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1. INTRODUCTION

High tides are a source of major concern for the city of
Venice. Conventionally a tide is classified as high (“acqua
alta” in italian), if the sea level at Punta della Salute,
which is an hydrographic station situated at the outlet of
the Grand Canal, reaches 80 cm. This level corresponds
to flooding of the lowest sides of the town (St. Mark’s
Square). The alarm to the population is given when the
tide is about to reach 110 cm. When the water level
exceeds 140 cm the high tide is classified as exceptional
and more than 60% of the city is flooded. Historically,
exceptional high tides were very rare; for example only 8
events were registered between 1950 and 2000. However,
lately their frequency is increasing: 6 such events were
registered between 2000 and 2010 and 3 events occurred
just in 2012. This increase is due to phenomena such as
eustatism (sea level rise) and subsidence (lowering of the
soil). To protect the city of Venice, a system of mobile
barriers at the three main inlets of the lagoon (the “Mose”)
is under construction. To efficiently control it, an accurate
prediction of the tide level is needed from 3 to 12 hours
ahead, requiring the development of very precise models of
the tide. The first class of models developed were physical/
hydrodynamical models of water flows in and around the
lagoon, see e.g. [Bargagli et al. 2002, Fagherazzi et al. 2005,
Carniello et al. 2005, D’Alpaos and Defina 2007, Lovato
et al. 2010, Bertotti et al. 2011b]. Lately, however, the gen-
eral tendency is to employ statistical models, which do not
require the modeling of the extremely complicated system
of canals and marshes surrounding the city. The model cur-
rently in use, called EXCO2, belongs to this second class,
although some of the relevant pressure data are refined
via a physical model, and has been operational since 1993
[Vieira et al. 1993]. EXCO2 is an ARX model which uses
as exogenous variables the pressures in four key geograph-
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ical locations: Alghero, Genova, Venice and Bari, together
with five squared pressure gradients across the Adriatic,
namely along the joints Trieste-Ravenna, Pula-Rimini,
Zadar-Pescara, Split-Termoli, Dubrovnik-Bari, which are
used to estimate the wind effect, see Fig. 1.
The use of ARX structure for modeling the tide phe-
nomenon has been statistically validated in [Parise and
Picci 2013]. One of the main results therein was that
the set of inputs currently in use can be improved. In
particular it was shown that the use of wind velocity
and direction in four key stations, namely Venice, Trieste,
Bari and Dubrovnik, as additional inputs, leads to better
performance for the prediction from 3 to 10 hours ahead.
These results refer to the behavior of models identified
using the whole dataset, which mainly contains normal
tide levels, that is, levels way under the threshold of 110
cm. The main objective of this paper is to test whether
these results are valid also for the particular conditions
associated to high tide events. These events are indeed
rare and their contribution to average indices such as
the normalized mean square error (NMSE), is negligible.
This analysis could hopefully give a better insight on the
validity of the models and suggest ways to improve them.
The crucial question of input selection is also addressed:
in the literature the choice of inputs is usually justified by
physical motivations but it is far from clear whether all the
used inputs are necessary or if there is some redundancy. In
this paper we compare the predictions obtained by using
input sets selected on the basis of experience with the
performance of models identified using variable selection
criteria, like the Group-LASSO [Yuan and Lin 2006].
The paper is organized as follows: Section 2 describes the
available dataset. In Section 3 the ARX structure and a
first analysis of the model behavior during high tide events
is presented. In Section 4 the exceptional high tide event of
31th October 2012 is analyzed. A model refinement for high
tide events in presented in Section 5. In Section 6 optimal
input selection problem is discussed. Section 7 concludes
the paper.
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2. THE DATA

The tide is the sum of an astronomical component and
a meteorological one. The former is totally predictable,
therefore in the following, we shall only deal with the latter
(obtained as actual water level minus the astronomical
component). The Adriatic basin behaves like a cavity oscil-
lator: following an initial perturbation, pronounced free os-
cillations called seiche (sessa in italian) are clearly visible
with an approximate period of 21-22 hrs. Seiche waves are
very lightly damped and added to the astronomical compo-
nent can lead to high tides even days after the initial per-
turbation. Apart from this phenomenon, the main external
agents influencing the meteorological tide are pressure and
winds, as stated by [Vieira et al. 1993]. The European
Centre for Medium-Range Weather Forecasts (ECMWF)
in the UK can provide daily predictions of these data for
180 hours ahead, with a three hours period. Fig 1 indicates
the location of the available predicted data. Measured
data of wind were also available at Piattaforma CNR
(Venice) and Grado (near Trieste). For model calibration

Fig. 1. Available data: pressure (white), pressure and
winds (light blue) and pressure gradients (black lines).

