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Abstract: This paper provides analytical solutions to the closed loop system kinematics for
a class of almost globally asymptotically stable feedback laws on SO(n). The resulting closed
loop kinematics are solved for the respective matrices as functions of time, the initial conditions
and the gain parameters of the control laws. The analytical solutions provide insight into the
transient dynamics of the system and can be used to prove almost global attractiveness of the
identity matrix. We consider an application of these results towards model predictive control
where the transient phase of the system is utilized to attempt to complete a task of secondary
importance by choosing the gain parameters as functions of time and the initial conditions.
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1. INTRODUCTION

The stabilization of the attitude of a rigid-body is a
well-known problem in the area of nonlinear control. Its
applications range from attitude control of satellites to
robotic manipulation. The nonlinear state equations and
the topology of the underlying state space SO(3) make this
problem challenging. The choice of parameterization used
to represent SO(3) has important implications for control
performance [N.A. Chaturvedi et al., 2011, S.P. Bhat and
D.S. Bernstein, 2000, C.G. Mayhew et al., 2011a]. It is for
example known that global stability on SO(3) cannot be
achieved by means of a continuous, time-invariant feedback
[S.P. Bhat and D.S. Bernstein, 2000]. The literature does
however provide results such as almost global asymptotical
stability through continuous time-invariant feedback [N.A.
Chaturvedi et al., 2011, Sanyal et al., 2009], almost semi-
global stability [Lee, 2012], or global stability by means of
a hybrid control approach [C.G. Mayhew et al., 2011b].

The solutions of a closed-loop system gives a detailed
picture of its transients and asymptotical behavior and
may hence be of use in control applications. Let us divide
the literature on analytical solutions to attitude dynamics
into two categories. Firstly, in a number of works the
solutions are obtained during the control design process,
e.g. using exact linearization [Dwyer III, 1984] or optimal
control design principles such as the one by Pontryagin
[Spindler, 1998]. Secondly, there are works that focus on
solving the equations defining rigid-body dynamics under
a set of specific assumptions [Elipe and Lanchares, 2008,
M.A. Ayoubi and J.M. Longuski, 2009, A.V. Doroshin,
2012]. Our paper falls into this second category.

There is a literature on the kinematics and dynamics of
n-dimensional rigid-bodies. Part of this work is mainly
of theoretical concern, but it does also cover the special
cases of n ∈ {2, 3} which are of interest from an applied
point of view. This literature includes works on attitude
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stabilization [D.H.S. Maithripala et al., 2006], attitude
synchronization [Lageman et al., 2009] and generalized
equations of motion [J.E. Hurtado and A.J. Sinclair, 2004]
on SO(n). It also includes our previous paper [Markdahl
et al., 2013], which we shall comment on shortly.

The main contribution of this paper is to provide analyt-
ical solutions to differential equations representing closed
feedback loops on SO(n). Recent work on this problem
include Markdahl et al. [2012, 2013]. Other works such as
those previously referenced by Elipe and Lanchares [2008],
M.A. Ayoubi and J.M. Longuski [2009], A.V. Doroshin
[2012] are related in spirit but do address somewhat dif-
ferent problems. The work Markdahl et al. [2012] considers
the solutions to the closed-loop kinematics of a feedback
law on SO(3). An application towards model predictive
control (MPC) is proposed but left unexplored. The more
general problem of solving two differential equations on
SO(n) is considered in Markdahl et al. [2013]. An appli-
cation towards the problem of continuous time actuation
under discrete-time sensing is considered. This paper gen-
eralizes the results of Markdahl et al. [2013] to a much
wider class of feedback laws and also explores the applica-
tions towards MPC proposed in Markdahl et al. [2012].

NOMENCLATURE

Let A,B ∈ R
n×n. The spectrum of A is written as σ(A).

