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Abstract: This paper deals with the application of Echo State Network (ESN) model to robust
control of the Twin Rotor Aero-Dynamical System (TRAS) through estimation and cancellation
of disturbances. The work describes the modelling process of the plant and control scenarios
in which the system is under influence of the unknown disturbances. In such control scenarios
the ESN model is used to estimate the disturbances and calculate the input correction in such
way to improve the control quality. All data used in experiments are collected from the TRAS
through the Matlab/Simulink environment.
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1. INTRODUCTION

Nowadays, it is observed a very rapid and significant
development of the automation industry. The increasing
requirements for high levels of system performance and
reliability in the presence of unexpected changes of system
environment cause that the robust control system has
received the increasing attention in the last years (e.g.
Wang et al. (2013); Yetendje et al. (2012)). Typically the
plant runs outside the laboratory environment and can be
the subject of the different unknown disturbances. Such
situations cannot be predicted but have to be considered
during the control system design. To guarantee the needed
performance a wide range of disturbances need to be taken
into account. Also it is very important to keep simple
the methodology of dealing in such cases, especially when
handling with the very dynamic systems like servomotors
or aero-dynamical systems. Because of the very fast re-
sponse from that kind of system the methods need to
be very efficient and no computational burdening during
the work. The very promising solution of such formulated
problem are the Artificial Neural Networks (ANN). ANN
are well known from its generalizing abilities which are
crucial in case of considering a wide range of disturbances.
The calculation of the output of the neural network model
is also practically instant and requirement of memory
resources currently is also non-significant even in case of
large structures thanks to much more capable automation
equipment than in the past. Only the training of the ANN
cannot be carried out in real time but in most situation
off-line training is sufficient. Thanks to that properties the
ANN are very often used with success in recent researches
⋆ This work was supported in part by the National Science Cen-
tre in Poland under the grant N N514 6784 40 and UMO-
2012/07/N/ST7/03316.

in the area of automation like fault diagnosis or fault
tolerant control (Luzar et al. (2012); Sobhani-Tehrani et al.
(2014); Czajkowski et al. (2012); Nørgaard et al. (2000);
Noura et al. (2009); Pedro et al. (2013)).

The paper is organized as follows. The general description
of the Echo State Network and observer version of the
network is described in Section 2. Section 3 presents a
robust control strategy and the proposed algorithm of
noise estimation and calculation of the control correction.
Section 4 describes laboratory installation used in experi-
ments, while experimental results of modelling and control
scenarios are included in Section 5.

2. ECHO STATE NETWORK

The Echo State Network are relatively new approach idea
to architecture and supervised learning principle of the
recurrent neural networks (RNNs). The idea of creating
a random and large but fixed recurrent neural network
and combining the nonlinear responses of the reservoir
(sparsely connected neurons inside the hidden layer of
the RNN) through trainable, linear combination for the
desired output was presented by Jaeger (2001).
The discrete-time Echo State Network with N reservoir
units, K inputs and L outputs is governed by the following
state update equation:

x̄(n+ 1) =f(Wx̄(n) +Winuc(n) +Wfbȳ(n))

ȳ(n) =g(Woutz̄(n)) ,
(1)

where x̄(n) is the N -dimensional reservoir state, f is a
sigmoid function (usually the logistic sigmoid or the tanh
function), W is the N×N reservoir weight matrix, Win is
the N ×K input weight matrix, Wfb is the N ×L output
feedback matrix, ȳ(n) is L-dimensional model output
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signal, g is an output activation function typically identity
or sigmoid, z̄(n) = [x̄(n);uc(n)] is the extended system
state vector and it is a concatenation of the reservoir and
input states.
What is very important especially in the control theory is
the possibility to feedback the real output of the system
during the work of the plant to obtain system observer.
In situation when the system states cannot be measured,
those states can be approximated with with ESN in such
very easy manner. The equation describing such nonlinear
observer are formulated as follows:

x̂(n+ 1) =f(Wx̂(n) +Winuc(n) +Wfby(n))

ŷ(n) =g(Woutẑ(n)) ,
(2)

where y(n)) is the past measured system output.
To design a proper model using Echo State Networks, the
most important task is to tune the global parameters in
such way to match the dynamics of the modelled system.
Typically the following parameters need to be adjusted
to minimize the error between output of the model and
modelled system:

• The spectral radius of the reservoir weight matrix.
• The input scaling.
• The output feedback scaling.
• The connectivity of the reservoir weight matrix.
• The reservoir size N .

All these kinds of parameters have to be optimized jointly.
The current standard practice to do this is through manual
experimentation. The ESN also allows for a very fast and
efficient way of designing RNNs-based models. The ESN
can be called a very convenient framework for using RNNs
in a practical engineering applications (e.g. Plöger et al.
(2004); Sheng et al. (2012)).

