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Abstract: In this paper, a time varying disturbance observer subject to sampled data’s
measurements is proposed for a class of non-linear systems. The proposed observer combines the
advantage of a high gain structure in terms of convergence speed and an output predictor which
remains continuous between the sampling times. The exponential convergence of the proposed
observer is proved using a Lyapunov function adapted to impulsive systems.
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1. INTRODUCTION

Modern industrial control systems are always affected by
uncertainties such as unmodeled dynamics, parametric
variations, and external disturbances. Those uncertainties
must be taken into account when designing controllers
with high precision requirements. A promising way to
achieve this task is the use of disturbance rejection tech-
nique which consists in a feed-forward control that uses the
measurement of the disturbance in order to compensate
their effect. Paralytically, it is very difficult to measure
these disturbances thus, an observer which estimates these
disturbances is particularly needed by the controller. The
idea behind is that the disturbance estimation provided by
the observer is incorporated then in the control action.

During the past decades, several disturbance observers
were proposed in the literature including the unknown
input observer (UIO)[Johnson, 1971], the disturbance ob-
server (DOB) [Chen, 2004, Guo and Chen, 2005], the per-
turbation observer [Kwon and Chung, 2003], the Equiva-
lent Input Disturbance (EID) based estimation [She et al.,
2011], the Sliding mode observers (SMO) [Floquet et al.,
2006], the Extended State Observers (ESO’s) [Han, 1995,
2009, Sun, 2007, Xia et al., 2007] and the extended high
gain observer [Freidovich and Khalil, 2008, Serhal et al.,
2012] . Note that most of these disturbances observers were
designed in continuous time. In fact when it comes to the
matter of the implementation of these observers in digital
signal processors (DSPs), the measured system outputs are
sampled and the observer convergence is affected by this
sampling process.

Observer design for continuous-time systems subject to
sampled data measurements, depends on the structure of
the system. In the case of linear time invariant systems, it
is well known that the computation of the exact discretized
model of the system is easy. Hence, classical linear ob-
servers (such as Luenberger observer, High gain observer)
can be employed for the purpose of building a discrete

time observer for the system. For linear time variant or
non-linear systems the computation of the discretized-time
model is usually difficult. To circumvents this difficulty,
alternative methodologies have been developed in the lit-
erature

Sampled-data observer design can be classified in three
different techniques: the first technique is based upon a
direct discretization of the model using a discrete-time ap-
proximation (such Euler or Runge Kutta approximation)
[Assoudi et al., 2002, Laila and Astolfi, 2006]. This tech-
nique ignores the inter-sample behaviour of system tra-
jectory during the design process. The second techniques
is known as emulation design. The designed observer is
performed in continuous time and then discretized for
digital implementation. Notice that this technique needs
a fast sampling period leading to highly time consum-
ing process which often exceeds the hardware capability.
The third technique known as discrete-continuous time
observers [Deza et al., 1992, Hammouri et al., 2002, Nadri
et al., 2004, Nadri and Hammouri, 2003] which uses the
continuous-time model of the plant in the design process.
The discrete-continuous time observer design is divided
in two steps. The first step occurs between the sampling
times where the observer simply copies the dynamic of the
system. The second step corrects at the sampling times the
estimate state trajectories by using the error between the
output of the system and the observer. The exponential
convergence of the observer is ensured using Lyapunov
function and sufficient conditions on the sampling period
are derived in order to guarantee this convergence. The
main disadvantage in the design of discrete-continuous
time observers is coming from the fact that the estimated
state provided by these observer needs to be updated at
the sampling times. This leads to increase the complexity
of the implementation of these types of observers.

In [Karafyllis and Kravaris, 2009], the authors presents a
novel type of discrete-continuous time observer with uses
an output predictor. The main advantage of this observer
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is that the estimated state remains continuous, the update
process concerns only the predictor which is re-initialize
at the sampling time. Comparing to the classical discrete-
continuous time observers the implementation complexity
is greatly reduced.

