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Abstract: This paper defines a (pseudo) metric topology on the space of stable discrete linear
time-invariant (LTI) dynamic systems. The article seeks to present a solution to the problem of
comparing two LTI systems or, more formally, to find a metric for the space of stable discrete LTI
dynamic systems. To this effect, by comparing the performance of two Kalman filters designed
for two dynamic systems, a distance-like pseudo-norm between two systems is developed. The
defined metric topology can be exploited to select the closest model, among several possible
models Ps, all of which are known, to an observed data sequence modeled as P⋆. Numerical
simulations are provided illustrating the efficacy of the metric derived.

1. INTRODUCTION

The question that this article seeks to answer is how to
compare two stable discrete linear time-invariant (LTI)
dynamic systems or, more formally, to find a metric
topology on the the space of stable discrete LTI dynamic
systems. Consider a set of stable discrete LTI dynamic
systems denoted by P; A topology on P is a collection T
of subsets of P that satisfy a set of axioms relating points
and neighborhoods (see Munkres [2000]). One of the most
important and common ways of imposing a topology on
a set is to introduce the topology in terms of a metric on
the set. A metric on a set P is a function

m : P×P → R+

having the following properties

(1) m(Pr, Pf ) ≥ 0, ∀Pr, Pf ∈ P; where equality holds if
and only if Pr = Pf .

(2) m(Pr, Pf ) = m(Pf , Pr), ∀Pr, Pf ∈ P.
(3) m(Pr, Ps) +m(Ps, Pf ) ≥ m(Pr, Pf ), ∀Pr, Ps, Pf ∈ P.

In the study of linear algebra and vector spaces, norm
induces a metric, and hence a topology, on the vector
space. However, this approach does not always make sense,
for the stable discrete LTI dynamic systems. For a review
on the definition of different norms for signals and sys-
tems, the reader is referred to Boyd and Barratt [1991].
Equipping the space of stable discrete LTI dynamic sys-
tems with a topology and a metric not only is an inter-
esting theoretical exercise, but also has many important
applications. Many applications in system identification
can benefit from defining a metric topology on dynamic
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systems. Another important application comes in model
reduction, when one can define a distance between the
original system and the reduced order one, and monitor
the distance as an index of similarity between two systems.
For early studies of topological and metric properties of
dynamical systems the reader is refereed to Petreczky and
Vidal [2007], De Cock and De Moor [2002], Martin [2000],
Hanzon [1986], in which for example, Martin [2000] intro-
duced a cepstral distance measure for single-input single-
output (SISO) autoregressive moving average (ARMA)
models, De Cock and De Moor [2002] defined subspace
angles between two ARMA models, and Petreczky and
Vidal [2007] defined a distance between two dynamical
systems as the distance between the formal power series
that encode the input-output behavior of the systems.
The problem of defining metrics on the space of dynamic
systems is an old problem which has gained more attention
and been revisited in recent years, for example see Afsari
and Vidal [2013a,b].

The main contribution of this paper is defining a metric
topology on stable discrete LTI dynamic systems focusing
on similarity of the input-output behavior of dynamical
systems. The proposed metric is developed around the idea
of finding the distance of members of a set of discrete-
time LTI systems from a reference system. To this effect
and to find a distance between two stable discrete LTI
dynamic systems, a Kalman filter (KF) associated with
each dynamic system is designed (based on the model of
the aforementioned dynamic system) and the performance
of these KFs are compared with the one associated with
the reference system in order to find the distance of their
corresponding systems from the reference system. 1 It is

1 The methodology proposed here has its root in Baram and Sandell

[1978] in which the modeling and identification of dynamic systems

where the model set does not necessarily include the observed system,

are treated.
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worth stating that in this framework, if the distance be-
tween two systems is zero, it means that they are at equal
distance from the reference system. This does not mean
that they are equal from an input-output point of view.
In fact, it means that in this framework and based on the
proposed metric there is no possible way of distinguishing
two systems on the basis of the measurement data.

The structure of the paper is as follows. In section 2 we
review the problem formulation. Section 3 summarizes our
main results in which a pseudo-metric on stable discrete
LTI dynamic systems is defined and the properties of
the metric are shown. Section 4 illustrates the defined
metric through numerical simulations. The conclusions are
summarized in section 5.

