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Abstract: The powertrain of a conventional Hybrid Electric Vehicle (HEV) is based on the
combination of an internal combustion engine, one or more electric motors and a battery pack,
which can be recharged during vehicle operation by regenerative braking or thermal power
surplus. Due to the recent advances in plug-in vehicles and battery technologies, upcoming
HEVs rely more on their “all-electric range” - for fuel economy and environmental reasons
- with the thermal unit playing the role of a range extender. It follows that current energy
management systems might not be adequate to exploit the features of the next generation
vehicles. In this paper, we propose a different formulation of the energy management problem,
which takes into account the total driving cost and the previously neglected (but now important)
dynamic variables. By means of simulation studies, we show that the potential of the proposed
management policy significantly outperforms the optimal solution of the standard problem.
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1. INTRODUCTION

Hybrid Electric Vehicles (HEVs) are generally regarded
to as an effective solution to improve the fuel economy
and reduce the pollutant emissions with respect to Internal
Combustion Engine (ICE) vehicles.

Since HEVs are usually equipped with (at least) two en-
ergy sources, a critical energy management problem arises,
that is, a supervisory system is needed to determine how
to generate the requested power. In the so-called “mild
HEVs”, the downsized battery and the electrical motor do
not allow to drive the vehicle based just on the electric
power, but only to assist the ICE in low efficiency oper-
ating points. In this framework, heuristics and rule-based
algorithms have shown to provide satisfactory results. On
the opposite, highly hybridized powertrains call for more
sophisticated control approaches for their higher flexibility,
see [Sciarretta and Guzzella, 2007].

In the latter configuration, given a model of the hybrid
powertrain, the best performance theoretically achievable
over a driving schedule can be computed by means of opti-
mization techniques. A classical approach in HEVs aims at
minimizing the overall fuel consumption, concurrently pe-
nalizing excessive deviations of the battery state of charge.
Such a penalty term is very important for conventional
HEVs, in which the minimization of the fuel consumption
tout court may lead to excessive battery charge depletion.
The above optimization approach usually yields a non-
causal control policy, which defines a useful upper bound
in terms of performance for a given driving cycle.

An effective real-time implementation of the above opti-
mal policy can be found using the so-called Equivalent
Consumption Minimization Strategy (ECMS) - based on
the Pontryagin Minimum Principle - in which the knowl-
edge of future power requests is replaced by a cycle-
dependent parameter, see [Sciarretta and Guzzella, 2007,
Sciarretta et al., 2004, Serrao et al., 2009] for further
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details. Adaptive variants of the ECMS have also been
developed and successfully implemented, see [Musardo
et al., 2005]. Nonetheless, other real time approaches have
been explored, based, e.g., on Model Predictive Control or
Robust Control, see [Kessels et al., 2005, Pisu et al., 2003].

Nevertheless, all the above strategies are based on a con-
ventional configuration of the HEV powertrain, that is a
combination of an ICE with one or more electric machines
and a battery pack, which can be recharged exclusively
during vehicle operation by regenerative braking or ther-
mal power surplus. However, the recent technology of
plug-in HEVs made it possible to recharge the battery
from the grid. Quite simultaneously, progresses in battery
technology are making big battery packs more affordable,
thus extending the so-called “all-electric range” of such
vehicles and leading to a new generation of Series HEVs
(SHEVs).

Upcoming HEVs are then more and more conceived as
plugin vehicles with a relatively large battery and a signif-
icant “all-electric range”, with a thermal unit often playing
the role of a range extender. In view of this trend, on
the one hand, the need for charge sustenance becomes
less critical. On the other hand, since the battery has a
more significant impact on the overall vehicle cost, the
battery operating conditions leading to fast aging should
be avoided. It follows that the strategies usually applied
on the conventional, parallel HEVs might not be as satis-
factory as on conventional vehicles when used on plugin,
series HEVs.

In this paper we propose a novel approach - intended for
extended range EVs and SHEVs in general - which tries to
fully exploit the features of the next generation vehicles.
Both the powertrain model and the optimization problem
formulation originate from the classical approaches, but
some important aspects are suitably reformulated. Specifi-
cally, a control-oriented model which also accounts for bat-
tery aging is derived, and the corresponding optimization
problem is formulated so as to take into consideration all
the cost entries related to the electrical part, as well as the
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fuel consumption. By applying Dynamic Programming, see
Sniedovich [2010], we show that the potential of this new
energy management policy significantly outperforms the
optimal solution of the standard problem formulation.