The commutator of A and B is defined by [A,B] = AB−
BA. The set of invertible matrices is denoted by GL(n).
The special orthogonal group is denoted by SO(n) = {R ∈
GL(n) |R−1 = R⊤, detR = 1} (in this paper we write

R−1 instead of R⊤). The Lie algebra of SO(n) is denoted

by so(n) = {S ∈ R
n×n |S⊤ = −S}. In this paper, we

typically use S to denote the matrix LogR ∈ so(n). We
also use the notation

N(n) = {R ∈ SO(n) | − 1 ∈ σ(R)}. (1)

Observe that N(n) is a null set, i.e. a set of measure zero in
SO(n). It can be shown that N(3) = {R ∈ SO(3) |R−1 =
R}\{I}, but such a relation does not hold in higher
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dimensions. Finally, we denote the set of positive definite
matrices by S++(n) = {P ∈ GL(n) |P⊤ = P, σ(P) ⊂
R

++}.

2. PROBLEM STATEMENT

Consider the problems of kinematic level attitude tracking
for a fully actuated rigid body. The attitude of a rigid
body is represented by means of the relation between
two orthonormal coordinate frames, one inertial fixed and
one body fixed. The problem of stabilization is that of
designing a control law which makes the closed loop system
governing the body fixed frame converge to the desired
attitude which we without any loss of generality take to
be orientation of the inertial fixed frame. Let R ∈ SO(n)
be a matrix that transforms the inertial fixed frame into
the body fixed frame. This matrix can be interpreted as
an attitude error to be used in feedback. The problem
of tracking a desired attitude curve in SO(n) subject to
kinematic level actuation can be shown to be equivalent to
the stabilization problem if the velocity along the desired
curve at the current time is known.

Let R ∈ SO(n) be a matrix that represents the attitude
error. The inertial fixed frame kinematics of R are

Ṙ = ΩR, (2)

where Ω ∈ so(n). The attitude stabilization problem
concerns the design of Ω. In this paper we consider the
problem of finding the analytical solutions to (2) for a
number of given feedback laws Ω. We also derive stability
properties of the closed loop system by means of the
analytical solutions and consider the potential applicative
use of such solutions in model predictive control problems.

3. MATHEMATICAL PRELIMINARIES

By Log : S(n) → R
n×n of a matrix A ∈ S(n) ⊂

GL(n) we refer to the principal matrix logarithm which
has the following property: if σ(LogA) ∪ R

− = ∅, then
Imσ(LogA) ⊂ {z ∈ iR | |z| < π}. In particular, this
holds for A ∈ SO(n)\N(n) which are mapped to so(n).
Note that we do not give the set S(n) explicitly since
its characterization is somewhat involved. Also note that
the logarithm of a normal matrix A = U∗ΛU, where
U ∈ U(n) and ·∗ denote complex conjugation, can be
calculated as LogA = U∗ Log(Λ)U.

By the kth root of a normal matrix A = U∗ΛU we refer

to its principal root, the normal matrix A
1
k = U∗Λ

1
kU.

Consider R ∈ SO(n). The principal root satisfies −1 /∈

σ(R
1
k ) if −1 /∈ σ(R) since σ(R) = {λ

1
k |λ ∈ σ(R)}. The

kth root of a matrix A generated by an exponential map,
i.e. a matrix such that A = expB for some B ∈ R

n×n,

can be calculated as A
1
k = exp( 1

k
B). This shows that A

1
k

is also generated by an exponential map; in particular it

holds that if A ∈ SO(n), then A
1
k ∈ SO(n).

4. CONTROL LAWS

In this section we outline a number of well-known attitude
control laws for which we shall obtain the trajectories of
the closed-loop systems in §5.

Algorithm 1. (Positive definite gain matrix). The control
law and the resulting closed loop system are respectively
given by

Ω1 = PR−1 −RP, Ṙ = P −RPR, (3)

where P ∈ S++(n).

This algorithm is well-known. The analytical solutions to
(3) in the special case of P = I is studied in Markdahl
et al. [2013].

Algorithm 2. Let F : so(n) → so(n) satisfy [F(S),S] = 0
and be such that the origin is a globally asymptotically
stable equilibrium of

Ṡ = F(S), (4)

where (4) also has a known, unique solution. The input
matrix and the resulting closed loop system are respec-
tively given by

Ω2 = F(LogR), Ṙ = F(LogR)R, (5)

where Log : SO(n) → so(n) denotes the matrix logarithm.

