
Stability of Consensus Extended Kalman

Filtering for Distributed State Estimation

Giorgio Battistelli ∗ Luigi Chisci ∗
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Abstract: The paper addresses networked estimation of the state of a nonlinear dynamical
system. It is shown how, exploiting a suitable consensus approach wherein prior and novel
information are dealt with in a separate way along with the extended Kalman filter linearization
paradigm, the resulting distributed nonlinear filter guarantees local stability under minimal
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is worked out in order to show the effectiveness of the considered consensus filter.
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1. INTRODUCTION

Consensus is a widely exploited tool for distributing com-
putations over networks in a scalable way. An especially
important application of consensus is networked state esti-
mation given measurements provided by a wireless sensor
network. The literature on the subject is quite vast and the
interested reader is referred to [4, 5, 6, 10, 11, 12, 14, 15]
and references therein for an overview of the different exist-
ing approaches. Recent work [1, 2] has introduced a linear
consensus Kalman filter with guaranteed stability under
minimal requirements of network connectivity and system
collective observability, i.e. observability from the whole
network but not necessarily from individual sensors. Such a
networked filter carries out in each node an update of infor-
mation with the local measurements followed by consensus
on the posterior information and then prediction. This ap-
proach, named consensus on information (CI), is, however,
somewhat conservative due to an unnecessary discount of
novel information, undergoing consensus combined with
the prior information. With this respect, it has been shown
how performance can be improved by weighting differently
the novel and the prior information in the consensus step
[3, 9]. In particular, for the resulting consensus filter, [3]
proves that stability in the linear system case still holds
under network connectivity and collective observability.

Following the guidelines of [3], the consensus filters of
[1, 2, 3, 9] can be readily extended to a nonlinear setting by
exploiting the Extended Kalman Filter (EKF) lineariza-
tion argument. The present paper provides a further con-
tribution by proving that such a family of consensus filters
guarantees local stability, under the same connectivity
and collective observability assumptions, in such a more
general nonlinear system setting. Thanks to this result, the
proposed consensus EKF emerges as an effective tool for
the solution of many practically relevant distributed non-
linear filtering problems like, e.g., distributed tracking of a
moving object given measurements of angle, range and/or

Doppler wireless communicating sensors spread over the
area of interest; such sensors, in fact, are highly nonlinear
and unable to individually guarantee observability.

The rest of the paper is organised as follows. Section
2 introduces the problem setting. Section 3 reviews the
considered family of consensus EKF algorithms for dis-
tributed state estimation and Section 4 analyses their
stability property. Section 5 demonstrates, via simulation
experiments, the effectiveness of such a consensus filter in
a nonlinear target tracking case-study. Section 6 ends the
paper with concluding remarks. All the proofs are omitted
due to space constraints.

2. PROBLEM SETTING

This paper addresses Distributed State Estimation (DSE)
over a sensor network consisting of two types of nodes:
communication nodes have only processing and communi-
cation capabilities, i.e. they can process local data as well
as exchange data with neighboring nodes, while sensor
nodes have also sensing capabilities, i.e. they can sense
data from the environment. Notice that communication
nodes are introduced to act as “relays” of information
whenever sensor nodes are too far away to communicate.
In the sequel, the network will be denoted by the triplet
(S, C,A) where: S is the set of sensor nodes, C the set of
communication nodes, N = S

⋃
C, A ⊆ N ×N is the set

of arcs (connections) such that (i, j) ∈ A if node j can
receive data from node i (clearly (i, i) ∈ A for all i ∈ N ).
Further, for each node i ∈ N , N i will denote the set of its

in-neighbors (including i itself), i.e. N i △
= {j : (j, i) ∈ A}.

The DSE problem over the sensor network (S, C,A) can
be formulated as follows. Consider a dynamical system

xt+1 = f(xt) +wt (1)

and a set of sensors S with measurement equations

yi
t = hi(xt) + vi

t , i ∈ S . (2)
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Table 1. Information CEKF Algorithm, to be
implemented at each sampling interval t =
1, 2, . . . starting from initial conditions x̂1|0,

Ω1|0, q1|0 = Ω1|0 x̂1|0.