The remainder of the paper is as follows. The energy
management problem taking into account the needs of
next generation vehicles is formally introduced in Section
2. The optimization problem and its dynamic constraints
are then revisited in Section 3 and 4, where, respectively,
the control-oriented model and the novel cost function are
described in detail. The potential of the new approach is
shown in Section 5 on both a urban and a mixed urban-
motorway driving cycle using a full-fledged simulator of
the vehicle. The paper is ended by some concluding re-
marks.

2. PROBLEM FORMULATION

Energy management is a control problem to be addressed
in Hybrid Electric Vehicles, where the power requested
to drive the vehicle can be supplied by two or more
energy sources. The problem is commonly investigated
by considering a finite time horizon and (possibly) the
desired velocity/slope profiles. By means of a powertrain
model, such profiles are converted into a profile of the
power requested at the link between the power sources.
The latter is mechanical power for a parallel HEV and
electrical power for a series HEV. The energy management
problem can be conveniently faced as an optimization
problem oriented to the minimization of a suitable cost
function J , given the desired power profile:

min
u

J = h(x(T )) +

∫ T

0

g(t, x(t), u(t), w(t))dt

s. t. ẋ = f(t, x(t), u(t), w(t))

x(0) = x0
x(t) ∈ X
u(t) ∈ U,

(1)

where x is the state variable, u is the control variable, w
is an exogenous variable and f , g are nonlinear functions.

A popular approach aims at minimizing the fuel consump-
tion for a desired trip, thus leading to the following choice
of the cost function:

g(t, u(t)) = ṁf (t, u(t)). (2)
where ṁf is the fuel mass flow rate. Notice that the depen-
dence on the state has been removed, since fuel consump-
tion can typically be considered as a static function of the
power supplied by the unit. Battery state of charge is then
commonly selected as the only state variable, according
to its well-established definition as the ratio between the
actual stored charge and the total capacity [Guzzella and
Sciarretta, 2005].

In many cases the solution to the problem stated above
may trivially be to drive the vehicle exclusively based
on the battery power, which however leads to depleting
the battery charge. This is particularly undesirable if the
battery capacity is relatively small or if the battery cannot
be connected to the grid for recharging, as it is the case
for conventional parallel HEVs. To avoid such an issue, the
final state cost function h(x(T )) can be used. A typical
choice for h(x(T )) is a function ζ of the deviation between
the final state x(T ) and the initial state x(0):

h(x(T )) = ζ(x(T )− x(0)). (3)

The above formulation has been widely exploited and
proved to be successful, see [Sciarretta and Guzzella, 2007].

Fig. 1. A comparison of battery and generated power costs

Nonetheless, current trend in HEVs market is oriented
towards grid-rechargeable vehicles with a large battery
pack, thus allowing large “all-electric range”, typically
suited for every-day urban use. The increasing commercial
success of plug-in HEVs and Extended Range EVs may
be regarded to as a symptom of such a trend. As a
consequence, on the one hand, battery charge sustenance
may become a minor problem for next generation vehicles.
On the other hand, while the battery accounts for an
increasing share of the overall vehicle cost, intensive usage
can lead to accelerated aging and should be considered in
the power dispatch management.

As an example, consider a series HEV equipped with a
100Ah battery pack and a 25kW CNG thermal power
unit (the complete model of the vehicle will be described
in Section 5). A nice feature of SHEVs is the absence of
direct mechanical coupling between the wheels and the
internal combustion engine, which allows to run it at an
arbitrary operating point. Hence, assume that the thermal
unit is always operating at its maximum efficiency, given
the desired power profile. The cost per watt of the power
supplied by the two on-board sources can be evaluated, as
a function of the battery state of charge and the generated
power, in Figure 1. It can be noticed that, if both the
grid-recharge energy cost and the share of battery value
depleted are accounted for in the total cost of the battery
power, the optimal trade-off between the two sources is not
trivial and depends on the operating point. Its variability
obviousy reflects the underlying aging model, since the grid
energy cost is practically constant.