3. ROBUST CONTROL – DISTURBANCES
ESTIMATION

The main idea behind this approach to robust control is
very simple and is possible with the use of the represen-
tation of the output of the Echo State Model. Typically
the disturbances are presented with the use of the output
equation as follows:

y(n) =Cx(n) + υ(n) , (3)

But disturbances can be also understood as the addi-
tional unknown input of the system. It is obvious that
such disturbance input cannot be manipulated. In such
approach the control signal can be defined as the sum of
the controller input and unknown disturbance input which
influence the work of the system:

u(n) = uc(n) + ud(n) (4)

Now, let the nonlinear discrete system be described as:

x(n+ 1) =f(x(n),u(n))

y(n) =Cx(n) ,
(5)

In case when disturbances are not taken into consideration
(i.e. during the plant modelling) the model state should
be very close to system state (not equal due to modelling
uncertainty) and can be used as estimate of such unknown
system state:

x(n) ≈ x̄(n) (6)

Such estimation can be done with the ESN model (1).
In case of the disturbances taken into account the system

state can be estimated with the system observer. Using (4)
the ESN observer output equation (2) can be reformulated
as follows:

ŷ(n) =g(Wout[x̂(n);uc(n) + ud(n)] , (7)

because the g is the identity function and in this case is
only used for the implementation purpose it can be ne-
glected. The matrix Wout can be divide into two matrices
for separate handling of the state and input values:

Wout =

[

Wxout 0
0 Wuout

]

(8)

so finally the observer output can be presented as follows:

ŷ(n) = Wxoutx̂(n) +Wuout(uc(n) + ud(n)) (9)

using equivalence rule it can be presented with the use of
the measured system output:

y(n) = Wxoutx̂(n) +Wuout(uc(n) + ud(n)) (10)

and now it can be very easy used to estimate the unknown
disturbance input:

ûd(n) = (Wuout)−(y(n) −Wxoutx̂(n))− uc(n) (11)

where (Wuout)− is the pseudo inverse of the matrixWuout

in the Moore-Penrose sense. The existence of such inver-
sion need to to be assured during the modelling process. Fi-
nally, substituting the estimated input disturbances from
controller input signal should compensate the unknown
disturbances in the process:

u(n) = uc(n) + ud(n)− ûd(n) (12)

and in the effect the control robust to unknown input dis-
turbances should be achieved. The scheme of the proposed
control strategy is presented in Fig. 1. In the scheme the
reference signal is noted as yr(k).

Disturbances

yr(k) Controler + TRAS y(k)

ESN Model
/Observer

ȳ(k)
ŷ(k)

Disturbance
Estimaton

Block

uc(k)

–

x̂(k)

ud(k)

Fig. 1. The scheme of the proposed control approach

4. TWO ROTOR AERO-DYNAMICAL SYSTEM

The Two Rotor Aero-dynamical System (TRAS) is a lab-
oratory set-up designed for control experiments. In certain
aspects its behaviour resembles that of a helicopter. From
the control point of view it exemplifies a high order non-
linear system with significant cross-couplings. The system
is controlled from a PC. Therefore it is delivered with
hardware and software which can be easily mounted and
installed in a laboratory. The laboratory setup consists
of the mechanical unit with power supply and interface
to a PC and the dedicated RTDAC/USB2 I/O board
configured in the Xilinx technology. The software operates
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in real time under MS Windows XP/7 32-bit using MAT-
LAB R2009/10,11, Simulink and RTW toolboxes. Real-
time is supported by the RT-CON toolbox from INTECO.
Control experiments are programmed and executed in real-
time in the MATLAB/Simulink environment. The real-life
installation is presented in Fig.2, and the scheme of the
system is presented on Fig.3.

Fig. 2. Two Rotor Aero-dynamical System - laboratory
setup.

Fig. 3. Two Rotor Aero-dynamical System - parts scheme.

According to the TRAS instruction manual the equations
describing the motion of the system can be written as
follows:

dΩv

dt
=
lmFv(ωm)− Ωvkv + Uhkhv − a1Ωvabs(ωv)

Jv
· · ·

+
g((A−B)cosαv − Csinαv)

Jv
· · ·

−
1

2
Ω2

h(A+B + C)sin2αvUhkhv

Jv
(13)

dαv

dt
= Ωv (14)

dKh

dt
=

Mh

Jh
=
ltFh(ωt)cosαv − Ωhkh + Uvkvh

Dsin2αv + Ecos2αv + F
· · ·

−
a2Ωhabs(ωh)

Dsin2αv + Ecos2αv + F

(15)

dαh

dt
= Ωh, Ωh =

Kh

Jh(αv)
, (16)

and two equations describing the motion of rotors:

Ih
dωh

dt
= Uh −H−1

h (ωh) (17)

and

Iv
dωv

dt
= Uv −H−1

v (ωv) (18)

where:
Ωv - angular velocity (pitch velocity) of TRAS beam
[rad/s];
Ωh - angular velocity (azimuth velocity) of TRAS beam
[rad/s];
ωv - rotational speed of main rotor [rad/s];
ωh - rotational speed of tail rotor [rad/s]
Kh - horizontal angular momentum [N m s];
Mh - horizontal turning torque [ Nm];
Ih - moment of inertia of the main rotor.
Iv - moment of inertia of the tail rotor
The descriptions of the other symbols can be found in
INTECO (2012).