Correction (measurement-update):

Ci
t =

∂hi

∂xt

(
x̂t|t−1

)
, i ∈ S

Ωt|t = Ωt|t−1 +
∑

i∈S

(
Ci

t

)⊤
Vi Ci

t

yi
t = yi

t − hi
(
x̂t|t−1

)
+Ci

tx̂t|t−1, i ∈ S

qt|t = qt|t−1 +
∑

i∈S

(
Ci

t

)⊤
Vi yi

t

Prediction (time-update):

x̂t|t = Ω−1

t|t
qt|t, and At =

∂f

∂xt

(
x̂t|t

)

Ωt+1|t = W −WAt

(
Ωt|t +A⊤

t WAt

)−1
A⊤

t W

x̂t+1|t = f
(
x̂t|t

)
, and qt+1|t = Ωt+1|t x̂t+1|t

Then the objective is to have, at each time t ∈ {1, 2, . . .}
and in each node i ∈ N , an estimate x̂i

t|t of the state xt

constructed only on the basis of the local measurements
(when available) and of data received from all adjacent
nodes j ∈ N i\{i}.

2.1 Centralized Extended Kalman Filter

Before describing the proposed DSE algorithm, it is con-
venient to briefly recall the equations of the centralized
Extended Kalman Filter, which is assumed to simultane-
ously process all measurements {yik, i ∈ S}. Hereafter, for
convenience, the information filter form will be adopted.
The information filter propagates, instead of the estimate
x̂t|t−1 and covariance Pt|t−1, the information (inverse co-
variance) matrices

Ωt|t−1
△
= P−1

t|t−1, Ωt|t
△
= P−1

t|t

and the vectors

qt|t−1
△
= P−1

t|t−1x̂t|t−1, qt|t
△
= P−1

t|t x̂t|t

that will be referred to as information vectors. Then,
the recursive information filter of Table 1 can be derived
[3], where W and Vi, i ∈ N are given positive definite
matrices. A typical choice for such matrices is to take W
as an estimate of the inverse covariance of the process
disturbance wt, and each Vi as an estimate of the inverse
covariance of the measurement noise vi

t affecting the i-
th sensor. Notice, however, that a specific choice of such
matrices is immaterial for the subsequent developments.

The algorithm of Table 1 generalizes the Information
Kalman Filter algorithm, corresponding to f(x) = Atx
and hi(x) = Ci

tx, to nonlinear systems (1) and/or sensors
(2) via the Extended Kalman Filter paradigm of lineariz-
ing the state and measurement equations around the cur-
rent estimate. With this respect, the following assumption
is needed.

A1. The functions f and hi, i ∈ S, are twice continuously
differentiable on R

n, where n = dim(x).

Notice that, in order to streamline the presentation, here
and in the following it is supposed that the functions f

and hi, i ∈ S, are defined over the whole Rn. However, all
the results presented hereafter could be suitably modified
to account for the case when the system trajectories are
confined to a given set X ⊂ R

n.

3. DISTRIBUTED EXTENDED KALMAN FILTER

The focus of this paper is on the family of DSE algorithms
proposed in [3] and based on the idea of combining consen-
sus on information (CI) and consensus on measurements
(CM), by performing at each time instant two parallel
consensus iterations. A brief description of the resulting
algorithm is described in the following. For a detailed
derivation, the interested reader is referred to [3].