The aim of this work is then to focus on SHEVs, whose
powertrain architecture is also the reference for Extended
Range EVs, and reformulate Problem (1) such that the real
total cost of a driving cycle is minimized. This requirement
calls for a more detailed control-oriented model of the
powertrain, that will be therefore suitably extended in the
next section.

3. CONTROL ORIENTED MODELING

To start with, consider that, in a series HEV, the sum
of the battery power Pb and the thermally generated
power Pr has to match the electrical power supplied to
the traction motor Pm needed to drive the vehicle:

Pm(t) = Pr(t) + Pb(t). (4)
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From now on, let u(t) = Pr(t) be the control variable
and w(t) = Pm(t) be an exogenous disturbance. A circuit
model of the battery is then well suited to infer the flowing
current given the battery power (see, e.g. [Guzzella and
Sciarretta, 2005]). Specifically, in this work, we consider
the battery voltage as the result of the sum of an open
circuit term and an ohmic term accounting for Joule
dissipation:

vb = voc +Rbib. (5)
The battery current can then be directly computed from
the power as

ib =
voc −

√
v2oc + 4RbPb

2R
. (6)

Both voc and Rb can in principle be dependent on several
variables, such as the state of charge, the temperature and
the current. In this work, we only consider the dependency
on the state of charge. For simplicity, we assume that the
resistance is constant and the open circuit voltage is an
affine function of state of charge as

vocb (t) = aq(t) + b, (7)
where a and b are real parameters.

To account for battery energy flows, a model of the
dynamics of the state of charge is needed. Generally,
such a variable is defined as the ratio between the actual
charge stored in the battery and the total battery capacity,
therefore its derivative can be written as

q̇b(t) =
Q̇(t)

Qb
= −ηb(t)

ib(t)

Qb
. (8)

Notice that the battery capacity Qb decreases with the
battery aging. From now on, let us assume that the battery
is no longer useful when the capacity decreases below 80%
of the nominal capacity. This capacity fade effect can be
accounted for by making the actual value of Qb dependent
on the aging measure ξb:

Qb(t) = Qnom
b (1− 0.2ξb(t)). (9)

The battery depth of discharge is conventionally defined
as the ones’ complement of the state of charge:

db(t) = 1− qb(t). (10)

For what concerns the modeling of the battery aging,
we should first say that this is a widely discussed topic
in the literature. Aging happens with normal battery
usage, but several operating conditions have proved to be
particularly detrimental for battery life. Then, modeling
of battery aging is still an open research subject, mainly
for the high complexity of the involved phenomena, see,
e.g., [Onori et al., 2012, Todeschini et al., 2012, Millner,
2010]. Moreover, aging may appear as the reduction of
battery capacity or the increase of battery resistance
(which leads to a reduction of the delivered power) and
the two phenomena always evolve in parallel. Depending
on the particular application, one may be interested in
monitoring just one out of the two.

Since we focus on relatively large battery packs, it is
reasonable to assume that the power fade will be negligible
with respect to the capacity fade. For the sake of simplicity,
we adopt a rather simple aging model, assuming the aging
rate to be proportional to the absolute value of the current
flowing in the battery:

ξ̇b(t) = σb(qb(t), ib(t))
|ib(t)|
Ql

. (11)

The coefficient σb is often referred to as “severity factor”
in the literature. This factor is equal to one in normal op-
erating conditions and bigger than one in harsh operating

conditions which lead to accelerated aging. The normal-
ization coefficient Ql is the throughput of the electrical
charge over the entire battery life. It follows that ξ = 0 at
the beginning and ξ = 1 at the end of its life.

Concerning the thermal generation unit, notice that it
basically consists of an internal combustion engine, me-
chanically coupled to an electrical generator, and the effi-
ciency of both the power generators depends on the speed
and the torque at a given operating point. In SHEVs, the
most efficient operating point can always be selected (the
engine is only electrically linked to the electrical motor)
and the efficiency ηr can be considered to be a static
function of the requested power. We should remark here
that such an assumption requires a lower level control
system that continuously adjusts the mechanical operating
point depending on the current power request. Given this
setting, under the assumption of quasi-static operation
[Guzzella and Sciarretta, 2005], the fuel mass flow rate
can be computed as:

ṁf (t) =
Pr(t)

ηr(Pr(t))λr
, (12)

where λr represents the fuel lower heating value.