2. PROBLEM FORMULATION

This section revisits some basic properties of stable dis-
crete LTI dynamic systems in a stochastic setting. The
system is described by a discrete-time difference equation,

x(t+ 1) = Ax(t) +Bu(t) +Gw(t), (1)

y(t) = Cx(t) + v(t),

where x(t) ∈ Rn denotes the state of the system, u(t) ∈
Rm its control input, y(t) ∈ Rq its measured noisy output,
w(t) ∈ Rr an input plant disturbance that can not be mea-
sured, and v(t) ∈ Rq is the measurement noise. The vectors
w(t) and v(t) are zero-mean, mutually independent white
Gaussian sequences, with covariances cov[w(t);w(τ)] =
Qδtτ and cov[v(t); v(τ)] = Rδtτ , respectively. The ini-
tial condition x(0) of (1) is a Gaussian random vector
with mean and covariance given by E{x(0)} = 0 and
E{x(0)xT (0)} = P (0). It is further assumed that [A, G]
and [A, C] are controllable and observable, respectively.

Consider a family of stable discrete LTI dynamic systems
parameterized by some variable s ∈ S. For example, we
could have

P :=

{
xs(t+ 1) = Asxs(t) +Bsu(t) +Gsw(t)
y(t) = Csxs(t) + v(t)

: s ∈ S

}
,

(2)
with the parameterizing set S finite, infinite but count-
able, or not even countable; and all the xs, w, v, u, and y
with the same dimension, accordingly.

Any member of P, say Ps, is represented by the set of
matrices (As;Bs;GS ;CS) (which is called a realization of
Ps). A steady state Kalman filter, see Anderson and Moore
[1979] for details, can be designed:

x̂s(t+ 1) = Asx̂s(t) +Bsu(t) +Hs

(
y(t)− Csx̂s(t)

)
,
(3a)

ŷs(t) = Csx̂s(t), (3b)

Hs = AsΣsC
T
s [CsΣsC

T
s +R]−1 (3c)

where Σs is the solution of the discrete Riccati equation

Σs = AsΣsA
T
s +GsQG

T
s

−AT
s ΣsC

T
s [CsΣsC

T
s +R]−1CsΣsAs. (4)

The designed KF can be used to estimate the states of Ps

using u(t) and y(t).

Let us consider a special case where the dynamics of a
physical system are governed by

xs⋆(t+ 1) = As⋆xs⋆(t) +Bs⋆u(t) +Gs⋆w(t), (5)

y(t) = Cs⋆xs⋆(t) + v(t),

and the real value of the set of matrices (As⋆ ;Bs⋆ ;Gs⋆ ;Cs⋆)
is unknown. Let us further assume that two possible model
of the physical system are suggested as (Ar;Br;Gr;Cr)
and (Af ;Bf ;Gf ;Cf ). How can one select between the
two possible model (having access to the input-output
measurements of the real system)?
In the following section we will develop a pseudo-norm for
comparing two stable LTI systems.

3. METRIC DEFINITION

Let u(t) and y(t) be the measured input and output
of system Ps⋆ , described in (5), respectively. Moreover,
let ỹr(t) and ỹf (t) denote the output innovation se-
quence (residual) from two KFs designed for the model Pr

(with realization (Ar;Br;Gr;Cr)) and Ps (with realization
(Af ;Bf ;Gf ;Cf )), respectively, and given by

ỹr(t) = y(t)− ŷr(t),

ỹf (t) = y(t)− ŷf (t).

We will assume that the residual sequences in all the KFs
are stationary and ergodic (see Hassani et al. [2013] for
necessary conditions).
Let Yt ≡ {y(0), y(1), · · · , y(t), u(1), · · · , u(t)} condense the
history of the measurements from the beginning up to time
t. Consider the conditional probability density function
fs
(
y(t)|Yt−1, Ps

)
(the probability distribution of y(t) when

Yt−1 is known to be a particular value and assuming that
the model of the system is Ps). Furthermore, for each KF
we have fs

(
Yt|Ps

)
=

∏t
k=1 fs

(
y(k)|Yk−1, Ps

)
.