The work presented in this paper is an extension of
the approach proposed by the authors in [Karafyllis and
Kravaris, 2009] to a class of non-linear system subject
to time varying disturbance and sampled data’s measure-
ments. The proposed observer combines the well known
technique of state augmentation and the output predictor
in [Karafyllis and Kravaris, 2009] in order to estimate
simultaneously the state and the disturbance. The ex-
ponential convergence of the observation and the time
varying disturbances term. errors are derived by using a
Lyapunov approach adapted to impulsive systems.

The paper is organized as follows: Section 2 gives some
mathematical definitions which will be used in the paper.
Section 3 describes the class of the system considered
in this paper. Section 4 reviews the framework of the
extended high gain observers. A class of hybrid observers
for state systems subject to time varying disturbances
with sampled measurements is designed in Section 5. The
exponential convergence of the observation error is proved
using the Lyapunov approach. In Section 6, an academic
example is presented in order to show the effectiveness of
our approach.

2. PRELIMINARIES

Throughout this paper, the following mathematical nota-
tions are adopted. LetR = (−∞,+∞),R+ = (0,+∞),R+

0 =
[0,+∞). The Euclidian norm is The euclidian norm on R

n

is noted by ‖.‖. For p, q, n, m ∈ N, Rp×q represents the
set of real matrices of order p× q and. If P ∈ Rp×p, P > 0
means that P is positive definite. λmin(P ) (resp.λmax(P )
for P ∈ Rp×p are the minimum and maximum eigenvalues
of P . The notation (tk)k≥0 represents a strictly increasing
sequence, such that lim

k→+∞
tk = ∞ which models the

sampling times.We denote by τ the maximum allowable
sampling period: τ = maxk∈N (tk+1 − tk).

3. SYSTEM DESCRIPTION

We consider the following non-linear system with unknown
disturbances described as follows:

{

ẋ = Ax+ ϕ(x, u) +Bdd(t)
y = C x = x1

(1)

where x ∈ Rn and y ∈ R represent respectively the state
vector and the output. The vector u ∈ Rm describes the
set of admissible inputs (bounded and measurable). d(t)
denote the the matched or the mismatched disturbances.
Bd with dimension n× 1. The matrices A and C have the
following structure :

A =



















0 1 0 . . . 0

0 0 1 0
...

... 0 . . . 1 0

...
... . . . . . . 1

0 . . . . . . . . . 0



















(2)

Bd =









0
0
...
1









(3)

C = ( 1 0 . . . 0 ) . (4)

and the vector the function φ(x, u) has a triangular struc-
ture with respect to x, i.e.

φ(x, u) =









φ1(x1)
φ2(x1, x2)

...
φn(x)









(5)

Throughout the paper we assume that the following hy-
potheses hold :

Assumption 1. The state is x belongs to a compact set
χ ∈ Rn and the input ||u|| is supposed bounded.

Assumption 2. The functions φi(x, u) are globally Lips-
chitz and of class C1 on a compact χ with respect to x,
uniformly in u, i.e:

∃κφ > 0 such that ∀(x1, x2) ∈ Rn ×Rn, ∀u ∈ U

‖φi(x1, u)− φi(x2, u)‖ ≤ κφ ‖x1 − x2‖ (6)

4. EXTENDED HIGH GAIN OBSERVER FOR
CONTINUOUS TIME SYSTEM

Following the general framework of the Extended State
Observer (ESO) [Han, 1995, 2009], we add an extended
variable xn+1 = d to system (1). The augmented state
system is obtained.

{

˙̄x = Āx̄+ ϕ(x, u) +Dh(t)
y = C̄x̄ = x1

(7)

Where:

x̄ =

[

x
d

]

(n+1)×1

(8)

Ā =

[

A(n×n) (Bd)(n×1)

0(1×1) 0(1×1)

]

(n+1)×(n+1)

ϕ(x, u) =

[

ϕ(x, u)(n×1)

0(1×1)

]

(n+1)×1

D =

[

0(n×1)

1(1×1)

]

(n+1)×1

C̄ =
[

C(1×n), 0(1×1)

]

1×(n+1)

and

ḋ = h(t) (9)

Assumption 3. The pair (Ā, C̄) state is observable.

