
compute the approximate area and the simplified optimization
problem posed in (10). To obtain meaningful solutions, one has
to choose appropriate values for the number of grid cells in Ω
and the length of the prediction horizon in (10).

4.2 A cooperative proportional navigation algorithm

As mentioned in the previous subsection, the bottleneck in
the approach lies in computing the safe-reachable area and
solving the associated combinatorial optimization (7). In this
subsection, we look at an alternative approach. To obtain simple
and effective solutions, we propose a cooperative law based on
a PPN law from missile guidance theory. In missile guidance,
the PPN law generates control commands proportional to the
rate of rotation of the line-of-sight (LOS) to ensure that the
LOS does not rotate in the body frame of a missile. The rate
of change in the LOS separation ri and the rate of rotation of
the LOS θ̇i for the ith pursuer are given by

ṙi = vcos(ψe−θi)− vcos(ψpi −θi)

θ̇i =
vsin(ψe−θi)− vsin(ψpi −θi)

ri

(12)

A zero rate of LOS rotation and a reducing LOS separation
will ensure interception or capture. These conditions are met
in missile guidance problems through the application of PPN
guidance law as missiles usually have a velocity advantage over
their targets. Since the evader and the pursuers have same speed
for the problem that we consider, we resort to a cooperative
capture strategy that is built upon some nice properties of the
PPN guidance law that we show below. The following two
lemmas sheds some light into why a cooperation can help in
a case where multiple pursuers are following an evader using
PPN guidance law.
Lemma 4.1. If a pursuer uses the PPN law to achieve capture
and the evader uses the inverse-PPN law to avoid capture, then
ψp = ψe are equilibrium points of (12) if ψp+ψe−2θ < π (we
drop the subscript ‘i’ here onwards for the sake of clarity).

Proof. Let V = 1
2 (ψe−ψp)

2 be the Lyapunov cost function.
Taking the time derivative along the trajectories of ψp and ψe,
we get

V̇ = (ψe−ψp)(ψ̇e− ψ̇p)

=−(ψe−ψp)2 N v θ̇

=−2Nv2(ψe−ψp)

r
sin(ψe−θ)− sin(ψp−θ)

=−4Nv2(ψe−ψp)

r
sin

(

ψe−ψp

2

)

cos

(

ψe +ψp−2θ
2

)

Noting that (ψe − ψp)sin
(

ψe−ψp
2

)

≥ 0, then V̇ ≤ 0 only if

ψp +ψe−2θ < π . If the latter is satisfied, then ψp and ψe will
attain the same value on reaching the equilibrium.
Lemma 4.2. If a pursuer uses the PPN law to achieve capture
and an evader is travelling on a straight line, then ψp = ψe are
equilibrium points of (12) if ψp +ψe−2θ < π .

Proof. The proof remains the same as in Lemma 4.1 except
ψ̇e = 0. Because of this, we get

V̇ =−2Nv2(ψe−ψp)

r
sin

(

ψe−ψp

2

)

cos

(

ψe +ψp−2θ
2

)

and the argument stays the same, which implies V̇ ≤ 0 only if
ψp+ψe−2θ < π . If this is satisfied, then ψp and ψe will attain
the same value to reach the equilibrium.

It can be seen from these two lemmas that if an evader applies
the inverse-PPN law or travels on a straight line, then pursuers
can attain the same heading if they satisfy ψp +ψe− 2θ < π .
Under the equilibrium condition ṙi = 0, the separation between
a pursuer and the evader will be constant at a distance that
depends on the initial conditions. As the evader is confined to
be in a bounded region, it is possible to employ other pursuers
so as to decrease the minimum of the LOS separations of the
evader with the pursuers. We give an algorithm for multiple
pursuers to capture an evader in a bounded region using PPN
guidance law in Algorithm 3.