Example 3. (Matrix logarithm). An important special case
of Algorithm 2 is the geodesic feedback Ω3 = F(S) = −S
[Bullo and Murray, 1995].

Example 4. (Matrix root). Algorithm 1 with P = I re-
sults in [Ω1, logR] = 0, even when we replace R by its

kth root R
1
k for k ∈ N as defined in §3. The input matrix

and the resulting closed loop system for this control law
are given by

Ω4 = k(R− 1
k −R

1
k ), Ṙ = k(R1− 1

k −R1+ 1
k ), (6)

respectively. The proportional gain factor k is used to scale
the time dependence of R.

The feedback of Example 4 is related to Algorithm 1 as
Ω4 = Ω1 when k = 1 and P = I. It is related to the
feedback of Example 3 as limk→∞ Ω4 = 2Ω3.

Example 5. (Cayley transform). Another special case of
Algorithm 2 is the Cayley transform and the higher order
Cayley transforms. The input matrix is given by

Ω5 = k(I −R
1
k )(I +R

1
k )−1, (7)

where a scalar gain factor have been introduced. The
closed loop system is

Ṙ = k(I −R
1
k )(I +R

1
k )−1R. (8)

The control law of Example 5 is related to the Rodriguez
parameters and the modified Rodriguez parameters in
the cases of k = 1 and k = 2 respectively (and to the
parametrizations obtained from higher order Cayley trans-
forms in the case of general k [Tsiotras et al., 1997]). Note
that limk→∞ Ω5 = 1

2Ω3. It follows that limk→∞ Ω5 =
1
4 limk→∞ Ω4.

Algorithm 1 and 2 differ in several respects. Algorithm 1
have a constant positive definite gain matrix that can be
tuned for desired performance. It provides a continuous
feedback but has a low input norm for rotations that are
far from the identity, the disadvantage of which is slow
convergence in the case of large errors [Lee, 2012]. Example
3 provides a geodesic control law. The feedback laws of
Example 3 and 4 have input norms that are increasing
functions of ‖S‖2. This property can e.g. be useful in
attitude control of satellites that are required to make large
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angle maneuvers [Lee, 2012]. The input norm is however
not defined for R ∈ N(n). The feedback law of Example
5 has the property that the input norm grows unbounded
as R approaches the set of symmetric matrices in the case
of k = 1. Fig. 1 illustrates some of these considerations for
R ∈ SO(3).
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Fig. 1. The norm of the input signal ‖Ωi‖2 as a function
of the geodesic distance from R to I on SO(3). The
matrix P = I in Ω1, k = 2 in Ω4, and k = 1 in Ω5.
The curves have been scaled to have equal tangent at
the origin.

5. MAIN RESULTS

It is possible to establish global existence and uniqueness
of the exact solutions, see Lemma 14 in Appendix B.
This allows us to draw conclusions regarding control
performance from the analytical solutions. We prove that
the region of attraction of I for the closed loop systems
generated by Algorithm 1–2 is SO(n)\N(n), i.e. that this
equilibrium is almost globally attractive. We also return
to Example 3–5. Let R0 denote the state value at the
initial time. In the remainder of this section we make the
assumption that R0 /∈ N(n).

Theorem 6. The trajectories of the closed-loop system (3)
resulting from Algorithm 1 are given by

R(t) =(sinh(Pt) + cosh(Pt)R0) · (9)

(cosh(Pt) + sinh(Pt)R0)
−1.

The equilibrium R = I is almost globally attractive and
locally exponentially stable.

Proof: Equation (3) is a matrix valued differential Ricatti
equation that can be solved using the adjoint equations
technique. Introduce two matrices X,Y ∈ GL(n) that
satisfy

Ẋ = PY, Ẏ = PX. (10)

with initial conditions X(0) = I, Y(0) = R0. Note that

R = YX−1 (11)

since R(0) = Y(0)X−1(0) = R0 and

d

dt
YX−1 = ẎX−1 −YX−1ẊX−1 = P −RPR = Ṙ.

Equation (10) is linear and has the transition matrix

exp

([

0 P
P 0

]

t

)

=

[

cosh(Pt) sinh(Pt)
sinh(Pt) cosh(Pt)

]

.