This means that their exist a pair of symmetric positive
matrices (P,Q) ∈ R

n+1×n+1 such that:
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(Ā−KC̄)TP + P (Ā−KC̄) = −Q (10)

Assumption 4. The function h(t) is bounded by a real
constant µ such that (|h(t)| < µ).

For system (7) an Extended High Gain Observer (EHGO)
[Freidovich and Khalil, 2008, Serhal et al., 2012] can be
designed as follows:

{

˙̄̂x = Āˆ̄x+ ϕ(x̂, u)− θ△−1
θ K(C̄ ˆ̄x− y(t))

y = C̄x̄ = x1
(11)

Where △θ is a diagonal matrix (n + 1) × (n + 1) defined
by :

△θ =







1 . . . 0
...
. . .

...
0 . . . 1

θn







5. EXTENDED HIGH GAIN OBSERVER WITH
OUTPUT PREDICTOR

Assume now that the output data are available for mea-
surements at each tk such that system (1) is:

{

˙̄x = Āx̄+ ϕ(x, u) +Dh(t)
y(tk) = C̄x̄(tk) = x1(tk)

(12)

A candidate observer for system (12) is:






˙̄̂x = Āˆ̄x+ ϕ(x̂, u)− θ△−1
θ K(C̄ ˆ̄x− w(t))

ẇ(t) = C̄
(

Āˆ̄x+ ϕ(x̂, u)
)

t ∈ [tk, tk+1) k ∈ N

w(tk) = y(tk)
(13)

The vector ˆ̄x is the continuous-time estimate of the system
state x̄. The vector w(t) represents the prediction of the
output between two sampling times. The prediction w(t)
is updated (re-initialised) at each sampling instant tk.

Now we are able to state the main result of this paper.

Theorem 1. Under assumptions (1-4), system (13) is a
sampled data observer for system (12) with the following
property: For sufficiently large values of parameters θ and
ki=1,..,n+1, there exists a real positive bounded τMASP

such for all τ ∈ (0, τMASP ), the observation error is
ultimately bounded and the corresponding ultimate bound
can be made as small as desired by choosing values of θ
high enough.

Proof. Consider the observer ex̄ and the output ew(t)
errors defined as following:

{

ex̄(t) = ˆ̄x− x̄
ew(t) = w(t) − y(t) = w(t)− C̄x̄

(14)

Combining (12) and (13) the dynamics of the state and
the output errors are given by:














ėx̄ =
(

Ā− θ△−1KC̄
)

ex̄ +
(

ϕ(x̂, u)− ϕ(x, u)
)

+θ△−1Kew −Dh(t)

ėw = C̄Āex̄ + C̄
(

ϕ(x̂, u)− ϕ(x, u)
)

(15)

Using the following well known properties: θ△−1Ā△ = Ā
and △−1KC̄ = △−1KC̄△.

The dynamic of equation (15) becomes:














ėx̄ = θ△−1
(

Ā−KC̄
)

△ex̄ +
(

ϕ(x̂, u)− ϕ(x, u)
)

+θ△−1Kew −Dh(t)

ėw = C̄Āex̄ + C̄
(

ϕ(x̂, u)− ϕ(x, u)
)

(16)

Using the well-known change of coordinate in the high gain
literature ēx̄ = △ex̄ yields to:















˙̄ex̄ = θ
(

Ā−KC̄
)

ēx̄ +△
(

ϕ(x̂, u)− ϕ(x, u)
)

+

θKew −△Dh(t)
ėw = θēx̄2 +

(

ϕ1(x̂, u)− ϕ1(x, u)
)

(17)

Inspired by the works in [Farza et al., 2004][Ahmed-Ali,
2012], Let us choose the following Lyapunov function:

V = α1ē
T
x̄P ēx̄ + α2ψ(t) |ew(t)|2 (18)

Where α1, α2 are positive constants,ψ(t) is bounded pos-
itive function designed for the purpose of correcting the
error between the predictor and the output. ψ(t) satisfies
the following conditions:







ψ̇(t) < 0 t ∈ [tk, tk+1)
ψ(tk) = γ, ∀k ∈ N

ψ(tk + τ) = γ−1, γ > 1
(19)

To prove the exponential stability of the observation and
the disturbance errors, it is sufficient to find a condition in-
volving α1, α2 and the maximum sampling period τMASP

so that the following equalities hold:

V̇ ≤ −β1V + β2
√
V t ∈ [ tk, tk+1 ) (20)

where β1 and β2 are real positives constants.