The algorithm presented above asks each pursuer to apply the
PPN law if they are in the domain Ω. If any pursuer is about
to hit the boundary, which is predicted based on its path and
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Algorithm 3 Cooperative PPN algorithm
Input: pi(t), e(t) ∈Ω, ψi(t), ψe(t), Ω.
1: for i = 1 to n do
2: if pi(t + tc) 6∈Ω then
3: Generate ui to point towards the centroid of Ω
4: else
5: Set ui = N v θ̇i
6: end if
7: Find pi(t +N|t),ψi(t +N|t)
8: end for
9: Find j that min j∈P ‖(e(t), pi(t))‖

10: Set ue =−N v θ̇ j
11: Return u and ue

minimum turn radius (line 2), then the pursuer takes a minimum
radius turn until it points towards the centroid of Ω. This
ensures that no pursuers leave the region Ω. The evader chooses
the inverse-PPN law to avoid capture from the closest pursuer
when it is inside Ω. While performing evasive manoeuvres, the
evader should also remain within the bounded region. When an
evader is approaching a boundary, it can turn either clockwise
or anticlockwise to stay within Ω. The evader chooses that
direction of turn that maximizes its minimum distance to any
of the pursuers, assuming that the pursuers were to continue
in their previous paths without making any manoeuvres. It is
important to emphasis that we do not know the best evader
action but this particular choice seems reasonable. We believe
this is because the evader reacts to the closest pursuer. This will
be shown empirically in the next section.

Under the cooperative strategy as proposed in Algorithm 3, the
closest pursuer will force the evader to move in a straight line
as argued in Lemma 4.1. This will enable the other pursuers
to get closer to the evader while it is making a turn. In this
subsection, we have proposed an approach based on the PPN
law to capture an evader. In this process, we have also identified
that the inverse-PPN as a potential evading strategy, the efficacy
of which is empirically evaluated in the next section.

5. NUMERICAL RESULTS

In this section, we demonstrate the performance of our pro-
posed algorithms for non-holonomic systems by three exam-
ples. In the first example, the performance of minimizing the
safe-reachable area approach (Algorithm 2) is evaluated. In the
second example, the performance of the cooperative strategy
based on the PPN guidance law is evaluated. In the third exam-
ple, we present a comparative study. The equations of motion
of each player are given in (1).

For the safe-reachable based approach (Algorithm 2), we con-
sider a square region of 1km× 1km and discretize it into 100
cells, the size of each cell is 0.1km× 0.1km. The initial po-
sitions and headings of the pursuers are chosen randomly. A
snapshot of a discretized area with two pursuers and one evader
is given in Figure 2. We have also plotted trajectories of each
player in the figure. We consider a prediction horizon of one
second (N = 10 steps) in computing control commands. This
means that the algorithm updates control after each one second
and within the horizon the control is kept constant (constant
parametrization). We have considered four different scenarios
by increasing the number of pursuers from 2 to 5. The number
of the safe-reachable cells is plotted for each case in Figure 3.
It can be seen from the figure that the algorithm tries to find
the control inputs that reduce the safe-reachable area for the
evader. It can also be noticed that if we increase the number

of pursuers, then the time for capturing reduces significantly.
However, we can see that the area increases at some instances
during the game instead of decreasing. This is because there
is no control input ui ∈ Ud that minimizes the safe-reachable
area. This happens due to the discretization of U and due to
constraints on control inputs; hence, there is a sharp increase
in the number of cells, especially during the endgame, when
the pursuers and evader are close to each other. Note that the
performance of the algorithm depends on discretization of Ω
and U and the length of the prediction horizon. If we increase
the number of cells in Ω, then with more control inputs in Ud ,
especially during the endgame, there may exist control inputs
that may control the sharp increase in the number of safe-
reachable cells.
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Figure 2. Pursuit evasion scenario for two pursuers and one evader. The
region is discretized into 100 cells. The initial positions are shown by
triangles.
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to the prediction horizon.

As can be seen from Figure 3, the performance of the algorithm
suffers during the endgame mainly due to discretization. Hence,
we may have to fine tune our strategy during the endgame to
capture more quickly. In this paper, instead of switching to
another strategy during the endgame, we have looked at another
approach that is based on a PPN guidance law. The performance
of this approach is evaluated against three different evader
strategies: (i) the Voronoi partition approach, as described in
Section 3; (ii) minimizing (or maximizing for an evader) the
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safe-reachable area, as described in Algorithm 2; and (iii) using
the inverse-PPN law, as described in Algorithm 3. In each case,
a group of pursuers use Algorithm 3 to capture the evader.
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Figure 4. Pursuit evasion scenario for two pursuers and one evader.

