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Abstract: Task-level industrial robot programming is a mundane, error-prone activity requiring
expertise and skill. Since humans easily communicate with natural language (NL), it may be
attractive to use speech or text as instruction means for robots. However, there has to be a
substantial amount of knowledge in the system to translate the high-level language instructions
to executable robot programs.
In this paper, the method of Stenmark and Nugues (2013) for natural language programming
of robotized assembly tasks is extended. The core idea of the method is to use a generic
semantic parser to produce a set of predicate-argument structures from the input sentences. The
algorithm presented here facilitates extraction of more complicated, advanced task instructions
involving cardinalities, conditionals, parallelism and constraint-bounded programs, besides plain
sequences of commands.
The bottleneck of this approach is the availability of easily parametrizable robotic skills and
functionalities in the system, rather than the natural language understanding by itself.
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1. INTRODUCTION

Programming of a traditional robot cell requires consider-
able expertise and effort. The new generation of robots,
that work in an unstructured environment, that might
have more degrees of freedom and two arms, introduces
an increased level of complexity in user interaction and in-
struction. Therefore, methods of robot instruction that are
accessible to non-experts would lead to greater usability
of industrial robotics. Yet another aspect of the problem
lies in vendor-specific solutions, available for each brand
of robots. Different tools of varying complexity, different
robot programming languages and different abstraction
levels of task descriptions make them inaccessible for a
plain user.

Since humans communicate with natural language (NL),
it may be attractive to use speech or text as instruction
means for robots. This is non-trivial for two main reasons:
First, NL is often ambiguous and its expressivity is richer
than that of a typical programming language. Secondly,
tasks can be expressed as goals as well as imperative
statements, hence, even if the instructions are correctly
interpreted, the description itself is often not enough to
create a successful execution. There has to be a substantial
amount of knowledge in the system to translate the high-
level language instructions to executable robot programs.

In this paper, the simple method from Stenmark and
Nugues (2013) for natural language programming of as-
sembly tasks is extended. The core idea of the method is to
use a generic semantic parser to produce a set of predicate-
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argument structures from the input sentences. The original
algorithm allows extraction of only plain sequences of com-
mands. Here we show that using the predicate-argument
structures together with the dependency graphs facilitates
also extraction of more complicated task instructions,
which involve cardinalities (e.g., pick two bolts and two
nuts), conditionals (e.g., if...then...else) and constraint-
characterized programs (e.g., do...until...)

2. RELATED WORK

By abstracting away the underlying details of the system,
e.g., by demonstration, high-level programming can make
robot instruction accessible to non-expert users and reduce
the workload for an experienced programmer. A survey
of programming-by-demonstration models in robotics is
presented by Billard et al. (2008).

In industrial robotics, programming and demonstration
techniques are normally used to record trajectories and
positions. As it is desirable to minimize downtime for the
robot, much programming and simulation is done offline
whereas only the fine tuning is done online (Hägele et al.,
2008). There is a plethora of tools, often visual, for robot
programming. In robotics, standardized graphical pro-
gramming languages include Ladder Diagrams, Function
Block Diagrams and Sequential Function Charts (IEC,
2003). Using a touch screen as an input device, icon-based
programming languages such as in Bischoff et al. (2002)
can also lower the threshold to robot programming.

Natural language programming for robots has been inves-
tigated since the early 1970s. SHRLDU (Winograd, 1971)
is an example of the first attempts to give robots con-
versational competences. To interpret and convert a users
sentences into instructions, robotic system often make
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use of an intermediate representation. Examples include
MacMahon et al. (2006) and Tellex et al. (2011), where
the authors have developed their own domain-specific se-
mantic representations for robot navigation.

Tenorth et al. (2010) parse pancake recipes in English
from the World Wide Web and generate programs for
their household robots. They use the WordNet lexical
database (WordNet, 2010) with a constituent parser and
they map entries in the WordNet dictionary to concepts
in the Cyc ontology (Matuszek et al., 2006). Finally, they
add mappings to common household objects.