For two different KFs based on Pr and Pf , if

ff
(
Yt|Pf

)
> fr

(
Yt|Pr

)
, (6)

or, equivalently, if

log ff
(
Yt|Pf

)
> log fr

(
Yt|Pr

)
,

we will say that based on the observation vector Yt, the
KF designed based on model Pf is preferred over (more
likely or probable than) the KF designed based on model
Pr. Define the likelihood ratio for the sequence of Yt

kfr
(
Yt
)
=
ff

(
Yt|Pf

)
fr
(
Yt|Pr

) (7)

or, equivalently,

log kfr
(
Yt
)
= log ff

(
Yt|Pf

)
− log fr

(
Yt|Pr

)
,

where log kfr
(
Yt
)
can be regarded as a measure of the

information contained in Yt that can be used to select
between the KFs designed based on the models Pf and
Pr.

2 Similarly, one can compute the conditional likelihood
ratio

kfr
(
y(t)|Yt−1

)
=
ff

(
y(t)|Yt−1, Pf

)
fr
(
y(t)|Yt−1, Pr

) (8)

2 Positive values of log kfr
(
Yt

)
mean that based on the observation

vector Yt, the KF based on Pf is more likely to be the optimal

observer than the KF based on Pr, while negative values show that

the KF based on Pr is preferred over the KF based on Pf .
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or, equivalently,

log kfr
(
y(t)|Yt−1

)
= log ff

(
y(t)|Yt−1, Pf

)
− log fr

(
y(t)|Yt−1, Pr

)
which can be interpreted as a measure of the information
contained in y(t) that can be used to select between
the KFs designed based on models Pr and Pf . We can
define the mean information in y(t) for preferring the KF
designed based on model Pf (or (Af ;Bf ;Gf ;Cf )) over the
KF designed based on model Pr (or (Ar;Br;Gr;Cr)) as

dt(Pf , Pr) = E{log kfr
(
y(t)|Yt−1

)
}. (9)

When dt(Pf , Pr)
3 is positive we can conclude that the KF

based on Pf is more probable to be the true KF than the
KF based on Pr. The above variable can be regarded as a
yardstick against which to select the “best” KF modeling
the behavior of the real system. It is easy to see that the
true KF is always preferred over other KFs (i.e. the KF
designed based on model Ps⋆ is always preferred over other
KFs).

Proposition 1. Let Yt be the measured data from a system
described by model Ps⋆ , then for all KFs designed based
on model Pr (Pr ̸= Ps⋆)

d(Ps⋆ , Pr) ≥ 0, (10)

with equality if & only if fs⋆
(
yt|Yt−1, Ps⋆

)
= fr

(
yt|Yt−1, Pr

)
.

Proof. Since Yt is the measured data from a system
described by model Ps⋆ , using the KF designed based on
model Ps⋆ , (f⋆

(
yt|Yt−1, θ⋆

)
) is the true sequence of condi-

tional probability densities of (yt); it follows immediately
from the definition that for each t ≥ 0 we have

E{fs⋆
(
yt|Yt−1, Ps⋆

)
} ≥ E{fr

(
yt|Yt−1, Pr

)
},

with equality if & only if fs⋆
(
yt|Yt−1, Ps⋆

)
= fr

(
yt|Yt−1, Pr

)
.

Now it is straightforward to get the result. �

The conditional probability density of y(t) given the past
observation Yt−1 when the true model of the system (from
which Yt−1 is sampled) is Ps⋆ has the form (see Anderson
and Moore [1979])

fs⋆
(
y(t)|Yt−1, Ps⋆

)
=
exp{− 1

2 ỹs⋆(t)
TS−1

s⋆ ỹs⋆(t)}√
(2π)q|Ss⋆ |

, (11)

where q is the dimension of ỹs⋆(t) and Ss⋆ = Cs⋆Σs⋆C
T
s⋆ +

R is the covariance of the innovation sequence. In fact, in
this case the conditional probability density of y(t) given
the past observation Yt−1 when the true model of the sys-
tem is Ps⋆ , fs⋆

(
y(t)|Yt−1, Ps⋆

)
, is a gaussian distribution

with mean ŷs⋆(t) and covariance E{ỹs⋆(t)ỹTs⋆(t)}, which
we denote by Ss⋆ .