Table 1. Simulation results, cooperative PPN strat-
egy versus different evasion strategies

Team size Over 20 runs
Voronoi Safe-reachable area inverse-PPN

Min Max Avg Min Max Avg Min Max Avg
2 27.7 150.7 69.9 16.5 110.5 58.6 57.5 225.8 114.4
3 6.0 76.3 42.1 10.9 76.8 37.4 25.1 245.6 70.9
4 12.2 63.3 37.2 12.5 53.4 32.8 20.4 93.9 50.3
5 5.0 60.2 29.7 5.7 51.2 32.1 11.7 135.8 49.5

Figure 4 shows trajectories of all players under different evader
strategies. It can be noticed from the sub-figures that in each
case a pair of pursuers capture the evader; the inverse-PPN strat-
egy looks to be superior compared to the other two strategies.
Under this strategy the pursuers take more time (86 sec) to
capture the evader compared to other strategies (76.3 sec for
Voronoi based approach and 43.8 sec for the safe-reachable
area based approach). To investigate this claim empirically,
we have conducted 20 runs for each case and summarized the
results in Table 1. It can be seen that the minimum, maximum,
and average times for capture are similar when the evader uses
strategies based on Voronoi and safe-reachable approaches.
However, it takes almost double the time for capture when
the evader uses inverse-PPN approach. This is because in the
cooperative PPN algorithm the evader has a superior strategy
in the way it reacts to the closest neighbour. In the Voronoi
based approach, the evader tries to maximize the safe-reachable
area based on only the position of each player. In the safe-
reachable area based approach, the evader tries to maximize the
safe-reachable area based on both the position and heading of
each player. In the cooperative PPN algorithm, the capture time
depends on attaining the desired collision formation geometry.
As we have considered the same manoeuvring capabilities for
pursuers and evader, it takes a little longer time to capture. In
spite of this, the proposed algorithm performs well and is able
to capture the evader.

Next, we evaluate the performance of the inver-PPN (evading)
strategy against the Voronoi and cooperative PPN capturing
approaches. For this purpose, we again carried out 20 runs and
summarized the results in Table 2. It can be seen from the
table that when the number of pursuers is low, the cooperative
PPN performs better as a pursuer strategy. However, when the

Table 2. Simulation results, inverse-PPN versus
different capturing strategies

Team size Over 20 runs
Voronoi Cooperative PPN

Min Max Avg Min Max Avg
2 22.1 480.9 100.3 16.3 766.8 128.6
3 12.6 135.1 46.8 25.1 208.0 62.4
4 2.4 90.7 39.9 10.6 216.0 61.9
5 21.4 249.9 55.0 9.3 86.8 37.4

number of pursuers is set to five, the Voronoi approach becomes
effective. This is because the Voronoi approach works in a
decentralized manner and in a small region an evader would
not have a place to escape. In the cooperative PPN approach,
all agents works similarly. Hence, we need a combination of the
safe-reachable area and cooperative PPN approaches to capture
an evader effectively. We will follow this up in our future work.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented cooperative algorithms for
a pursuit-evasion game in which multiple pursuers are trying
to capture a single evader. The game is considered in a two
dimensional bounded connected plane and all players are sub-
ject to the same speed and turn radius constraints. We have
initially presented a simple capturing strategy for holonomic
systems based on the idea of minimizing safe-reachable areas,
similar to the work presented in Huang et al. (2011), and using
a pursuit guidance law. Next, we have extended this idea to non-
holonomic systems and proposed an efficient algorithm for cap-
turability. Our approach discretizes the domain to compute ap-
proximate areas efficiently and then employs ideas from model
predictive control to compute the solution. The control inputs
are parameterized with a constant value over the horizon. As
the performance of the approach depends on the discretization
of the domain and the discrete control inputs, we have proposed
another approach based on the pure proportional navigation
(PPN) law. The cooperative PPN algorithm tries to capture the
evader by keeping the rate of rotation of the line-of-sight (LOS)
vector close to zero in each pursuer’s body frame. The perfor-
mance of the algorithm is validated in numerical simulations.
In future, we will try to fuse both approaches to get a better
capturing strategy. Moreover, we will extend the work to the
case where the state of the evader is not directly available to all
the pursuers.
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