Let us assume that, at time t, each node i ∈ N be provided

with a local information pair
(

Ωi
t|t−1,q

i
t|t−1

)

. Then, the

CI spreads such information in the network by performing
a given number L of consensus steps of the type

qi
t|t(ℓ+ 1) =

∑

j∈N i

πi,j q
j

t|t(ℓ)

Ωi
t|t(ℓ+ 1) =

∑

j∈N i

πi,j Ω
j

t|t(ℓ)
(3)

for ℓ = 0, 1, . . . , L−1 with the initialization qi
t|t(0) = qi

t|t−1

and Ωi
t|t(0) = Ωi

t|t−1. Notice that, in each consensus

iteration, each node i computes a regional average, that is
a combination of the values in N i with suitable consensus
weights πi,j , j ∈ N i. In this paper, a convex combination
is adopted by supposing πi,j ≥ 0 and

∑

j∈N iπi,j = 1, ∀i ∈
N .

As for CM, the idea is to exploit consensus in order

to compute in a distributed way the quantities ∂Ωt
△
=

∑

i∈S

(
Ci

t

)⊤
Vi

tC
i
t and ∂qt

△
=

∑

i∈S

(
Ci

t

)⊤
Vi

ty
i
t. To this

end, at each time t, L consensus steps of the type

δqi
t(ℓ + 1) =

∑

j∈N i

πi,j δqj
t (ℓ)

δΩi
t(ℓ+ 1) =

∑

j∈N i

πi,j δΩj
t (ℓ)

(4)

are performed , where ℓ = 0, 1, . . . , L− 1. For each sensor
node i ∈ S, the initial vector δqi

t(0) and the initial matrix

δΩi
t(0) are set equal to

(
Ci

t

)⊤
Vi

ty
i
t and

(
Ci

t

)⊤
Vi

tC
i
t,

respectively. For each communication node i ∈ C, we
simply set δqi

t(0) = 0 and δΩi
t(0) = 0.

The consensus iteration (4) has been originally proposed in
[12, 10] in a linear setting. By following the EKF paradigm,
the algorithm can be readily extended to nonlinear sys-
tems. The only difference is that the linearized output
matrices Ci

t, and hence the virtual measurements yi
t, have

to be redefined in terms of the local state predictions x̂i
t|t−1

instead of the centralized one x̂t|t−1, which is not available
in a distributed setting (see [3]).

Notice that consensus provides, at convergence, the aver-
ages ∂Ωt/|N | and ∂qt/|N |, |N | denoting cardinality of
N , while the information filter update actually requires
∂Ωt and ∂qt. This drawback can be partially remedied
by multiplying the consensus outcome by some suitable
scalar weight γi

t . Combining CI and CM, the consensus-
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Table 2. Hybrid CMCI (HCMCI) Algorithm

Compute the local correction terms
if i ∈ S then

sample the measurement yi
t

Ci
t =

∂hi

∂x

(

x̂i
t|t−1

)

yi
t = yi

t − hi

(

x̂i
t|t−1

)

+Ci
tx̂

i
t|t−1

δqi
t =

(
Ci

t

)⊤
Vi

t y
i
t

δΩi
t =

(
Ci

t

)⊤
Vi Ci

t

else
δqi

t = 0, and δΩi
t = 0

end if
Consensus:
δqi

t(0) = δqi
t, δΩi

t(0) = δΩi
t,

qi
t|t−1

(0) = qi
t|t−1

, Ωi
t|t−1

(0) = Ωi
t|t−1

,

for ℓ = 0, 1, . . . , L− 1 do
Fuse the quantities δqj

t (ℓ) and δΩj
t (ℓ) as in (4)

and the quantities qj

t|t−1
(ℓ) and Ωj

t|t−1
(ℓ) as in (3)

end for
Correction:
qi
t|t

= qi
t|t−1

(L) + γi
t δq

i
t(L)

Ωi
t|t

= Ωi
t|t−1

(L) + γi
t δΩ

i
t(L)

x̂i
t|t

=

(

Ωi
t|t

)−1

qi
t|t

Prediction:

x̂i
t+1|t

= f

(

x̂i
t|t

)

, and Ai
t =

∂f

∂xt

(

x̂i
t|t

)

Ωi
t+1|t

= W −WAi
t

(

Ωi
t|t

+ (Ai
t)

⊤WAi
t

)−1

(Ai
t)

⊤W

qi
t+1|t

= Ωi
t+1|t

x̂i
t+1|t

based DSE algorithm of Table 2 is obtained. Hereafter, we
will refer to this algorithm as Hybrid CMCI (HCMCI).