By plugging the expressions for X and Y into (11) we find
R.

We assume that R0 /∈ N(n). The induced Euclidean norm
is sub-multiplicative whereby

‖YX−1 − I‖2 = ‖(Y −X)X−1‖2 ≤ ‖Y −X‖2 · ‖X
−1‖2.

That limt→∞ ‖YX−1 − I‖2 = 0 hence follows from

lim
t→∞

Y −X = lim
t→∞

exp(−Pt)(I −R0) = 0,

lim
t→∞

X−1 = lim
t→∞

(I + tanh(Pt)R0)
−1 cosh−1(Pt) = 0.

The last limit is proved in Appendix A (it also requires
the assumption of R0 /∈ N(n)). Hence we have shown
that I attracts all system trajectories such that R0 ∈
SO(n)\N(n).

It remains to show that I is a locally exponentially stable
equilibrium of R. We use the first method of Lyapunov.
Set E = R − I. Let Z be the matrix corresponding to the
linearization of E. Then

Ż = −PZ − ZP, (12)

with Z(0) = Z0 = R0−I. The system (12) is exponentially
stable due to P ∈ S++(n). �

Consider Algorithm 2. Let Φ(S0, t) denote the flow on
so(n), i.e. Φ(S0, t) = S(t), where S(t) is the value at time
t to the unique solution of (4) with initial value S0 ∈ so(n).

Theorem 7. The trajectories of (5) are given by

R(t) = exp(Φ(LogR0, t)). (13)

Moreover, the equilibrium R = I is almost globally
asymptotically stable.

Proof. The proof is mainly by verification. Note that
R(0) = R0. Since [Ω2,S] = 0, it follows that [Ṡ,S] = 0,
see Lemma 15 in Appendix B. Hence

Ω2R = Ṙ =
d

dt
exp(S) =

d

dt

∞
∑

i=1

1

i!
Si = ṠR.

By multiplying the above identity by R−1 from the right,
we are left with

Ṡ = Ω2 = F(S). (14)

The solution to (14) is given by S(t) = Φ(S0, t) as defined
earlier. The expression (13) for R(t) is obtained from the
exponential mapping and

Ṙ = Φ̇(LogR0, t) exp(Φ(LogR0, t))

= ṠR = F(S)R.

Since the zero matrix is a globally asymptotically stable
equilibrium of (4), we find that

lim
t→∞

Φ(LogR0, t) = 0, lim
t→∞

R(t) = I,

i.e. the identity matrix is almost globally attractive. The
almost global region of attraction follows from LogR0

being defined for R0 ∈ SO(n)/N(n). The identity matrix
being a stable equilibrium of (5), follows from the stability
of (4), and the continuity of the exponential mapping. �

Example 3. (Cont’d). Consider the case of F(S) = −S.
Note that F(S) ∈ so(n) and [F(S),S] = 0. Moreover, the
system

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

447



Ṡ = −S

is globally exponentially stable. The conditions of Algo-
rithm 2 are hence fulfilled and we obtain the geodesic
control law Ω = −Log(R), with solution given by

R(t) = exp(e−t Log(R0)).

Example 4. (Cont’d). The trajectories of (6), the closed
loop system in Example 4, are given by

R(t) = (tanh(t) I +R
1
k

0 )
k(I + tanh(t)R

1
k

0 )
−k, (15)

where the unique unitary kth root ofR0 is calculated using
the spectral decomposition. The equilibrium R = I is
almost globally attractive and locally exponentially stable.

To prove this, introduce the variable X = R
1
k ∈ SO(n).

Then

Ẋ =
1

k
ṘR

1
k
−1 =

1

k
k(R1− 1

k −R1+ 1
k )R

1
k
−1

= I −R
2
k = I −X2, (16)

which also results from setting P = I in Algorithm 1.
By reversing the change of variables in the solution for X
given by Theorem 6 we obtain (15).

The attractiveness and stability properties of I as an
equilibrium of R also follows from those of X obtained
from Theorem 6.