(identification) historical hourly sea level measurements
at the Punta della Salute hydrometer from 7/05/2009 to
31/01/2011 = 14,967 are used. For the validation of the
models the data from 01/09/2012 to 31/12/2012 are used,
for a total of 2,928 measurements. Note that this period
corresponds to autumn-winter months, i.e. when the me-
teorological component is more relevant, and includes the
3 exceptional high tide events registered in 2012.

3. THE MODEL

The model structure considered in this paper is of the ARX
type, the same of the existing model EXCO2. An ARX
model has the form

y(t)=c+

n∑
i=1

aiy(t−i)+
M∑
j=1

mj∑
i=1

bj,iuj(t−kj−i+1)+ε(t), (1)

where y(t) is the meteorological tide while u1(t), ..., uM (t)
are the M inputs of the system, that is external signals as
pressure and wind. The constant c is an offset due to the
fact that the signals y(t) and u(t) have non-zero mean. In
the following we will use the notation A = [a1, ..., an] and
B = [B1, ..., BM ] , where Bj =

[
bj,1, ..., bj,mj

]
.

For identification, the data need to be detrended by sub-
tracting the sample means of u(t) and y(t), moreover for

the purpose of Section 6 the inputs need to be normalized
to unitary variance. The means and variances are first
estimated from the identification data and then subtracted
from the actual input-output signals to get

y′(t) = y(t)− µ̂y, u′j(t) =
uj(t)−µ̂uj

σ̂uj
j : 1, ...,M,

which are used to estimate a detrended model

y′(t) =

n∑
i=1

âiy
′(t− i) +

M∑
j=1

mj∑
i=1

b̂j,iu
′
j(t− kj − i+ 1) + ε(t).

(2)
The offset is then computed by substitution

ĉ = µ̂y (1−
∑n
i=1 âi)−

∑M
j=1

∑mj
i=1

b̂j,i
σ̂uj

µ̂uj , (3)

getting

y(t)= ĉ+

n∑
i=1

âiy(t− i)+
M∑
j=1

mj∑
i=1

b̂j,i
σ̂uj

uj(t−kj − i+ 1) + ε(t).

(4)
The structure indices n = 33, mj = 13 and kj = 1
for all j, are used. These indices are used by the cur-
rent model EXCO2 and it was shown in [Parise and
Picci 2013] that they lead to a statistically consistent
model and that, selecting different orders mj and kj ,
within a rather wide range, does not improve the per-
formance. The identification of the parameter vector θ =
[ a1, . . . , an, b1,1, . . . , bM,mM ] is done by minimizing the
one-step ahead prediction error eθ(t) = y(t) − ŷθ(t|t − 1)
(PEM), that is

θ̂ = minθ V (θ), V (θ) = 1
Nid

∑Nid
i=1 ||y(ti)− ŷθ(ti|ti−1)||2.

(5)
Under Gaussian assumptions this estimator is known to
be asymptotically equivalent to the Maximum Likelihood
estimator which is consistent and has the smallest asymp-
totic variance [Ljung 1999].
Using the dataset described in Section 2, we identified two
ARX models. The first one, arxA, mimics the structure
of EXCO2 while the second one, arxB, uses the new set
of inputs proposed in [Parise and Picci 2013], see also
Table 1. A third model, arxC, was also identified using
true measured data of wind in Venice and Grado 1 , instead
of the wind predictions from ECMWF. Indeed the wind
predictions issued by ECMWF may be quite inaccurate
during the highest peaks of a storm, that is during the
events of interest [Cavaleri and Bertotti 2006, Bertotti and
Cavaleri 2009]. The comparison between arxB and arxC
should detect whether the errors in the prediction are due
to model mismatch or rather to errors in the inputs. For

Table 1. Nomenclature associated with the
different identification datasets

Name Inputs

A stand = 4 pressures and 5 square pressure gradients

B stand + predicted wind · |wind| at Ve, Tr, Ba, Du

C stand + predicted wind · |wind| at Ba, Du
and measured ones at Ve, Gr

the models in the datasets of Table 1 we first proceed to
verify whether the results obtained in normal conditions
are also valid during high tide events. To this end, the

1 The measured data of wind at Grado are used instead of those in
Trieste since these were not available.
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validation dataset introduced in Section 2 is used. Fig. 2
shows the probability density function (pdf) of the one-
step-ahead residual prediction errors for the model arxB.
Similar results can be obtained with the models arxA and
arxC. In the left plot the pdf estimated considering all the
validation dataset is shown, while, in the right one, the
pdf conditioned on y(t) > 45 cm, i.e. high tide events, is
shown. While for the complete dataset the residuals look
reasonably Gaussian, indicating that a linear ARX model
is statistically correct, the pdf estimated on high tide data
only, shows a slight multimodality suggesting that some
small non-linear effect may be present. Also the shape
of the density function looks quite different, a possible
indication of non-stationarity.
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Fig. 2. Distribution of the residuals of model arxB using
the whole dataset (left) and only errors for meteoro-
logical tide levels over 45 cm (right).