Actually, Table 2 provides a family of distributed filters
corresponding to different choices of the scalar weigths γi

t .
For example, when γi

t = 1, the CI filter of [1, 2] is retrieved.
Further, in this case, it is possible to perform jointly the
two parallel consensus algorithms of Table 2 so as to
save bandwidth (this is true whenever the weights γi

t are
node-independent). Another possible choice is for example
γi
t = |N |, which has the appealing feature of giving rise to

a distributed algorithm converging to the centralized one
as L tends to infinity. Notice that, when such a choice is
adopted, the HCMCI filter coincides with the information
weighted consensus of [9]. While asymptotically optimal,
such a choice need not be the best one when only a finite
number of consensus steps is performed. In fact, in this
case, a multiplication by |N | could actually lead in some
nodes to an overestimate of ∂Ωt, a situation that one might
want to avoid in order to preserve the consistency of each
local filter 1 . For a discussion on this issue as well as an
alternative choice for the weights γi

t , the interested reader
is referred to [3]. For the purposes of this paper, it is just
sufficient to make the following assumption.

A2. There exist two positive scalars γ and γ̄ such that

0 < γ ≤ γi
t ≤ γ̄, for any i ∈ N and t ≥ 0.

1 Recall that a filter is said to be consistent when its estimated error
covariance is an upper bound (in the positive definite sense) of the
true error covariance [7].

4. STABILITY ANALYSIS

In this section, the stability properties of the HCMCI
DSE algorithm of Section 3 are analyzed. To this end,
notice first that under assumption A1 the function f can
be expanded as

f(xt)− f(x̂i
t|t) = Ai

t(xt − x̂i
t|t) +ϕ(xt, x̂

i
t|t) (5)

with Ai
t as in the HCMCI algorithm and ϕ(·) a suitable

continuous function going to zero as x̂t|t tends to xt.

Similarly, each function hi, i ∈ S, can be expanded as

hi(xt)−hi(x̂i
t|t−1) = Ci

t(xt − x̂i
t|t−1) +χ

i(xt, x̂
i
t|t−1) (6)

with Ci
t as in the HCMCI algorithm and χ

i(·) a suitable
continuous function going to zero as x̂i

t|t−1 tends to xt.

By exploiting such expansions, it is possible to write the
estimation error dynamics so that the linearized part is
separated from the nonlinear terms. To this end, let us
denote by Π the consensus matrix, whose elements are
the consensus weights πi,j for any i, j ∈ N . Further, let
πi,j
ℓ be the (i, j)-th element of Πℓ, i.e. the ℓ-th power of

the consensus matrix Π. Then the following result holds.

Proposition 1. Let assumptions A1-A2 hold and let the
HCMCI algorithm be initialized at time t = 1 with positive
definite information matricesΩi

1|0. Then, for any i and any

t, the matricesΩi
t|t are invertible and the estimation errors

eit = xt − x̂i
t|t−1 obey the recursion

eit+1 =
∑

j∈N

Φ
i,j
t e

j
t + rit + sit (7)

where

Φ
i,j
t = πi,j

L Ai
t

(

Ωi
t|t

)−1

Ω
j

t|t−1 ,

rit = ϕ(xt, x̂
i
t|t)

+
∑

j∈S

πi,j
L γi

tA
i
t

(

Ωi
t|t

)−1

(Cj
t )

⊤Vj
χ

j(xt, x̂
j

t|t−1) ,

sit = wt −
∑

j∈S

πi,j
L γi

tA
i
t

(

Ωi
t|t

)−1

(Cj
t )

⊤Vjv
j
t .