Example 5. (Cont’d). The trajectories of system (7) gen-
erated by Algorithm 5 are given by

R(t) = exp(2k atanhC(t)),

where

C(t) = sinh

(

1

2k
S0

)(

sinh2
(

1

2k
S0

)

+ et I

)− 1
2

,

and S0 = LogR0. Moreover, the equilibrium R = I is
asymptotically stable.

Let us prove this. That C(t) and atanhC(t) are well-
defined follows from Lemma 17 in Appendix B. Change
variables from R to X = 1

2k LogR where the scaling is
just a matter of notational convenience. Note that

Ω5 = −k tanhX,

whereby [X,Ω5] = 0 and Ẋ = 1
2kΩ5. It will hence suffice

to study X.

As an intermediate step, consider the evolution of

C(t) = sinh (X0)
(

sinh2 X0 + et I
)− 1

2 (17)

given by

Ċ(t) = −
1

2
sinh(X0)(sinh

2 X0 + et I)−
3
2 et

= −
1

2
C(t)(sinh2 X0 + et I)−1 et

= −
1

2
C(t)(sinh2 X0 + et I)−1·

(sinh2 X0 + et I − sinh2 X0)

= −
1

2
C(t)(I −C(t)2).

It remains to verify that

X(t) = atanhC(t)

solves Ẋ = − 1
2 tanhX. Note that

X(0) = atanh (tanh (X0)) = X0.

What is more

Ẋ(t) = (I −C2(t))−1Ċ(t)

= −
1

2
C(t) = −

1

2
tanhX(t),

where we used the previous result concerning Ċ(t). To
prove that I is almost globally attractive, note that

lim
t→∞

C(t) = sinh(X0) lim
t→∞

(sinh2 X0 + et I)−
1
2 = 0,

which follows from

σ(C(t)) = {i sin(λ)(et − sin2 λ)−
1
2 ∈ iR | iλ ∈ σ(X0)}.

Hence limt→∞ R(t) = I for all R0 ∈ SO(n)/N(n).

To prove stability we use the first method of Lyapunov. Let
Y ∈ R

n×n be a variable corresponding to the linearization
of Ẋ = − 1

2 tanhX around X = 0. Then

Ẏ = −
1

2
Y

is an exponentially stable system. The stability of I as
an equilibrium of R follows from the continuity of the
exponential map.

6. APPLICATIONS

Analytical solutions to the closed loop attitude kinematics
can be used as an alternative to the zero-order hold
approach to implementing a continuous control law using
feedback based on an output of the full state that is
temporarily unavailable [Markdahl et al., 2013]. They can
also be used to pose a model predictive control (MPC)
problem in terms of the feedback gain parameters of the
control law [Markdahl et al., 2012]. In Markdahl et al.
[2012] there are two strictly positive gain parameters.
In this paper Algorithm 1 provide six gain parameters
given by the matrix P ∈ S++(3). The potential gain from
using optimization techniques in lieu with the analytical
solutions should hence be greater than in Markdahl et al.
[2012].

Before posing the MPC problem we consider a switched
feedback control based on Algorithm (1), where a time-
dependence is introduced by replacing the gain matrix P
by a piece-wise constant function of time P(t).

Algorithm 8. Consider a feedback

Ω3 = P(t)R−1 −RP(t),

where P(t) is a matrix valued switching signal. Let the
switching times be given by {tk}

∞
k=0 with t0 = 0. The

matrix P(t) ∈ S++(3) switches at each tk and is constant
on [tk, tk+1) for all k ∈ N, has a strictly positive dwell
time ∆t, and satisfies P(t) � εI for some strictly positive
constant ε. The closed loop system is

Ṙ = P(t)−RP(t)R. (18)

Proposition 9. Suppose the system (2) with R0 ∈ SO(3)
is governed by Algorithm 8. Then the identity matrix is a
uniformly asymptotically stable equilibrium of R.

Proof. The proof is omitted.

Note that (18) has a solution given by Theorem 6 on I0 =
[t0, t1) since P (t) is constant on I0. Suppose that (18) has a
solution on Ik = [tk, tk+1). Then set Rk+1 = limt↑tk R(t).
Since P(t) is constant on Ik+1 we can use Rk+1 as an
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initial condition to obtain a solution on Ik+1 that satisfies
limt↑tk+1

R(t) = limt↓tk+1
R(t). By proceeding inductively,

we obtain a solution to (18) on R
+ = ∪k∈N[tk, tk+1).