4

Now let us consider the case that Yt is the measured data
from a system described by model Ps⋆ , but a KF designed

3 When the dynamics of the system Ps⋆ is constant, it is reasonable

to assume that in steady state y(t) and y(τ), t ̸= τ have the same

“amount” of information for selecting between the KFs. So we drop

the t in dt(Pf , Pr) and use d(Pf , Pr) instead.
4 According to the assumption of stationarity, Ss⋆ is independent of

t.

based on the model Pr is used for estimation of y(t). It
follows that

E log{fr
(
y(t)|Yt−1, Pr

)
} (12)

= −q
2
log(2π)− 1

2
log(|Sr|)−

1

2
tr(S−1

r E{ỹTr (t)ỹr(t)})

= −q
2
log(2π)− 1

2
log(|Sr|)−

1

2
tr(S−1

r Ss⋆

r )

where Ss⋆

r is the covariance of output estimation sequence
when the true plant model is Ps⋆ but the KF is designed
based on model Pr.

5

Now, let us go back to the very last question of the
previous section, where Yt is measured from a physical
system whose dynamics can be modeled as Ps⋆ (Ps⋆ is not
known), and two possible model for the physical system
are suggested as Pr and Pf . It is easy to write d(Pf , Pr)
as

d(Pf , Pr) = (13)

+ E log{ff
(
y(t)|Yt−1, Pf

)
} − E log{fr

(
y(t)|Yt−1, Pr

)
}

+
1

2
log(|Sr|) +

1

2
tr(S−1

r Ss⋆

r )

− 1

2
log(|Sf |)−

1

2
tr(S−1

f Ss⋆

f ).

Let 6

Γs⋆

r ≡ 1

2
log(|Sr|) +

1

2
tr(S−1

r Ss⋆

r ), (14)

from which it follows that

d(Pf , Pr) = Γs⋆

r − Γs⋆

f . (15)

It is also useful to mention that

d(s⋆, r)− d(s⋆, f) = Γ⋆
r − Γ⋆

f

so that

d(s⋆, r) ≥ d(s⋆, f),

if and only if

Γs⋆

r ≥ Γs⋆

f .

Theorem 2. For the KFs designed based on models Pr and
Pf , under the assumption of ergodicity and stationarity of
the residuals (see Hassani et al. [2013]), we have

lim
t→∞

krf
(
Yt
)
= 0 (16)

if and only if

Γs⋆

r ≥ Γs⋆

f (17)

Proof. Note that

log krf
(
Yt
)
=

t∑
n=1

log krf
(
y(n)|Yn−1

)
. (18)

5 We should highlight here that the notation of the term ỹr(t) in

(12) is ambiguous, since it may denote either the residual of the KF

designed based on the assumption that the true plant model is Pr, or

the residual of the KF designed based on the model Pr irrespective of

the true plant model. Clearly, in (12) ỹr(t) has the second meaning.
6 Hassani et al. [2009, 2011] used Γs⋆

r as a performance index in

multiple model adaptive estimator and also as a tool for proper

designing of observers in robust multiple model adaptive control

methodology. It is also closely related to Kullback and Leibler’s

distance (see Kullback and Leibler [1951]) and in fact, can be viewed

as a modified version of Kullback and Leibler’s information index,

see Baram and Sandell [1978].

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6892



Under assumption on ergodicity and stationarity of
the residuals, we can compute the expected value of
log krf

(
y(n)|Yn−1

)
as

lim
t→∞

1

t

t∑
n=1

log krf
(
y(n)|Yn−1

)
= E{log krf

(
y(n)|Yn−1

)
}

= dn(Pr, Pf ) = Γs⋆

f − Γs⋆

r . (19)

If

Γs⋆

f ≤ Γs⋆

r (20)

then by comparing (18), (19), and (20), it follows that

lim
t→∞

log krf
(
Yt
)
= lim

t→∞

t∑
n=1

log krf
(
y(n)|Yn−1

)
= −∞ (21)

which implies that

lim
t→∞

krf
(
Yt
)
= 0. (22)

�

This theorem shows that the KF which has the minimum
Γs⋆

v (i.e. the KF designed based on model Pv) is more
preferable over other KFs. In other word, the model Pv

is closer to the true plant model Ps⋆ in some sense. Based
on the results of Theorem 2 we can define a Pseudo-norm
on the set of LTI systems given by

m(Pr, Pf ) := |Γs⋆

r − Γs⋆

f |. (23)

Lemma 3. The defined norm in (23) is a Pseudo-Norm 7 .