�

In order to study the stability of the estimation error
dynamics (7), the following assumption on the consensus
weights is needed.

A3. The consensus matrix Π is row stochastic and prim-
itive 2 .

Notice that assumption A3 can always be satisfied pro-
vided that the network is connected. For instance, in this
case, the Metropolis weights [16, 4] satisfy A3. While
taking the consensus matrix Π row stochastic is sufficient
for stability, a doubly stochastic Π would also ensure that
all the elements of ΠL tends to 1/|N | as L → +∞.

Let now p be the Perron-Frobenius left eigenvector of the
matrix ΠL and let pi denote its i-th component. Further,
consider the candidate Lyapunov function
2 Recall that a non-negative square matrix Π is row stochastic if all
its rows sum up to 1. Further, it is primitive if there exists an integer
m such that all the elements of Πm are strictly positive.
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Vt(et) =
∑

i∈N

pi
(
eit
)⊤

Ωi

t|t−1e
i
t

for the overall estimation error dynamics, where et =
col

(
eit, i ∈ N

)
. Notice that, by virtue of assumption

A3, the eigenvector p has strictly positive components
pi, i ∈ N , and satisfies the equation p⊤ΠL = p⊤, i.e.,
∑

j∈N pjπj,i
L = pi.

The following result concerning the linearized part of the
error dynamics can now be stated.

Lemma 1. Let assumptions A1-A3 be satisfied. Further,
suppose that the following conditions hold:

i) there exist nonnegative reals ā and c̄ such that

‖Ai
t‖ ≤ ā, ‖Ci

t‖ ≤ c̄

for any i and any t;
ii) there exist postive reals ω, ω̄ such that

0 < ωI ≤ Ωi
t|t ≤ ω̄I

for any i and any t;
iii) the matrix Ai

t is invertible for any i and any t.

Then, there exists a nonegative scalar β̃ < 1 such that, for
any t,

Vt+1(Φtet) ≤ β̃ Vt(et)

where Φt is the block matrix whose block elements are
given by the matrices Φi,j

t defined in Proposition 1. �

In the spirit of the classical results on stability of the
CEKF [13], one can see i)-iii) as conditions that can be
verified on line during the state estimation process in
order to assess its reliability. Of course such conditions
can also be related to specific properties of system (1)-
(2). For instance, condition i) automatically holds when
the functions f and hi, i ∈ S, are globally Lipschitz or,
in view of assumption A1, when the estimated trajectories
x̂i
k|k, i ∈ N , are bounded. Further, condition ii) is closely

related to the collective observability of the state xt from
the measurements yi

t, i ∈ S, collected by all the available
sensors. This issue will be discussed in some detail in
Section 4.1.

Let us now turn back our attention to the overall estima-
tion error dynamics by noting that the functions ϕ and
χ

i in (5) and (6) represent the remainders of the Taylor
expansion of f and, respectively, hi and hence, under
suitable assumptions, go to zero with order of convergence
greater than 1. With this respect, in the lines of [13], the
following assumption is made.

A4. There exist positive reals ǫϕ, κϕ, ǫχi , κχi , i ∈ S, such
that the nonlinear functions ϕ and χ

i in (5) and (6),
respectively, are bounded as

‖ϕ(x, x̂)‖ ≤ κϕ ‖x− x̂‖2 (8)

‖χi(x, x̂)‖ ≤ κχi ‖x− x̂‖2 (9)

for any pair x, x̂ ∈ R
n with ‖x − x̂‖ ≤ ǫϕ and

‖x− x̂‖ ≤ ǫχi , respectively.

By exploiting Lemma 1 and assumption A4 the following
local stability result can be derived.