Splitting V in two terms V1, V2:
{

V1 = α1ē
T
x̄P ēx̄

V2 = α2ψ(t) |ew(t)|2
(21)

Computing the time derivative of V1 yields to:

V̇1 = α1( ˙̄e
T
x̄P ēx̄ + ēTx̄P ˙̄ex̄) (22)

Considering (17),(10) and after a simple computations we
get:

V̇1 =−α1θē
T
x̄Qēx̄ + 2α1ē

T
x̄P△

(

ϕ(x̂, u)− ϕ(x, u)
)

+2α1θē
T
x̄PKew − 2h(t)α1ē

T
x̄P△D (23)

Using the following well-known property:

λmin(Q) ‖ēx̄‖2 ≤ ēTx̄Qēx̄ ≤ λmax(Q) ‖ēx̄‖2 (24)

We get:

V̇1 ≤−α1θλmax(Q) ‖ēx̄‖2 + 2α1ē
T
x̄P△

(

ϕ(x̂, u)− ϕ(x, u)
)

+2α1θē
T
x̄PKew − 2h(t)α1ē

T
x̄P△D (25)

Using the Schwartz inequality, we have the following upper
bounds:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3348



|2α1ē
T
x̄P△

(

ϕ(x̂, u)− ϕ(x, u)
)

| ≤ 2α1ξ1λmax(P ) ‖ēx̄‖
2 (26)

|2h(t)α1ē
T
x̄ P△D| ≤ 2µα1ξ2λmax(P ) ‖ēx̄‖

In the other hands we have:

|2α1θē
T
x̄PKew| ≤ 2|α1θew||ēTx̄PK| (27)

≤ 2|α1θew| ‖ēx̄‖ ‖PK‖
which leads to:

|2α1θē
T
x̄PKew| ≤ 2|α1θew| ‖ēx̄‖λmax(P ) ‖K‖ (28)

Using the Young inequality we have:

|2α1θē
T
x̄PKew| ≤ (α1θ)

2 |ew|
2 + λ2

max(P ) ‖K‖2 ‖ēx̄‖
2 (29)

Combining (25-29):

V̇1 ≤−α1

(

θλmax(Q)− 2λmax(P )ξ1 −
λ2
max(P ) ‖K‖2

α1

)

‖ēx̄‖
2

+2α1µλmax(P )ξ2 ‖ēx̄‖+ (α1θ)
2 |ew|

2 (30)

Let us now compute time derivative of V2.

V̇2 = α2ψ̇(t) |ew(t)|2 + 2α2ψ(t) |ew(t)| |ėw(t)| (31)

Taking into account that|ēx̄2| ≤ ‖ēx̄‖ we can deduce from
(17)

|ėw| ≤ (θ + ξ1) ‖ēx̄‖ (32)

Hence we have:

V̇2 ≤ α2ψ̇(t) |ew(t)|2 + 2α2ψ(t) |ew(t)| (θ + ξ1) ‖ēx̄‖(33)
Using again the young inequality one has:

V̇2 ≤ (α2ψ̇(t) + α2
2ψ(t)

2) |ew(t)|2 + (θ + ξ1)
2 ‖ēx̄‖2(34)

combining (30) and (34) we finally have:

V̇ ≤ −α1

(

θλmax(Q) − 2λmax(P )ξ1 −
λ2

max(P ) ‖K‖2 + (θ + ξ1)
2

α1

)

‖ēx̄‖
2

+2α1µλmax(P )ξ2 ‖ēx̄‖ + (α2ψ̇(t) + α
2

2
ψ(t)

2
+ (α1θ)

2
) |ew|

2
(35)

Choosing

ψ̇(t) = −α2

(

ψ(t)2 + 1
)

t ∈ [ tk, τ ) andτ ∈ [0, τMASP )
(36)

leads to:

V̇ ≤ −α1

(

θλmax(Q) − 2λmax(P )ξ1 −
λ2

max(P ) ‖K‖2 + (θ + ξ1)
2

α1

)

‖ēx̄‖
2

+2α1µλmax(P )ξ2 ‖ēx̄‖ + (−α
2

2
+ (α1θ)

2) |ew |2 (37)

Thus, we can say from (37) that if we choose α1, α2 such
that:

{

α1 =
λ2

max(P )‖K‖2+(θ+ξ1)
2

θλmax(Q)−2λmax(P )ξ1−β1λmin(P )

α2 =
√

α2
1θ

2
(38)

With θ > 2λmax(P )ξ1+β1λmin(P )
λmax(Q) and β1 > 0

We have:

V̇ ≤ −β1 α1λmin(P ) ‖ēx̄‖2 + 2α1µλmax(P )ξ2 ‖ēx̄‖(39)

Using again the well known property for the Lyapunov
function defined in (18)

‖ēx̄‖ ≤ 1
√

α1λmin(P )

√
V (40)

We derive:

V̇ ≤ −β1V + β2
√
V (41)

with β2 = 2α1µλmax(P )ξ2√
α1λmin(P )

Integrating (41)between tk and t yields to:

V (t) ≤ V (tk) exp
−β1(t−tk) +

(

β2

β1

)2

(42)

Using again (40), we get finally:

‖ēx̄‖ ≤ 1
√

α1λmin(P )
(
√

V (tk) exp
−β1

2
(t−tk) +

(

β2

β1

)

)

(43)
To compute the value of the maximum sampling period
τMASP we shall integrate equation (36) between tk and
tk + τMASP . From (36) we have:

∫ tk+τMASP

tk

∂ψ

ψ2 + 1
= −α2

∫ tk+τMASP

tk

∂t (44)

Which leads to:

τMASP =
(

1
α2

(

arctan(γ)− arctan(γ−1)
)

)

(45)

6. APPLICATION

This section is dedicated to the illustration of the proposed
observer by means of a second order system which belongs
to the class of system studied above.

{

ẋ1 = x2
ẋ2 = −2x1 − x2 − exp(x1) + u+ d

(46)

Where x =

(

x1
x2

)

and d are respectively the vector of

the states of the system and the disturbance term. The
system input is u = 10 sin(t) and the disturbance term
d = 150sin(0.1πt) + 100sin(0.12πt). the initial conditions
of the system and the observer are respectively are chosen:
(

x1
x2

)

=

(

5
20

)

and

(

x̂1
x̂2

)

=

(

1
9

)

.

the Observer gains was chosen such that: K =

(

6
11
−6

)

.

The sampled time of the output measurements is τ =
10−2s

Remark 2. Since system (46) is not globally Lipschitz, we
will define a bounded compact set χ inside which our states
observer will be initialized.
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Fig. 1. Evolution of the estimated state x̂1 for θ = 3
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Fig. 2. Evolution of the estimated state x̂2 for θ = 3
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Fig. 3. Evolution of the estimated disturbance d̂ for θ = 3
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Fig. 4. Evolution of the estimated state x̂1 for θ = 10
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Fig. 5. Evolution of the estimated state x̂2 for θ = 10
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Fig. 6. Evolution of the estimated disturbance d̂ for θ = 10

Figs 1-6 shows the simulation results of observer (13) for
two different values of parameter θ. One can observe that
when we increase the value of θ, the convergence of the

estimated states x̂1, x̂2 and the estimated disturbance d̂
is improved . It should be also noted that the estimated
states and disturbance converge exponentially to the states
of the system.
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7. CONCLUSION

In this paper, we designed a discrete-continuous observer
for a class of continuous sampled data systems subject to
time-varying disturbance. the exponential convergence of
the proposed observer is proven using a Lypunov function
adapted to hybrid systems. Sufficient conditions on the
sampled time constant values and the parameters of the
system is derived in order to guarantee the exponential
convergence of the observer. An academic simulation is
presented in order to show the benefits of our approach.
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