Let us state the MPC problem.

Problem 10. (MPC). Let a set of time instances {ti}
m
i=0 ⊂

R
+ ∪ {∞} where ti+1 − ti ≥ ∆t and an initial condition

R0 ∈ SO(3) be given. Suppose the dynamics (2) are gov-
erned by Algorithm 8. Consider the problem of optimizing
a function f with respect to the input P(t) = Pi ∈
S++(3), t ∈ [ti, ti+1], i.e. to solve

min
Pi,∀i∈M

f(R(t),P0, . . . ,Pm),

R(t) = (sinh(Pi(t− ti)) + cosh(Pi(t− ti))R(ti))

(cosh(Pi(t− ti)) + sinh(Pi(t− ti))R(ti))
−1,

t ∈ [ti, ti+1), ∀i ∈ M, (19)

Pi � εI, ∀i ∈ M, (20)

where M = {0, . . . ,m}.

The constraint (19) is obtained from solving the closed
loop system generated by Algorithm 8. The constraint (20)
is imposed in Algorithm 8 to ensure convergence under ar-
bitrary switching. It then follows that limt→∞ R(t) = I for
any feasible solution {Pi}

m
i=0 to the MPC problem. This

frees the specification of f from any concerns regarding
the stabilization of the identity matrix. Hence f could be
chosen to optimize some secondary objective.

What the MPC problem does is to utilize the transient
phase of the system evolution to carry out a task of
secondary importance. The MPC problem could also be
posed with (19) replaced by (18). The benefit gained by
using the analytical solution obtained from Theorem 6 as
compared to not having access to them is to eliminate the
computational cost of solving (18) numerically.

Example 11. Consider the problem of stabilizing the atti-
tude of a camera while at some point in time wishing to
see a desired view corresponding to the camera orientation
Rd. A possible choice of f that attempts to achieve this is

f(R(t),P) = inf
t∈[0,∞)

‖R(t)−Rd‖
2
2.

Note that the problem in addressed in Example 11 cannot
be solved by tracking a curve in SO(n) that interpolates
the points R0, Rd, and I. The key idea is to utilize the
transient phase of the system. This can however also be
done for the transient in the case of trajectory tracking
problems.
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Appendix A. MATRIX HYPERBOLIC FUNCTIONS

Definition 12. The matrix valued hyperbolic functions co-
sine, sine, and tangent of A ∈ R

n×n can be defined via the
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matrix exponential as

coshA =
1

2
(exp(A) + exp(−A)) ,

sinhA =
1

2
(exp(A)− exp(−A)) ,

tanhA = sinh(A) cosh−1(A).

The hyperbolic arctangent, atanh, is defined by

atanhA =
1

2
Log(I +A)−

1

2
Log(I −A),

for arguments A such that ±1 /∈ σ(A).

Lemma 13. The matrices cosh−1 P and tanhP are well
defined for P ∈ S++(n) and satisfies

lim
t→∞

cosh−1(Pt) = 0, lim
t→∞

tanh(Pt) = I.

Proof. For any eigenpair (λ,v) of P there is an eigenpair
(cosh(λt),v) of cosh(Pt). Since P is positive definite, the
algebraic and geometric multiplicities of all its eigenvalues
are equal. Moreover, cosh is invertible when restricted to
R

+. It follows that there is a one-to-one correspondence
between eigenpairs of P and cosh(Pt). Hence cosh(Pt) is
nonsingular.

The first limit follows from the corresponding limit
for the eigenvalues. For the second limit, note that
[coshP, sinhP] = 0. Commutativity of diagonalizable ma-
trices implies simultaneous diagonalizability. The spectral
theorem gives P = QΛQ−1 for some orthogonal matrix
Q. Then

coshP = Q cosh(Λ)Q−1,

sinhP = Q sinh(Λ)Q−1,

tanhP = Q tanh(Λ)Q−1,

and the limit follows from limt→∞ tanh(t) = 1. �

Appendix B. LEMMAS

Lemma 14. The equations (3), (5), (6), and (8) have
unique solutions that belong to SO(n) for all t ∈ R

+.