Theorem 1. Let assumptions A1-A4 be satisfied. Further,
suppose that conditions i)-iii) of Lemma 1 hold. Then, the

estimation error eit turns out to be bounded in all the
network nodes, i.e., there exists a positive real ǫ such that

lim sup
t→∞

‖eit‖ ≤ ǫ (10)

for any i, provided that the initial estimation errors satisfy

‖ei1‖ ≤ ǫ0 (11)

for some suitable constant ǫ0 > 0 and the disturbances
satisfy

‖wt‖ ≤ ǫw, ‖vi
t‖ ≤ ǫvi , i ∈ S (12)

for some suitable constants ǫw > 0 and ǫvi > 0, i ∈ S. �

It is worth noting that, when the disturbance amplitudes
ǫw > 0 and ǫvi > 0 decrease, the asymptotic bound ǫ
decreases as well and, in particular, the following corollary
to Theorem 1 holds.

Corollary 1. Let the system dynamics (1) and the mea-
surement equations (2) be noise-free, i.e.,

wt = 0, vi
t = 0

for any i and any t. Then, under the same assumptions
of Theorem 1, the estimation error goes to zero in all the
network nodes, i.e.,

lim
t→∞

‖eit‖ = 0

for any i, provided that the initial estimation errors satisfy

‖ei1‖ ≤ ǫ0

for some suitable constant ǫ0 > 0. �

4.1 Connection with collective observability

This section is devoted to discussing how conditions i)-
iii) of Lemma 1 can be related to specific properties of
system (1)-(2). To this end, let h = col(hi, i ∈ S) be the
collective output function, and let F[M ](x) be the collective
observability mapping defined over a time window of
length M , i.e.

F[M ](x) =









h(x)
h ◦ f(x)

...
h ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸

M times

(x)









where ◦ denotes composition. In words, given a time
window {t−M, . . . , t},F[M ](x) coincides with the mapping
from the state x at time t −M to the vector made up of
the noise-free collective outputs at times t−M, . . . , t.

Supposing that the system trajectory lies within some
compact set X , the following assumptions are now needed.

A5. For any x ∈ X , ∂f(x)/∂x is non-singular.
A6. There exist a positive integer M such that, for any

x ∈ X , rank
{
∂F[M ](x)/∂x

}
= n where n = dim(x).

Notice that assumption A5 amounts to requiring that the
state transition function f(x) is a diffeomorphism on X
and, hence, reversible. Further, as well known, assumption
A6 ensures that collective observability, in the sense of the
invertibility of the mapping F[M ](x), holds.

The following result can now be stated.
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Lemma 2. Let the system trajectory belong to X , i.e.,
{xt} ⊂ X , and suppose that assumptions A1-A6 are
satisfied and that the HCMCI algorithm is initialized at
time t = 1 with positive definite information matrices
Ωi

1|0. Then, conditions i)-iii) of Lemma 1 hold provided

that, for any i and t, the estimation errors satisfy

‖eit‖ ≤ ǫ̂ (13)

for some suitable constant ǫ̂ and the disturbances satisfy

‖wt‖ ≤ ǫ̂w, ‖vi
t‖ ≤ ǫ̂vi , i ∈ S (14)

for some suitable constants ǫ̂w > 0 and ǫ̂vi > 0, i ∈ S. �

In view of Lemma 2 and Theorem 1, it is possible to
prove the following stability result which summarizes all
the foregoing derivations.

Theorem 2. Let the system trajectory belong to X , i.e.,
{xt} ⊂ X , and suppose that assumptions A1-A6 are
satisfied and that the HCMCI algorithm is initialized at
time t = 1 with positive definite information matrices
Ωi

1|0. Then, the estimation error eit turns out to be

bounded in all the network nodes, i.e., there exists a
positive real ǫ̃ such that