Proof. It is not difficult to see that

m(Pr, Pr) = |Γs⋆

r − Γs⋆

r | = 0.

To prove the symmetry property, use the fact that

m(Pr, Pf ) = |Γs⋆

r − Γs⋆

f | =
|Γs⋆

f − Γs⋆

r | = m(Pf , Pr).

The triangle inequality follows from

m(Pr, Pp) +m(Pp, Pf ) =

|Γs⋆

r − Γs⋆

p |+ |Γs⋆

p − Γs⋆

f | ≥
|Γs⋆

r − Γs⋆

p + Γs⋆

p − Γs⋆

f | =
|Γ⋆

i − Γs⋆

f | = m(Pr, Pf ).

�

4. SIMULATION

This section illustrates the design methodology described
in the previous section. Motivated by Nomoto et al. [1957]
we consider the steering equations known as Nomoto
model. The model is developed such that the steering
dynamics of the yaw mode of marine vessel could be
analyzed in isolation, through either a first or second
order transfer function. For a large class of marine vessels,
Nomoto Model gives a reasonably accurate description of
the course-keeping behavior and even today, this simple
and thoroughly effective model is used within a multitude

7 A pseudo-norm or seminorm is a norm that does not satisfy the

identity of indiscernibles.

( )t

( )t ( )y t

( )t

Nomoto Model

        ( )G s

dW

( )d t

( )t

Fig. 1. The Stable Discrete-Time Linear Time-Invariant
(LTI) Plant.

of guidance and control system design papers. The differ-
ential equation corresponding to the first order Nomoto
model can be written as

ψ̈(t) +
1

T
ψ̇(t) =

k

T
δ(t), (24)

where ψ(t) and δ(t) denote the yaw angle and rudder angle
of the ship, respectively, and T and k are the effective
time constant and gain constant, respectively. Let us
further assume that the steering model is subject to a low-
frequency stochastic disturbance input d(t) obtained by
filtering white noise ξ(t) with zero mean and unit intensity,
as follows:

Wd(s) =
d(s)

ξ(s)
=

0.1

s+ 0.1
. (25)

Fig. 1 shows the block diagram of the example adopted
where y(t) is the observed output (measured heading of
the vessel), δ(t) is the control input (rudder angle), d(t) is
the plant disturbance, and θ(t) is the sensor noise assumed
to be white noise with zero mean and intensity 10−3.

All simulations for this example were implemented in
discrete-time using a zero-order hold with a sampling time
of Ts = 0.01 secs.

Figs. 2, 3, and 4 illustrates the distance between the
system with k = −0.15 and T = 8 and a system with
−1 ≤ k ≤ −0.1 and 6 ≤ T ≤ 14.

Let us denote by PT
k the system described in (24).

For example P 8
−.15 denotes the system described in (24)

with k = −0.15 and T = 8. It can be noticed that
m(P 8

−.15, P
T
k )|T=8

k=−0.15
= 0 i.e. the distance of the system

described in (24) with k = −0.15 and T = 8 from itself is
zero.

5. CONCLUSIONS

This paper introduced a pseudo-metric topology on the
space of stable discrete LTI dynamic systems. Based on
the defined norm one can compare two LTI systems from
input-output behavior point of view. The defined metric
space have important application in system identification.
Future work will aim at extending the current metric to
accommodate the space of time varying and nonlinear
systems.
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Fig. 2. Distance of the systems with different k and T
values from the system with k = −0.15 and T = 8 as
a function of k and T .

Fig. 3. A zoomed in view of Fig. 2.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
0
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k
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T=9
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T=11

Fig. 4. distance of the systems with different k and T values
from the system with k = −0.15 and T = 8 as a
function of k (fixed T ).
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