4. TOTAL COST MINIMIZATION APPROACH

To account for the different requirements of next genera-
tion SHEVs and plug-in HEVs, we modify the optimiza-
tion problem in (1) by selecting the cost function as

g(t, x(t), u(t)) = αḋb(t) + βξ̇b(t) + γṁf . (13)

In (13), three cost items are now considered: the grid
energy needed to recharge the battery, the share of total
battery value depleted and the fuel consumption. Denoting
the monetary cost of 1Wh of grid electric energy as Cg,
the grid energy cost coefficient is obtained as:

α = Cgv
nom
b Qnom

b . (14)

In a similar way, denoting the battery monetary cost per
1Wh of energy storage capability as Cb, the battery value
cost coefficient is computed as:

β = Cbv
nom
b Qnom

b . (15)

The fuel cost coefficient is instead easily obtained as:

γ = Cf/ρf , (16)

where Cf is the cost of a liter of fuel and ρf if the fuel
density.

Notice that such a cost functions shows some important
differences from the standard one, among which the fact
that both the fuel cost and the battery cost items are
included in the cost function. The different terms are
then heterogeneous and they would be characterized by
different measurement units. However, the main advantage
of such a setting is that the use of a “monetary cost”
instead of the “energy consumption” allows us to sum up
all the terms without problems. Moreover, no Lagrangian
multipliers need to be computed (like in the ECMS) and
no final state cost function has to be taken into account.

The ideal optimal solution of problem (1) using (13) can be
found using Dynamic Programming, see Sniedovich [2010]
for more details. Specifically, in order to apply the dynamic
optimization algorithm, the discrete time equivalent of the
model has to be considered:

xk+1 = fk(xk, uk, w(k)), k = 0, 1, ..., N − 1. (17)

By Backward Euler method, the discrete time state equa-
tion is found to be:
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db,k+1 = db,k+

− Tsηb,k
b+ adb,k −

√
(b+ adb,k)2 + 4R(ub,k − wb,k)

2RQb
.

(18)

The cost function minimized by the algorithm will be
defined in a discrete time domain as well:

gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk), (19)

where the discrete time cost function is defined as

gk(xk, uk, wk) =

α
db,k+1 − db,k

Ts
+ β

ξb,k+1 − ξb,k
Ts

+ γ
mf,k+1 −mf,k

Ts
. (20)

In a similar way, the aging model is replaced by a discrete
time counterpart:

ξb,k+1 = ξb,k+

− Tsσb,k
|b+ adb,k −

√
(b+ adb,k)2 + 4R(ub,k − wb,k)|

2RQl

(21)

as well as the fuel consumption model:

mf,k+1 = mf,k − Ts
Pr,k

ηr(Pr,k)λr
. (22)

According to the Dynamic Programming principle, given
the initial state x0 the optimal cost, J∗(x0) equals the
cost J0(x0), where the latter results as the final step of
the following algorithm, which proceeds backwards in time
from N − 1 to 0:

JN (xN ) = gN (xN ) (23)

Jk(xk) = minu{gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk)},
k = 0, 1, ..., N − 1 (24)

If we define µ∗
k as the control law minimizing the right

hand term in the equation above:

u∗k = µ∗
k(xk) = arg min

u
{gk(xk, uk, wk)+Jk+1(fk(xk, uk, wk)},

∀k,∀xk, (25)

then the policy π∗ = {µ∗
0, ...µ

∗
N−1} can be proven to be

optimal, see Sniedovich [2010].

5. SIMULATION RESULTS

To test the proposed approach, we designed and im-
plemented a full-fledged simulator of a SHEV using a
backward-facing approach, which is very well suited to
simulate the overall energetic behavior over time scales
of the same order as standard driving cycles. As a gen-
eral rule, backwards-facing simulators are developed using
quasi-static approximate models of the components of
interest, the focus of the simulator being on the overall
energy consumption rather than on the detailed dynamic
behavior. The simulator is structured in three main blocks
modeling the vehicle dynamics, the battery and the ther-
mal generator, and is briefly described next.