Proof: The proof in the case of (3) is similar to that
in Markdahl et al. [2013]. The assumptions made in
Algorithm 3 ensures uniqueness of the solution S(t) to (4)
and hence of R(t) to (5). In the case of (6), we can use the

change of variables X = R
1
k from the proof of Proposition

4, to obtain (16). The uniqueness of the solution to (3)
and the uniqueness of unitary roots of R /∈ N(n) imply
that the solution X(t) to (16) is also unique. In the case of

(8) we can make the change of variables Y = (I+R
1
k )−1.

Then

Ẏ = Y(I −Y)(I − 2Y),

with the right-hand side being a polynomial in Y. Unique-
ness follows by reasoning as done in Markdahl et al. [2013].
By reversing the change of variables for R0 /∈ N(n) we
prove uniqueness of R(t). �

Lemma 15. The statements [Ṡ,S] = 0 and [Ω,S] = 0 are

equivalent. Moreover, they imply that Ṡ = Ω.

Proof. From [Ṡ,S] = 0 we get

ΩR = Ṙ = ṠR.

Canceling R yields Ṡ = Ω which results in [Ω,S] = 0.

Conversely, suppose [Ω,S] = 0. Since R is a normal
matrix it has a spectral factorization given by R =
U∗ΛU, where U is a unitary matrix and Λ a diagonal
matrix. From [Ω,S] = 0 we get [Ω,R] = 0 which implies
that Ω = U∗ΞU, where Ξ is a diagonal matrix. Then

Ṙ =
d

dt
U∗ΛU = U̇

∗
ΛU +U∗Λ̇U +U∗ΛU̇

= U∗(UU̇
∗
Λ + Λ̇ +ΛU̇U∗)U

= U∗([Λ, U̇U∗] + Λ̇)U,

ΩR = U∗ΞUU∗ΛU = U∗ΞΛU.

Taken together, we have

[Λ, U̇U∗] + Λ̇ = ΞΛ.

where both Λ̇ and ΞΛ are diagonal matrices. The com-
mutator has zero diagonal and hence [Λ, U̇U∗] = 0. It
follows that

Ṡ = U̇
∗
Log(Λ)U +U∗ ˙(LogΛ)U +U∗ Log(Λ)U̇

= U∗[LogΛ, U̇U∗]U +U∗ ˙(LogΛ)U

= U∗Λ−1Λ̇U = U∗Λ−1UU∗Λ̇U

= R−1Ṙ = R−1ΩR = Ω,

which results in [Ṡ,S] = 0 (that [LogΛ, U̇U∗] = 0 follows

from [Λ, U̇U∗] = 0 using the Taylor series definition of the
matrix logarithm).

Remark 16. This result is important because it allows us
to replace the assumption of [Ṡ,S] = 0 with [Ω,S] = 0.
The latter assumption is preferable since we assume Ω
to be the control input, i.e. we can design Ω. It is not,
however, possible to chose Ṡ in general.

Lemma 17. The expression for C(t) given by (17) is well-
defined for all t ∈ R

+, and so is atanhC(t).

Proof. Since

σ(R) ⊂ {z ∈ C | |z| = 1},

we may obtain S = LogR for R /∈ N(n) using the
principal logarithm. Then

σ(S) = {iλ ∈ iR | |λ| < π, eiλ ∈ σ(R)}.

Since X = 1
2kS we find that all λ ∈ σ(X) satisfy |λ| < 1

2π.
It follows that

σ(sinh2 X + et I) = {− sin2 λ+ et ∈ R
++ | iλ ∈ σ(X)}.

These eigenvalues are strictly positive, i.e. sinh2 X+et I is
nonsingular. It is also normal, whereby its principal square
root can be calculated as detailed in §3. This shows C(t)
to be well-defined.

Recall the definition of atanh given in Appendix A. Note
that C(t) is skew-symmetric, implying that σ(C(t)) ∈ iR.
Hence atanhC(t) is well-defined. �
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