4. ANALYSIS OF AN EVENT OF EXCEPTIONAL
HIGH TIDE

The exceptional high tide occurred during the night of
October 31st 2012 is a particularly interesting case because
for this event, the predictions made with the models
currently in use were significantly wrong leading to high
exposure in the media.
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Fig. 3. Comparison of the meteorological tide and the mea-
sured/predicted wind in Venice (Piattaforma CNR)
for the exceptional tide of October 31th 2012.

4.1 Analysis of the event

Fig. 3 shows the relation between the water level and
the wind direction/velocity in Venice during the night of
October 31th. It can be seen that:

(1) at the beginning of the period the wind velocity is
almost zero and the tide follows the natural sessa
oscillation;

(2) from the morning of 31/10 a “Bora” wind with a
direction of 50 degs (from NE) starts to flow and
reaches its maximum velocity between 7.00 pm and
midnight. During the same period the tide level grows
and reaches its maximum at 2.00 am;

(3) afterwards the wind velocity decreases and the di-
rection suddenly changes. In this second phase the
wind is blowing from 250-300 deg (W) and its effect
is to empty the lagoon. Simultaneously the tide level
decreases rapidly and the second peak (due to the
sessa) does not occur.

Summing up, the analysis of this particular event shows
that there is a high correlation between the measured wind
in Venice and the tide level. Fig. 3 also shows the com-
parison between the measured wind velocity and direction
in Venice and the predictions issued by ECMWF. It is
important to notice that the velocity peak is considerably
underestimated by the ECMWF prediction. This is in line
with the results reported in [Cavaleri et al. 2010] and in
[Bertotti et al. 2011a] where other events of high tide,
caused by intense Scirocco wind (SE), are considered. In
that case a correction factor between 1.2 and 1.5 was used
to compensate for the underestimation of the wind velocity
by ECMWF (see Table I therein).

4.2 On-line predictions

In the following with the term on-line prediction initialized
at time t with horizon T we denote the tide prediction for
the interval t, ..., t+T given the measurements up to time
t − 1. To simulate the on-line predictions for the event
of October 31th, the standard model arxA, and the two
models with wind inputs have been used, see Fig. 4.
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Fig. 4. On-line predictions obtained with the models of
Section 3 for the event of October 31th 2012. The
simulations have been initialized 12 hours before the
peak (vertical grey line).

Surprisingly, the models with wind inputs do not behave
better than the standard model, even though the previous
analysis has shown a clear correlation between the tide
and the wind in Venice. One possible explanation is that
the effect of wind inputs is relevant only during high tide
events, which are very rare and an identification which
uses long data collected in prevalently normal conditions,
may provide wind coefficients estimates which are unreal-
isitically small.
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Fig. 5. On-line predictions obtained with the models of Section 5 for the three events of exceptional high tide present
in the validation dataset. The simulations have been initialized 12 hours before the peak (grey line).

5. SYSTEM IDENTIFICATION FOR HIGH TIDE
EVENTS

In order to confirm the conjecture that the wind coeffi-
cients relative to high tide events are underestimated, a
new set of models is identified using only data collected
during high tide events. A new cost function

Vs(θ) =
∑
ti|y(ti)>s ||y(ti)− ŷθ(ti|ti − 1)||2, (6)

is used for this identification. The main difference with the
standard PEM cost function (5) is that only errors relative
to meteorological tide above some threshold, y(t) > s, are
weighted. In the following this threshold is set to 45 cm.
Since it is reasonable to assume that the autoregressive
dynamics, describing say the “sessa” oscillations, should
not be influenced by the weather conditions, only the
B matrix is estimated, while the A matrix is fixed to
the optimal value found using the whole identification
dataset. Fig. 5 shows the on-line predictions obtained with
these new models for the 3 events of exceptional tide
present in the validation dataset. For each event the on-line
predictions of the meteorological and total tide are shown.
Looking at the left plots, relative to the event analyzed
in Section 4, it is clear that the models using the wind,
identified using only high tide events data, arxB45 and
arxC45, behave much better than the standard models,
arxA, arxB and arxC. It is interesting to notice that
they behave much better also with respect to arxA45,
which is a model using the standard inputs (no wind)
but identified using high tide events data only. There
is a clear evidence that the inputs currently in use by
EXCO2 are not sufficient to explain high tide events, even
with the refinement given by (6). Moreover, between the
two models with wind inputs, the one using measured
data, arxC45, behaves better than arxB45, which uses
predicted data from ECMWF. This is to be expected since,
as discussed before, the wind data provided by ECMWF
underestimate the real wind velocity, causing errors both