‖eit‖ ≤ ǫ̃ (15)

for any i, provided that the initial estimation errors satisfy

‖ei1‖ ≤ ǫ̃0 (16)

for some suitable constant ǫ̃0 > 0 and the disturbances
satisfy

‖wt‖ ≤ ǫ̃w, ‖vi
t‖ ≤ ǫ̃vi , i ∈ S (17)

for some suitable constants ǫ̃w > 0 and ǫ̃vi > 0, i ∈ S. �

5. SIMULATION RESULTS

The aim of this section is to corroborate the theoretical
analysis by showing the effectiveness of the HCMCI algo-
rithm in a target tracking case study. To this end, the
target motion is modelled by a linear (nearly constant
velocity) model

xt+1 = Axt +wt

with

A =






1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1




 , Q =













T 3
s

3

T 2
s

2
0 0

T 2
s

2
Ts 0 0

0 0
T 3
s

3

T 2
s

2

0 0
T 2
s

2
Ts













q

where: xt = [xt, ẋt, yt, ẏt]
⊤
is the kinematic target state at

sampling time t made up of the Cartesian coordinates of
position (xt, yt) and of velocity (ẋt, ẏt); Ts is the sampling
interval; q is the variance of the random fluctuations of tar-
get speed and Q the covariance matrix of the disturbance
wt. Two different simulation scenarios corresponding to
two different sensor networks will be considered.

The target position is measured by two types of nonlinear
sensors measuring angle or, respectively, distance. These
two sensors, from now on indicated by the acronyms DOA
(Direction Of Arrival) and TOA (Time Of Arrival), are
characterized by the following measurement functions:

hi(x) =







atan2
(
x− xi, y − yi

)
, if i is a DOA sensor

√

(x− xi)
2
+ (y − yi)

2
, if i is a TOA sensor

where atan2 is the 4-quadrant inverse tangent function and
(xi, yi) denotes the position of the i-th sensor. Overall,
the network consists of 100 communication nodes, 5 TOA
sensor nodes, and 5 DOA sensor nodes. A graphical
representation of the sensor network is provided in Fig.
1.

The measurement noise is assumed to have σθ = 2◦

standard deviation for DOA sensors, and σr = 10 m
standard deviation for TOA sensors. Other parameters of
the simulations are fixed to sampling interval Ts = 1 and
q = 0.5 m2/s3. The matrices W and Vi in the HCMCI
algorithm are taken as the inverses of the disturbance and,
respectively, measurement noise covariances. Finally, the
consensus weights used in the simulations have been set
equal to the Metropolis weights.

The HCMCI algorithm described in Section 3 has been
compared with the CEKF of Section 2.1, with the CI
DSE algorithm of [1, 2], and with the CM DSE algo-
rithm (originally proposed by [12] in a linear setting).
Notice that, in the considered setting, the CI algorithm
corresponds to the HCMCI algorithm when the weights γi

t

are set equal to 1 for any i and any t. Further, the CM
algorithm follows the same steps as in Table 2 with the
only difference than no consensus on the prior information
(

Ωi
t|t−1,q

i
t|t−1

)

is performed. For the sake of comparison,

200 independent Monte Carlo trials have been performed
and the position root mean square error (PRMSE) has
been computed as performance index. Fig. 2 shows the
comparison between the considered state estimation algo-
rithms for L = 1 and L = 9 consensus steps. As it can be
seen, both the HCMCI and the CI show a stable behavior
already for one consensus step. On the other hand, the CM
algorithm requires a minimum number of consensus steps
per iteration in order to converge (in this case, a minimum
of L = 9 consensus steps is required). On the contrary,
the HCMCI algorithm provides satisfactory performance
already for a low L with better estimation accuracy as
the number of consensus steps grows. Similar conclusions
can be drawn also in the nonlinear sensor network case
as shown in Fig. 2. In addition, in this case, the HCMCI
substantially outperforms the CI both for low and high
numbers of consensus steps. With this respect, notice that
simulations have been performed also for the values of L
ranging from 2 to 8, with similar results. The plots are not
reported here due to space constraints.

