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Abstract: With the rapid growth of wind energy installed capacity, optimized maintenance
has gained increasingly attentions from both researchers and wind farm owners. Condition-
based maintenance (CBM) has been introduced to the wind energy industry in order to ensure
the availability and safety of the wind energy conversion (WEC) system, while minimize the
operating and maintenance (O&M) costs. In this paper a maintenance decision support system
is introduced. By combining the information delivered by the data-driven WEC condition
monitoring system and the economical benefits of each possible corrective maintenance action,
the decision support system provides the operators with a choice of the most proper maintenance
action for the current situation. The performance of the decision support system is tested with
data collected from different WECs in a wind farm.
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1. INTRODUCTION

With the rapid growth of wind energy installed capacity,
optimized maintenance has gained increasingly attentions
from both researchers and wind farm owners. However, the
O&M cost is rather high, it can take up to 17% of the total
life cycle cost (LCC) of a wind turbine [Gasch et al., 2012].
In order to ensure the availability and safety of the WEC
system, while minimize the O&M costs, process monitor-
ing methods and technologies have been widely applied
on modern WECs [Hameed et al., 2009],[Amirat et al.,
2009],[Lu et al., 2009]. Condition based monitoring is one
of the most popular technologies, where the information
provided by vibration analysis, oil analysis, metal scan,
acoustic analysis, thermography, strain measurement etc.
are available for the investigation of the current WEC
condition [Hameed et al., 2009]. The Supervisory Control
and Data Acquisition (SCADA) system collects online all
kinds of measurement data from the WEC and record
their operation status, which makes it possible to realize
the WEC condition monitoring with data-driven multi-
variate methods (such as artificial intelligence [Kusiak
et al., 2012], support vector machine [Laouti et al., 2011]
and PCA method [Krueger et al., 2013]). However, as
addressed in [Huang, 2008], uncertainties in the practice is
unavoidable. A certain fault happened in the system could
influence different condition monitoring indices, whilst the
root-cause of the same triggered alarms might be due
to different faults [Haghani et al., 2013]. These kind of
uncertainties, on the one hand, make it difficult to choose
a correct maintenance action [Huang, 2008], on the other

hand, the operators are overwhelmed by the triggered
alarms from different condition monitoring indices. Main-
tenance management strategies for wind farms have also
been studied intensively. In [Amayri et al., 2011], ANN
has been applied to predict the failure time distribution of
WECs. However, the effectiveness of this method has only
been demonstrated with numerical example. Studies have
also been carried out based on field data. Maintenance
decisions aimed on long-term costs optimization have been
investigated with LCC analysis, both on- and offshore
wind farms are studied for this maintenance management
strategy [Nilsson et al., 2007]. In order to reduce the
maintenance actions, costs and component failures, one of
the well-established concept, reliability-centered mainte-
nance (RCM) has been implemented in different industries
[SAE JA1012 , 2012]. Fischer et al. [2007] has studied
the functional failure modes of WEC major components,
identified the root causes and suggested possible measures
to prevent the failure causes, which forms a basis for the
development of an optimized RCM strategy. Nevertheless,
it has been pointed out in [Krueger et al., 2013], although
the prior knowledge of the abnormality is available, it is
still difficult to achieve a correct fault identification since
the operating data of different WECs might be slightly
influenced by their different operating conditions.

Motivated by the aforementioned observations, in this
paper, a data-driven decision support system for WEC
maintenance is proposed. Based on the WEC condition
monitoring results, this approach combines the historical
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failure knowledge together with the economical aspect of
each possible corrective operation.

The rest of this paper is organized as follows. In section
2, data-driven process monitoring and diagnosis method
Fisher Discriminant Analysis is briefly introduced. Section
3 describes the theoretical background of the decision
support system. Section 4 provides the implementation
results based on real WEC data. Section 5 summarizes
this paper with concluding remarks.

2. WEC CONDITION MONITORING

Maintenance actions and trouble shooting results are well
recorded in the maintenance documents, which makes it
possible to acquire the prior knowledge of the abnormal-
ities taken place in the WEC system. Fisher Discrimi-
nant Analysis (FDA) is a powerful pattern classification
method [Duda et al., 2001]. For fault diagnosis purpose,
the training data are collected from the industrial process.
The data are categorized into classes, where each class
contains data representing a particular fault [Russell et al.,
2000]. By defining a normal operating class, FDA can be
applied as an efficient process monitoring tool, because of
its discriminant ability among classes of data. Consider
a process with p operating classes. The Off-line training
phase of FDA technique can be formulated as follow:

• Data collection and normalization: Collect data from
all p operating classes and stack them in matrix X ∈
RN×m with N =

∑p

j=1
(nj), where nj is the number

of observations in jth class and m is the number of
sensors. Mean value µj and standard deviation σj are
calculated for each class. By scaling all the p classes
of data to zero mean and unit variance, we obtain
Zj ∈ Rnj×m, j = 1, . . . , p.