in the identification and in the simulation step. In the other
two exceptional high tide events the wind effect is still
present, hence arxC45 still provides the best performance.
Unfortunately this is not sufficient to fully explain these
two high tide events. A more detailed analysis, as the one
done in Section 4.1 for Event 1, could help to understand
other causes of high tide and is postponed to future work.
An immediate observation is, however, that for Event 2
and 3 the meteorological peak is less important than in
Event 1; the exceptional tide in these events was due to
the fact that the peak of meteorological and astronomical
tide were in phase. This could indicate that the conditions
leading to high tide were different in the 3 events and
that the winds alone cannot explain all phenomena. In
particular from this analysis it seems that the wind at
Venice and Trieste are particularly important to explain
events like Event 1 but they do not provide a full picture
for Events 2 and 3.

6. REDUCED MODELS AND INPUT SELECTION

In this section we address the question whether all the
inputs used by model arxC45 are necessary or if there is
some redundancy. Too many inputs and hence too many
parameters to estimate may indeed lead to an insensitive
error functional and to parameter estimates which are non-
robust to perturbations. Related legitimate questions are:

(1) are the pressure gradients still needed if we include the
winds as input? The reason for introducing them was
to take into account the wind effect at geostrophic
altitude. However this can become irrelevant if we
have now wind data at sea level;

(2) are all the wind data useful or only those that are
closer to the lagoon? Indeed it could be that the
effect of wind on the sea level is important only in the
proximity of the lagoon, hence at Venice and Grado
(or Trieste), while the effect of the winds at Bari and
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Dubrovnik could be taken into account using only the
pressure gradients.

To answer these questions the three input datasets D, E
and F, reported in Table 2, have been constructed.

Table 2. Identification datasets constructed to
answer Questions 1 and 2

Name Inputs Quest.

D 4 pressures + predicted wind · |wind| at Ba, Du (1)
and measured ones at Ve, Gr

E stand + measured wind · |wind| at Ve, Gr (2)

F 4 pressures + 3 pressure gradients at T-R, Z-P, D-B +
predicted wind · |wind| at Ba, Du (1)
and measured wind · |wind| at Ve, Gr

This problem can be also addressed in an automated way,
without reference to the physical meaning of the input
variables. The so-called Group-LASSO method [Yuan and
Lin 2006] for variable selection sets automatically to zero
the coefficients of the less relevant inputs. The method
uses a modified cost function like

Vλ,s(θ) = Vs(θ) + λ
∑M
j=1 ||Bj ||, (7)

which is the sum of the original cost function (6) plus a
term that penalizes the sum of the 2-norm of the coefficient
vector of each input. Note that the 2-norm of this vector is
proportional to the importance of the corresponding input
since the input data have been normalized to (zero mean
and) unit standard deviation. The parameter λ tunes the
relative importance between high accuracy in prediction
and number of inputs. The optimal value of this parameter
can be chosen by cross validation.

0 0.5 1 1.597

97.5

98

98.5
NMSE 1 step ahead

λ
 

 

0 0.5 1 1.564

66

68

70

72
NMSE 5 steps ahead

λ
 

 

all
pg
wind

all
pg
wind

0 0.5 1 1.594

95

96

97

λ
 

 

NMSE 1 step ahead − over: 45

0 0.5 1 1.50

20

40

60
NMSE 5 steps ahead − over: 45

λ
 

 

all
pg
wind

all
pg
wind

0 0.5 1 1.55

10

15

20
number of inputs

λ
 

 

all
pg
wind

0 0.5 1 1.5100

150

200

250
number of parameters

λ
 

 

all
pg
wind

Fig. 6. Relation between λ and the NMSE using all the
validation dataset (left column) or only high tide
events (right). In the bottom line the number of
parameters and the selected inputs ares reported.