6. CONCLUSIONS

Distributed state estimation for nonlinear systems has
been addressed. In particular, stability analysis for a fam-
ily of consensus Extended Kalman Filter algorithms has
been carried out. It has been proved that such algorithms
guarantee local stability under network connectivity and
collective system observability. An open problem that de-
serves further investigation is whether similar, or even
stronger, stability properties can be achieved by means of
different distributed nonlinear state estimation techniques,
for example based on the Unscented Kalman Filter [8].
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Fig. 1. Nonlinear sensor network used in the simulations.
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Fig. 2. PRMSE of the considered DSE algorithms for L = 1
(top), and L = 9 (bottom) consensus steps.

REFERENCES

[1] G. Battistelli and L. Chisci, “Kullback-Leibler av-
erage, consensus on probability densities, and dis-
tributed state estimation with guaranteed stability”,
Automatica, vol. 50, n. 3, pp. 707-718, 2014.

[2] G. Battistelli, L. Chisci, S. Morrocchi and F. Papi,
“An information-theoretic approach to distributed
state estimation”, Proc. 18th IFAC World Congress,

pp. 12477-12482, 2011.
[3] G. Battistelli, L. Chisci, G. Mugnai, A. Farina and

A. Graziano, “Consensus-based algorithms for dis-
tributed filtering”, Proc. 51st IEEE Conference on
Decision and Control, pp. 794-799, 2012.

[4] G.C. Calafiore and F. Abrate, “Distributed linear es-
timation over sensor networks”, International Journal
of Control, vol. 82, no. 5, pp. 868-882, 2009.

[5] M. Farina, G. Ferrari-Trecate and R. Scattolini, “Dis-
tributed moving horizon estimation for linear con-
strained systems”, IEEE Transactions on Automatic
Control, vol. 55, no. 11, pp. 2462-2475, 2010.

[6] M. Farina, G. Ferrari-Trecate, and R. Scattolini, “Dis-
tributed moving horizon estimation for nonlinear con-
strained systems”, International Journal of Robust
and Nonlinear Control, vol. 22, no. 2, pp. 123-143,
2012.

[7] S.J. Julier and J.K. Uhlmann, “General decentralized
data fusion with covariance intersection” in Handbook
of Data Fusion, CRC Press, 2001.

[8] S.J. Julier and J.K. Uhlmann, “Unscented filtering
and nonlinear estimation”, Proceedings of the IEEE,
vol. 92, no. 3, pp. 401-422, 2004.

[9] A.T. Kamal, J.A. Farrell and A.K. Roy-Chowdhury,
“Information weighted consensus filters and their
application in distributed camera networks”, IEEE
Transactions on Automatic Control, vol. 58, no.12,
pp. 3112-3125, 2013.

[10] M. Kamgarpour and C. Tomlin, “Convergence prop-
erties of a decentralized Kalman filter”, Proc. 47th
IEEE Conference on Decision and Control, pp. 3205–
3210, 2008.

[11] W. Li and Y. Jia, “Distributed consensus filtering for
discrete-time nonlinear systems with non-Gaussian
noise”, Signal Processing, vol. 92, no. 10, pp. 2464-
2470, 2012.

[12] R. Olfati-Saber, “Distributed Kalman filtering for
sensor networks”, Proc. 46th IEEE Conference on
Decision and Control, pp. 5492-5498, 2007.

[13] K. Reif, S. Gunther, E. Yaz and R. Unbehauen,
“Stochastic stability of the discrete-time extended
Kalman filter”, IEEE Transactions on Automatic
Control, vol. 44, n. 4, pp. 714-728, 1999.

[14] S.S. Stankovic, M.S. Stankovic and D.M. Stipanovic,
“Consensus based overlapping decentralized estima-
tion with missing observations and communication
faults”, Automatica, vol. 45, n. 6, pp. 1397–1406,
2009.

[15] V. Ugrinovskii, “Distributed robust filtering with H∞

consensus”, Automatica, vol. 47, no. 1, pp. 1-13, 2011.
[16] L. Xiao, S. Boyd and S. Lall, “A scheme for robust dis-

tributed sensor fusion based on average consensus”,
Proc. 4th International Symposium on Information
Processing in Sensor Networks, pp. 63-70, 2005.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5525