In order to bridge the sentence to robot actions, all the
examples above use ad-hoc formalisms. FrameNet (Rup-
penhofer et al., 2010), based on frame semantics, is a com-
prehensive dictionary that provides a list of lexical models
of the conceptual structures. Propbank (Palmer et al.,
2005) has developed a extensive database of predicate-
argument structures for verbs and nouns, and annotated
large volumes of text. The Propbank nomenclature is used
by most current statistical parsers, including ours.

Only few robotics systems use existing predicate-argument
nomenclatures. An exception is RoboFrameNet (Thomas
and Jenkins, 2012). However, the authors wrote their own
frames inspired by FrameNet. They built a semantic parser
that consists of a dependency parser and rules to map the
grammatical functions to the arguments. Such techniques
are known to have a limited coverage.

In the project described below we have used a multilingual
high-performance statistical semantic parser (Björkelund
et al., 2009, 2010) using the Propbank and Nombank lexi-
cons. In contrast to RoboFrameNet, the parser we adopted
can accept any kind of sentence. The NL processing mod-
ule is a knowledge-based service in a larger programming
environment (Stenmark and Malec, 2013). In particular,
it allows one to create constraint-based task descriptions
based on the iTaSC formalism, a property exploited here.

3. BACKGROUND

The system has been described in detail in our previous
work (Stenmark and Nugues, 2013; Stenmark and Malec,
2013); a simplified view of its components is shown in
Fig. 1. It is a cloud-based system for knowledge shar-
ing and distributed AI reasoning. The knowledge and
reasoning services are stored on a server called Knowl-
edge Integration Framework (KIF), which contains data
repositories and ontologies modeling objects and actions.
KIF also provides servlets for planning, scheduling and
code generation, as well as the NL-programming servlet
described in this paper. These services are used for offline
programming by the Engineering System (ES), which is
a user-interface implemented as a plug-in to ABB Robot-
Studio (ABB Robotics, 2013) visual IDE.

Objects in the World The core ontology, rosetta.owl
(Stenmark and Malec, 2013), contains devices such as
sensors and robots. The ES also uses a separate ontol-
ogy to describe parts, such as trays and workpieces. The
ontologies describe object types and properties, while the
data repositories contain instances of the types. E.g., a
ForceSensor is a subtype of Sensor and of PhysicalOb-
ject, has property measures with value Force, and it also

Fig. 1. A view of the system architecture.

inherits properties such as weight from PhysicalObject.
The object types and their property types are later used
by the natural language programming system to link ar-
guments to real world objects. Objects are displayed by
ES using their CAD models. Each object has a number of
relative coordinate frames called feature frames, attached
to its main object frame. The feature frames are used
to express relations between objects. A typical case is a
gripping pose described as a relation between a gripper
frame and an object feature frame.

Task Vocabulary The task vocabulary is limited to
existing robot capabilities. In the KIF repositories, robot
actions are stored as program templates, called skills.
There are primitive actions, such as search, locate and
move which can be combined into more complex skills
such as pick and place. Each skill has parameters, e.g.,
velocities, other objects, their feature frames, or relations.
Each skill has also a set of device requirements, pre -
and post-conditions as well as optional properties such
as natural language labels. The skills are downloaded
from the KIF libraries into the ES and added to a task
sequence, see Fig. 2. This sequence can be edited by

Fig. 2. A sequence of skills.

drag-and-dropping objects and by editing parameters of
each action or skill. As an additional modality, we have
extended the system with natural language support for
sequence generation. Using language to express a task is
faster than downloading or selecting each skill separately;
besides, speech allows hands-free instruction of the robot.

Natural Language Programming The task is ex-
pressed in unstructured English, either by typing it in a
text box directly in the user interface, or by connecting an
Android app to the ES and using its speech-to-text con-
version. The text is sent to a servlet on KIF, which in turn

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3057



calls a general purpose statistical parser 1 (Björkelund
et al., 2010) that outputs predicate-argument structures
in standard format (cf. Fig. 3).

Fig. 3. The NL parsing sequence.

Predicate-Argument (PA) Structures As an example
we use an assembly where a printed circuit board, a PCB,
is covered with a metal plate, a shieldcan. First the PCB
should be fixated, which can be expressed in English as
Take the PCB from the input tray and place it on the
fixture. The PA structures are take(PCB, input tray) and
place(it, fixture). The parser labels verbs with different
senses depending on the context in which they are used.
For example, take off (like a plane) is take.19 and take
down is take.22.