Concerning the vehicle dynamics part, the vehicle longi-
tudinal dynamics describe how the required velocity and
slope profiles affect the torque and rotational speed of the
wheels according to the force/torque balance equations

Table 1. Control oriented model parameters

Control Oriented Model parameters

a 15[V ] Ql 5 · 105[ Ah
life

] ρf 1[ kg
l

]

b 115[V ] vnom
b 125[V ] Cg 0.2[ e

kWh
]

Rb 150[mΩ] ηb 1[−] Cb 500[ e
kWh

]

Qnom
b 100[Ah] λr 47[ kJ

g
] Cf 1[e

l
]

Table 2. Series HEV simulator parameters

Series HEV simulator parameters

M 950[kg] Cx 0.22[−] ρ 1.18[ kg
m3 ]

Rw 0.25[m] Cv 0[ kg
s

] r 3.5[−]
A 2[m2] Cr 0.008[−] ηt 0.98[−]

Mẍ =
Tw
Rw
− Fb − Ff (26)

ωw =
x

Rw
(27)

where x is the vehicle longitudinal position, Tw and ωw
are the wheel torque and angular speed, Fb and Ff are the
mechanical braking and friction forces, Rw is the wheel
radius and M is the vehicle mass. The friction term can
be detailed as:

Ff = −Mg sin θ − CrMg cos θ − Cvẋ−
1

2
ρACxẋ

2 (28)

in which the four elements in the right hand term repre-
sent, respectively, the slope, the roll drag force, the viscous
drag force and the aerodynamic drag force. A, Cx, Cv, Cr,
are respectively the vehicle reference area and the drag,
viscous and roll coefficients, while ρ is the air density and
g is the gravitational constant.

The transmission - with ratio r - connecting the wheels
axle with the traction motor can be modeled as

Tm =


1

rηt
Tw, Tm > 0

ηt
r
Tw, Tm < 0

(29)

ωm = rωw (30)

where Tm, ωm are the motor torque and angular speed and
ηr is the efficiency of the transmission.

The power absorbed by the traction electric motor can
then be calculated as:

Pm =


Tmωm

ηm(Tm, ωm)
, Pm > 0

Tmωmηm(Tm, ωm), Pm < 0
(31)

The part devoted to battery modeling is based on Equa-
tions (5), (8), (11). To simulate the strategy on a more
realistic model of the system, both the resistance and
the open circuit voltage are modeled as nonlinear, static
functions of the state of charge and of the current. The
part devoted to thermal generator modeling is based on
Equations (12).

Tables 1 and 2 report the parameters used in the simulator
concerning the control-oriented model of the powertrain
and the vehicle, respectively.

In the remainder of the section, two different examples
are illustrated: a FTP urban driving cycle and a mixed
urban/highway driving cycle. The aim of the two scenarios
is to show how the optimal solution looks like when the
cycle is achievable and unachievable using only the electric

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4822



Fig. 2. The optimal cost-to-go map for the proposed cost
function in the case of the FTP urban driving cycle

power supply. The proposed strategy will be also compared
with the standard approaches.

5.1 FTP urban driving cycle

The first case study is the simulation of the series hybrid
vehicle on a FTP Urban driving cycle, with the battery
initially at 50% of charge and under 4 different control
policies:

• minimization of the total driving cost (the approach
proposed in this paper);
• pure minimization of the fuel consumption, i.e., full

electric mode as long the battery charge is above 0%
and then full thermal power mode;
• ECMS-like strategy, i. e. minimization of the fuel

consumption with a linear penalty term on the final
state of charge;
• fuel minimization with constraint qb(T ) = qb(0).

To start with, it should be remarked that the minimization
of the right hand term of (25) must be performed at each
calculation step. This can be easily achieved if both the
state x and the input variable u are discretized over grids
of finite dimensions. In this work, we consider 60 values
for the state grid and 20 values for the input grid for all
the considered scenarios.

Figure 2 shows the values of the optimal cost-to-go func-
tion, computed for values of the state of charge between
35% and 55%, considering the proposed cost function for
a series hybrid vehicle on the FTP urban driving cycle.
The green line highlights the optimal state trajectory. The
corresponding optimal control map is shown in Figure 3.