• Computation of within-class-scatter matrix Sw and
between-class-scatter matrix Sb:

Sw =

p∑

j=1

Sj , Sj =
1

nj

ZT
j Zj (1)

Sb =

p∑

j=1

(µj − µ)(µj − µ)T , (2)

with µ ∈ Rm is the mean vector of the stacked matrix
Z and µj ∈ Rm is the mean vector for jth class.

• Calculation of generalized eigenvalue and the corre-
sponding eigenvector: Solve the following generalized
eigenvalue problem:

Sbwk = λkSwwk. (3)

If Sw is invertible, Eq. (3) can be reformulated as:

S−1

w Sbwk = λkwk. (4)

Since rank(Sb) ≤ p − 1, there exist maximal p − 1
non-zero eigenvalues. Define a as the number of non-
zero eigenvalues and save the associated eigenvectors
in Wa = [w1, . . . , wa] ∈ Rm×a

• Computation of threshold: With the given significant
level α:

J
j

th,T 2 = χ2

α(a). (5)

where χ2

α(a) is χ2 distribution with a degrees of
freedom and confidence level 1− α.

The On-line monitoring procedure is carried out as follows:

• Data normalization: Normalize the on-line new mea-
surement sample xnew,j ∈ Rm×1 as follow:

znew,j =
(xnew − µj)

σj

(6)

• Computation of test statistic: The T 2 test statistic for
jth class is defined as follow:

T 2

j = zTnew,jWa(W
T
a SjWa)

−1WT
a znew,j (7)

• Monitoring logic: If T 2

j < J
j

th,T 2 =⇒ data belongs to

the jth class.
A fault is considered to be detected when the test

statistic T 2

normal exceeds the threshold Jnormal
th,T 2 .

3. DECISION SUPPORT SYSTEM

The probability of occurrence of a specific fault or degra-
dation in overall performance of the system, together with
loss minimization technique which reflects maintenance
operations, forms the basis of this decision support scheme
[Haghani et al., 2013]. Given the process measurements
and condition monitoring results, the probability of the
fault happens in the system is estimated. Together with
the maintenance costs and the benefits of the corrective
actions, an optimization problem is formed, which is solved
by maximum a posteriori probability (MAP) criterion.
Consider a process is subject to i different abnormalities
f1, · · · , fi. These faults influence process measurements
x and the monitoring indices in the system m1, · · · ,mj.
The probability of the fault ft for t = 1, · · · , i using the
on-line process measurements x, and monitoring indices
m1, · · · ,mj are calculated, namely the following condi-
tional probability:

p(ft|x(k),m1(k), · · · ,mj(k)) (8)

for t = 1, · · · , i.

The Off-line training of the designed decision support
system is achieved by computing the statistical models
for different fault classes from available historical data,
namely p(x|f1, · · · , fi), p(m1, · · · ,mj |f1, · · · , fi) and cor-
responding a priori probability p(f1, · · · , fi). Assuming a
certain distribution for the data for each class, the off-
line training data can be considered as a finite mixture
of different components where each of them follows a
specific distribution with different parameters. A conve-
nient approximation is to assume that the data follow
Gaussian distribution and solve the problem by utilizing
the Gaussian mixture modeling tools [McLachlan et al. ,
2000].

In the On-line implementation phase, the probability in (8)
is determined using the current process measurements x(k)
and monitor readings m1(k), · · · ,mj(k) together with a
priori probability p(f1, · · · , fi). To consider the uncertain-
ties in fault detection, diagnosis and prognosis in corrective
operation generation and decision making, the probabili-
ties obtained previously can be used.

Associated with each fault there will be a list of corrective
operations ranging from doing nothing to the component
replacement, with their costs and benefits on improvement
of system performance. By combining the probability that
a certain fault is happening together with the losses
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corresponding to the corrective operations respective to
that fault, the most proper corrective operation(s) could
be found among the list of all operations. A loss due to a
corrective operation is defined here as [Camci, 2009]

L(CAj , fi) = C(CAj) + L(fi)− B(CAj , fi) (9)

where L denotes the losses, CAj represents the corrective
operation j associated with the fault i, fi, C shows the
costs of performing a corrective operation and B denotes
the benefits of performing the CAj in the case where fi
occurs in the process. Since 0 ≤ B(CAj , fi) ≤ L(fi), (9)
can be written as

L(CAj , fi) = C(CAj) + (1 − αi,j)L(fi)

= C(CAj) + L(CAj |fi) (10)

where 0 ≤ αi,j ≤ 1 is the normalized value of the benefit
of CAj and can be interpreted as the following conditional
probability

αi,j = p(B(CAj , fi) = high|fi, CAj) (11)

The parameter αi,j can be determined by expert knowl-
edge or historical data.