Fig. 6 shows the normalized mean square error (NMSE)
obtained in validation,

NMSE(θ) = 100

(
1−

∑Nv

i=1
||y(ti)−ŷθ(ti|ti−1)||2∑Nv

i=1
||y(ti)− 1

Nv

∑Nv

i=1
y(ti)||2

)
,

for models identified using different values of λ and the
corresponding number of inputs. The cost function (7)

was used to estimate the coefficients of all inputs, “all”,
but also to refine only some of the coefficients of arxC45.
In particular to answer Question 1 it has been chosen to
estimate only the coefficient of the squared pressure gradi-
ents, “pg”, fixing all the others to the values of arxC45. To
answer Question 2, on the other hand, only the coefficients
of the wind have been used as free parameters, “wind”.
In Fig. 6 it is shown the NMSE using all the residuals
but also using only the ones corresponding to high tide
events. Table 3 reports which inputs are set to zero by
this identification procedure for λ up to 0.5 for “all” and
1.5 for “wind” and “pg”, since for values greater than these
the performance is decreasing.

MANUAL SELECTION
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Fig. 7. On-line predictions of the models in Section 6,
initialized 12 hours before the peak (vertical grey
line), for the exceptional tide of October 31th 2012.

Finally Fig. 7 shows the on-line prediction for Event 1
obtained using the models identified from the intuitively
planned datasets D, E and F, and the models identified
from dataset C using Group-LASSO with the values of λ
that maximizes the 1-step-ahead NMSE for high tides for
the three different sets of free parameters, see also Table 4.
In all cases a threshold of 45 cm has been used for Vs(θ).
Looking at the top plot it is evident that the answer to
Question 1 is negative. In fact the model arxD45 (green),
that does not use any pressure gradient, behaves much
worse than arxC45 (blue). Using 3 pressure gradients the
prediction improves, arxF45 (light blue), but is still worse
than using all of them. Moreover removing the winds in
Bari and Dubrovnik, as proposed in Question 2, leads to
the worst performance, arxE45 (purple). The removal of
only some of the pressure gradients, arxC45Lg (orange),
or only some of the wind data, arxC45Lw (pink), using
Group-LASSO, on the other hand, leads to better results,
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even though the model with all the inputs is still prefer-
able. Finally, note that using the Group-LASSO technique
to choose between all the inputs, arxC45La (red), is not
a valid option. This could be due to the fact that, even
if the inputs have been normalized to have zero mean
and unit standard deviation, weighting the coefficient of
different physical signals, like pressure, pressure gradients
and winds in the same way could not be optimal. A
possible solution would be to group the inputs into G
disjoint classes Ug of physically similar signals and then
use different scaling factors, λ1, ..., λG, in the cost function

Vλ1,...,λG,s(θ) = Vs(θ) +
∑G
g=1

(
λg
∑
j∈Ug ||Bj ||

)
, (8)

in the same style as [Bach et al. 2004, Bach 2008, Huang
and Zhang 2010]. This will however introduce a large
number of scaling factors λg, that have to be estimated
by cross-validation, hence it is postponed to future work.

7. CONCLUSIONS

In this paper we show that using only high tide events
and real wind data instead of ECMWF predictions, very
good predictions of some exceptional tide events can be
obtained. We have used Group-LASSO techniques to check
what inputs in [Parise and Picci 2013] are really relevant
for prediction. This technique should be used with caution
as it should be applied only for selecting inputs of the same
physical nature.

Table 3. Inputs set to zero by Group-LASSO
for different sets of free parameters and λ

all

pressure squared p. gradients winds U winds V

λ Ve Ge Al Ba TR PR ZP ST DB V B G D V B G D

0.2 0 0

0.3 0 0 0

0.4 0 0 0 0

0.5 0 0 0 0 0

pg winds
squared p. gradients winds U winds V

λ TR PR ZP ST DB λ V B G D V B G D
0.8–1.5 0 0.7 –1 0

1.1–1.4 0 0
1.5 0 0 0

Table 4. Nomenclature used for the models

NAME DATA PARAMETERS ID. MET. NUM.
SET free others fix to cost s λ INPUT

arxA A all - PEM - - 9

arxB B all - PEM - - 17

arxC C all - PEM - - 17

arxA45 A all inputs arxA (6) 45 - 9

arxB45 B all inputs arxB (6) 45 - 17

arxC45 C all inputs arxC (6) 45 - 17

arxD45 D all inputs arxC (6) 45 - 12

arxE45 E all inputs arxC (6) 45 - 13

arxF45 F all inputs arxC (6) 45 - 15

arxC45La C all inputs arxC45 (7) 45 0.5 12

arxC45Lg C pressure gr. arxC45 (7) 45 1 16

arxC45Lw C winds arxC45 (7) 45 0.7 16
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