The comparative results for this case study are reported in
Figure 4 and Table 3. As Figure 4 shows, the full electric
driving depletes more than 10% of the battery charge,
while the total driving cost minimization leads to a slight
battery recharging. Notice that the penalization term for
the final state of charge is herein tuned such that an almost
perfect charge sustenance is achieved.

The proposed strategy attains the minimum driving cost,
as shown in Table 3, while the full electric mode leads
to a nearly 50% higher cost and the other two strategies
still have sensibly higher driving cost. It is interesting
to notice that the two fuel minimization strategies with
charge sustenance achieve different driving costs. More

Fig. 3. The optimal control map for the proposed cost
function in the case of the FTP urban driving cycle

Fig. 4. A comparison of battery SOC trends during the
FTP urban driving cycle with different control strate-
gies

Table 3. A comparison of total driving cost and
fuel consumption for the FTP urban driving

cycle with different control strategies

TDC Full Electric ECMS Charge Sustaining

Cost [e] 0.47 0.59 0.49 0.52
Fuel [g] 314 0 274 278

specifically, the strategy with linear penalty term on the
final state of charge attains a lower cost, as there is no
mandatory recharge of the battery at the end of the cycle.

On the other hand, the lowest fuel consumption is trivially
attained with the full electric driving, as shown in Table 3,
since the mission is within the “all electric range” of
the vehicle. The other fuel minimization strategies attain
similar results, while the proposed strategy leads to the
highest fuel consumption.

5.2 Mixed urban-highway driving cycle

The second case study considers the same policies and the
same vehicle of the previous one, when driving on a mixed
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Fig. 5. A comparison of battery SOC trends during the
FTP highway driving cycle with different control
strategies

Table 4. A comparison of total driving cost and
fuel consumption for the FTP highway driving

cycle with different control strategies

TDC Full Electric ECMS Charge Sustaining

Cost [e] 2.88 3.57 2.99 3.09
Fuel [g] 1860 200 1570 1960

urban-highway driving schedule. This cycle is given by an
FTP urban cycle followed by 5 FTP highway driving cycles
and another FTP urban cycle. In this case, the initial state
of charge of the battery is 75%.

Figure 5 shows that the proposed strategy results to be
slightly charge depleting, leading to an overall decrease
of the battery state of charge of less than 5%. The fuel
minimization strategy with final SOC penalization in this
case does not achieve a perfect charge sustenance, as the
same tuning parameters of the previous case are employed.
This strategy actually requires to adapt the penalization
coefficient to the driving cycle. As for the full electric
mode, in this case, the mission is beyond the “all electric
range” of the vehicle, and therefore, the thermal unit is
used even if it depletes the battery charge.

Similarly to the previous case, the full electric strategy
leads to the worst results in terms of total cost, as shown in
Table 4. The other strategies lead to quite similar results,
but the minimum is attained with the proposed strategy
as expected.

Opposite considerations hold for the fuel consumption re-
sults, see Table 4. Also in this case the full electric scenario
requires the least fuel, while the proposed strategy leads to
the highest consumption. In this case, the two fuel mini-
mization strategies show quite a remarkable difference, due
to the fact that more thermal power is needed to achieve
perfect charge sustenance.

6. CONCLUSIONS

In this paper, we propose a novel approach for optimal en-
ergy management in SHEVs. Specifically, we reformulate
the standard optimization goal as the overall cost given
by the cost of the grid energy, the battery life and the fuel
consumption over a given trip. The use of a “monetary
cost” instead of the standard “energy consumption” allows

us to sum up heterogeneous terms without need of tuning
Lagrangian multipliers like in the ECMS and incorporat-
ing final state constraints. In this paper, the model of the
powertrains has also been modified accordingly, to take
into account the dynamic effect of battery aging.

Although battery charge sustenance is not an explicit goal
of the method, simulations on a full-fledged model of the
vehicle show that the proposed approach generally leads
to charge sustaining control policies. This feature cannot
be generalized but it will be object of future works, as
well as the implementation of real-time control strategies
achieving the total cost minimization. In those future
works, the result of this paper will be used as a benchmark
to evaluate different control approaches.
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