To determine the proper maintenance operation, the op-
timization is defined in a probability form and using the
MAP criterion, where the most proper corrective operation
is the one associated with the highest probability stated
below:

ĈAMAP = argmax
j

p(B(CAj , fi) = high

,L(CAj , fi) = low|CAj) (12)

The probability in (12) can be written as

p(B(CAj , fi) = high,L(CAj , fi) = low|CAj)

=
∑

fi
p(B(CAj , fi) = high|fi, CAj)×

p(L(CAj , fi) = low|fi, CAj)p(fi) (13)

The probability p(L(CAj , fi) = low|fi, CAj) can be for-
mulated as 1− p(L(CAj , fi) = high|fi, CAj), where

L(CAj , fi) = high|fi, CAj

∼ U (C(CAj),C(CAj) + L(fi)) (14)

and its value can be calculated by integrating this uniform
distribution up to the current value of L(CAj , fi) (see (9)).
For detailed description of the proposed decision support
system please refer to [Haghani et al., 2013].

4. IMPLEMENTATION

The approaches introduced in Section 2 and 3 are im-
plemented on WEC field data. Real operation data are
collected from different turbines of the same type and
produced by the same manufacturer.

Table 1 displays the process measurements that included
in this study, which consists of three components: Rotor,
Gearbox and Generator. According to the sensor config-
uration of this type of WEC, the variables considered in
this paper are standard available measurements. All the
variables are sampled in 10 minutes intervals. According
to the gearbox speed, 8 normal operating classes have been
defined for the purpose of fault detection.

4.1 Abnormality scenarios and detection results

For this study, three abnormalities taken place in WEC
gearbox have been applied for the training phase, namely,

Table 1. Selected Measurements

Variable Measurement description Component Unit

1 Generator Bearing 1 Temperature Generator ◦C

2 Generator Bearing 2 Temperature Generator ◦C

3 Generator Stator Temperature Generator ◦C

4 Gearbox Bearing 1 Temperature Gearbox ◦C

5 Gearbox Bearing 2 Temperature Gearbox ◦C

6 Gearbox Inlet Temperature Gearbox ◦C

7 Gearbox Oil Sump Temperature Gearbox ◦C

8 Gearbox Speed Gearbox rpm

9 Generator Speed Generator rpm

10 Rotor Speed Rotor rpm
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Fig. 1. Fault classification with FDA (1)
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Fig. 2. Fault classification with FDA (2)

fault f1 is an air cooler malfunction in the cooling system,
fault f2 is an abnormality of the mechanical pump in
the lubrication system and fault f3 refers to a sensor
abnormality. For the on-line evaluation, only fault f1 and
f2 are considered. It is well known that, both cooling
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Fig. 3. The projection of WEC data for 4 classes onto the
2nd and 3rd FDA loading vectors

and lubrication system in the gearbox play vital roles
in ensuring the performance, effectiveness, safety and
lifetime of WECs. Fig. 1 and Fig. 2 are plotted in semi-
log coordinate system, where the fault detection and
classification results are shown based on FDAmethod. The
test fault f2 began at sample 1000 ended at sample 2000
and the test fault f1 took place after sample 2238. It can
be seen that both test abnormalities have been detected.
On the one hand, for f2 the fault detection rate is about
99.1%, where the fault detection rate of f1 is 95.7%. On the
other hand, comparing with the fault detection rate, the
fault classification rate is rather low, for f2 is 76.8% whilst
for fault f1 is only 4.7%. As demonstrated in Fig. 3, it is
obvious that the test f2 can be well identified based on the
off-line trained fault class. However, for the classification
of test f1, it is difficult to identify it correctly due to
the slightly different operating conditions (environment,
sensor installation position and so on) between the training
WEC data and the testing WEC data.

4.2 Decision support system for WEC

From the maintenance reports and expert knowledge, a
list of maintenance operations is defined for each fault. The
losses due to the faults and maintenance actions related to
each fault is shown in Table 2. Due to the confidentiality
of the involved information, only normalized data are
listed in this paper. Moreover, the fixed costs of each
maintenance operation and the parameters αij , which are
basically the benefit of performing CAj in case of fault

Table 2. Maintenance operations with respect
to each fault and losses due to each fault

Fault Losses Maintenance operation

f1 2
Reduce power generation
Replace/repair air cooler motor
Do nothing

f2
8

Reduce power generation
Replace/repair the mechanical pump
Do nothing

f3
0.4

Adjust the sensor
Replace the sensor
Do nothing
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Fig. 4. Probability of the faults

i, are listed in Table 3. The parameter αij is obtained
from expert knowledge and maintenance reports. It is
assumed that the value of the power generation until the
next scheduled maintenance is 5 units, where the power
generation is considered to be constant at the historical
average value. It should be pointed out that the losses of f1
and f2 will increase with the time due to fault propagation
to other components and the threats brought by those
malfunctions to the operation safety.