5. EXPERIMENTS

5.1 Modelling

To apply a model of the system to any control task,
the modelling phase of research is a very crucial one.
Incorrect model can lead to many problems, including
weak performance or lack of the system stability. To build
a proper model, the training data describing the process
under normal operating conditions is required. The input
signal should be as much informative as possible. In this
paper the model is trained with the training data which
was obtain during the spectral analysis of the TRAS
(described in detail in Czajkowski and Patan (2013a)).
In this work the system is under an input signal in the
form of the chirp signal and given responses are analysed
with Discrete Fourier Transform to obtain frequencies for
which the system is most responsive. Such approach to
system modelling was with success applied to the Model
Predictive Control of the TRAS in previous work of
the author (Czajkowski and Patan (2013b)). Using those
frequencies the training data in the form of a 3 seconds
long, random steps were chosen. The data collected was
1000 seconds long. The sampling of 0.01s gave 100000
samples of data. Such high sampling is not needed so the
data was resampled to 0.05s which gave 20000 samples.
The collected data then was divided into 4000 samples of
training data and 16000 samples of validating data.
With correct training data it is possible to carry out
the design of the model. The type of the ESN used
in this paper to create model is the so-called Leaky
ESN (Jaeger et al. (2007)). In case of such ESN the
task can be described as adjusting the global network
parameters described in Section 2. In many cases the
adjusting process is carried out manually which often is
a slow and ungrateful process. In this paper the approach
based on the Genetic Algorithm is proposed to automate
that process. The main task in such case is to define the
cost function and optimisation variables. The cost function
in this paper it was decide as the Mean Squared Errors
(MSE).
Obtained set of the variables gave the performance of 0.017
for training data and 0.032 for testing data. The values of
global parameters were as follows:

• The spectral radius = 0.5612.
• The input scaling = 0.3298.
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• The output feedback scaling = 0.0306.
• The reservoir size N = 87.

Results of the training are presented in following figures.
The response of the system for the training is presented
in Fig. 4 and squared error in Fig. 5. Next, are presented
results obtained with validating data: the response of the
system in Fig. 6 and squared error in Fig. 7.
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Fig. 4. Modelling results training set: process (blue line),
model (red line).

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

sample

sq
ua

re
d 

er
ro

r 
va

lu
e

Fig. 5. Modelling results training set: squared errors

5.2 Disturbance Estimation

The main part of the experiments concerned the applica-
tion control based on methodology described in Section
3. To simplify the experiments the PID controller was
used. Two scenarios were carried out. In both the con-
trol task was to keep the fixed level of the pitch angle.
During the experiments the tail rotor was not used and
the azimuth movement was blocked (the only task by
the tail rotor is to compensate the azimuth movement,
using cross-coupled controller will be the subject of the
future researches). In first scenario the disturbances in the
form of the random steps were introduced. The range of

0 2000 4000 6000 8000 10000 12000 14000 16000

−1.5

−1

−0.5

0

0.5

1

1.5

sample

ou
tp

ut
 v

al
ue

 

 
system output
ESN model output

Fig. 6. Modelling results testing set: process (blue line),
model (red line).
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Fig. 7. Modelling results testing set: squared errors

disturbances was assumed as 10% of nominal input signal.
The step changing time was fixed at 1 second. The control
performance results are presented in Fig. 8. As it is seen
the proposed control is much more efficient in such case
in comparison to typical application in industry. In Fig. 9
estimation of the disturbances is presented and as it can
be observed the estimation is very close to the original
unknown disturbances. The control error is presented in
Fig. 10
In second scenario the disturbances in form of the three

summed up sinusoid were introduced. In this situation also
the results are very satisfactory and proposed approach
improved the control performance. Similarly the results
are presented in Figs. 11-13.

6. CONCLUSION

This work is the first research carried out with the Echo
State Network. As it was shown this specific RNNs frame-
work can be used very easily and successfully in application
of control system. The great modelling properties of RNNs
are well known and thanks to ESN can be applied very
easily. Also the Genetic Algorithm can be very important
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Fig. 8. Comparison of the control performance in the test
scenario 1.
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Fig. 9. Estimation of the disturbances affecting the system
work in the test scenario 1.
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Fig. 10. Comparison of the control error in the test scenario
1: proposed control strategy - red line, regular control
strategy - blue line.
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Fig. 11. Comparison of the control performance in the test
scenario 2.
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Fig. 12. Estimation of the disturbances affecting the sys-
tem work in the test scenario 2.
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Fig. 13. Comparison of the control error in the test scenario
2: proposed control strategy - red line, regular control
strategy - blue line.
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tool in case of obtaining the ESN global parameters. The
proposed control strategy seems very promising and need
to be tested outside the laboratory. Our future work will
be focused on using such approach in case of both rotors
of the TRAS and substituting the regular PID controller
to MPC and adapt such control system in a way to achieve
fault tolerance and to try simulate more realistic control
situation.
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