Consider that the data follows Gaussian distribution, the
statistical models for different faults p(x|f1, · · · , fi) can
be obtained: x ∼ N (mfi ,Σfi). The probabilities that the
WEC is operating under different scenarios are shown
in Fig. 4. The considered scenarios are as follow: WEC
operation is normal (p(x ∈ N)); WEC is subject to fault
f1 (p(x ∈ f1)); WEC is subject to fault f2 (p(x ∈ f2));
WEC is subject to fault f3 (p(x ∈ f3)); As shown in Fig.
5, at the beginning the WEC is working under normal
operation class, where the fault detection index is under
the threshold (see Fig. 1) and the probability of normal op-
eration is high (see Fig.4), the recommended maintenance
action is doing nothing. After the probability of fault f2
changed to almost 1, the decision support system suggests
to carry out maintenance action CA1 which is reducing
the power generation. By reduced power generation, it
would not be necessary for the lubrication system to work
with full power. Normally, the gearbox lubrication system
consists of two pumps, one mechanical pump one electrical
pump. The mechanical pump is working all the time as
long as the wind turbine is operating. The electrical pump

Table 3. Maintenance operations, their costs
and benefits

Sig. Maintenance action Fix costs
αij

f1 f2 f3

CA1 Reduce power generation 0.5 0.6 0.4 0

CA2

Replace/repair the
1 1 0 0

air cooler motor

CA3

Replace/repair the
3 0 1 0

mechanical pump

CA4 Adjust the sensor 0.2 0 0 0.3

CA5 Replace the sensor 0.3 0 0 1

CA6 Do nothing 0 0 0 0
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will be switched on to strengthen the lubrication system.
Therefore the WEC that suffers from the mechanical pump
malfunction could be firstly treated with CA1 in order to
avoid unscheduled maintenance. However, this situation
could not last too long. If the mechanical pump is not
working correctly, or even suffers from a total malfunction,
the electrical pump will be overloaded. After a while it may
become faulty as well. A replacement of electrical pump
could be expensive. At the same time, a lubrication sys-
tem malfunction could affect directly the safety of WECs.
Therefore, it can be seen that, after the test f2 has been
detected for a short period, the system suggests for a shut
down and replacement of the mechanical pump.

0 500 1000 1500 2000 2500 3000 3500
0

CA1

CA2

CA3

CA4

CA5

CA6

Smaples

Fig. 5. Results of decision support system

In the second period of the samples, from sample 2001
to 2238, the WEC is under normal operation condition,
where the suggestion from the decision support system is
to do nothing. Furthermore, as an abnormality has been
detected, the probability of the WEC operates normally
is changing rapidly from 1 to 0 and back to 1. The same
phenomenon could be observed from the probability of the
WEC suffers from f1. The decision support system recom-
mended to perform CA1, where the power generation will
be reduced so that the cooling system would not be that
heavily loaded. Since the probability of f1 stays around
1, the suggested maintenance action is to replace the air
cooler.

It should be pointed out that, as f1 and f2 are detected,
there are still suggestions from the decision support system
recommending doing nothing as the best maintenance
choice. A possible reason could be that the cooling system
and lubrication system are both highly related to the WEC
operating speed. If the WEC is working around a low
speed, both systems are not required to work fully loaded.
As the result, it would be difficult to detect the considered
abnormalities under low wind speed, which leads to the
suggestion that no maintenance should be performed.

5. CONCLUSION

In this paper, the decision support system has been imple-
mented for the purpose of WEC condition based mainte-
nance. The recommendations from the system combined

the condition monitoring results provided by the data-
driven WEC monitoring system with the financial benefits
of possible maintenance actions. Furthermore, the opera-
tion safety and the consequences of fault propagation have
been taken into consideration. Real WEC data has been
applied for the validation of the introduced decision sup-
port system, where the results are reasonable and easy for
the operator to understand. One constraint of this method
is that the decision support system requires pre-knowledge
of the possible faults for the training phase. In order to
improve the performance of the decision support system
and optimize the maintenance schedule, detailed informa-
tion of fault propagation should be studied in relationship
with operation safety. Moreover, the wind speed forecast
could also be integrated in the decision support system so
that the maintenance could be rescheduled according to
the weather. Further tests should be carried out on other
abnormalities and components as well so that the system
could learn or relearn parameters, such as: the fault models
and the benefits of performing a certain corrective action.
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