The parsing pipeline uses logistic regression to produce
the PA structures, see Fig. 4. First, the dependency graph
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Fig. 4. The parsing pipeline.

is extracted. The dependency graph connects the words
in the sentence using their grammatical functions. It is
technically a tree, where the root is the dominant word
in the sentence, most often a verb describing an action,
and the arrows (see for example bottom part of Fig. 6)
point from the parent or head to its children. Then the
predicates are identified, labelled with a sense and finally
the arguments are identified and labelled. Take in our
example has sense 1. The predicate take.01 has three
arguments named A0-A2, the actor (A0), the thing being
taken (A1) and the source (A2). In this case, the robot is

1 The parser is available as open source software, freely accessible
at http://barbar.cs.lth.se:8081/.

not explicitly mentioned, hence there is no A0. Pronouns,
such as it or them are linked to their antecedents in the
sentence.

Previous work (Stenmark and Nugues, 2013) defined an
algorithm describing how predicates can be mapped to
robot skills, and arguments linked to specific world objects
in order to create an executable sequence of the task,
as displayed in Fig. 2. However, the supported program-
ming features were limited, excluding e.g., such control
structures as conditionals, temporal constraints, control
parameters, parallell execution and references to program
features. The contributions of this work are that predicate-
argument pairs can be mapped to complex skills and the
novel methods we are using to extract constraints and
control structures from NL instructions.

Code Generation and Execution The executable code
for primitive actions is generated in native controller lan-
guage (RAPID). E.g., each gripper can have a prede-
fined native code to open and close it. On the other
hand, the sensor-controlled skills use a framework based
on iTaSC (De Schutter et al., 2007), together with ex-
ternal force/torque sensors. These skills are specified by
state machines using JGrafchart (2012) language, where
states are simple motions and transition conditions are,
e.g., timeouts or force and torque thresholds. A motion is
specified by constraining outputs (e.g., positions or force
values) from a kinematic chain. The kinematic chain is a
specification of the relation between task variables and the
robot, which are represented by a list of transformations.
The state machine is generated by ES for all skills and all
constrained motions (Stenmark and Stolt, 2013).

4. PATTERN-MATCHING ALGORITHM

In this section, we present our method of extracting motion
constraints and control structures from unstructured En-
glish in more detail. At the moment, the system supports
cardinality, parallel execution, conditionals and program
references. The algorithm that runs on KIF server is pre-
sented in Algorithm 1. It matches the output from the
semantic parser to program statements, using the semantic
labels, the part of speech (POS) tags and dependency rela-
tions between the words. The following examples illustrate
how the matching of the different statements is carried out.

Cardinality refers to the number of elements. In the
sentence Take all needles and put them in the pallet, the
cardinality of the needles is all. Take three of the needles ...
has cardinality three. The cardinality is easily extracted
from the arguments. In these examples, the arguments
A1 to take.01 are all needles, and three of the needles,
respectively. In the first case, the verb is labelled as plural
(NNS) and the determiner all is used. In the second
case, where there is an explicit numbering (CD) in the
argument, it is used as cardinality. Personal pronouns,
such as them or it, are assumed to refer to all the objects
in the previous argument (this is done in the ES). There
is a subtle difference between Take the needle and Take
a needle, which is expressed in the use of determiner. In
the first case, a specific needle is referenced, while in the
second, it is only the object type that is mentioned and
any needle can be chosen. When linking entities to specific
objects in the world, the system will look for a specific
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Algorithm 1: Pattern-matching algorithm. Non-trivial
functions are described separately.
Data: Input text text, set of predicates that have an

action-mapping, understoodPredicates
Result: list of program statements, list of unknown statements
Let sentences be a list of sentences in text split by ”.”, ”!” and ”?”
Let actions be an empty list
Let unknownStatements be an empty list
sentenceNbr ← 0
foreach sentence s in sentences do

Increase sentenceNbr
semOutput ← semParse(s)
q ← sortPredicates(semOutput)
while q is not empty do

p← poll first element in q
if not(p is negated or an auxiliary verb) then

if understoodPredicates does not contain p then
stm← createArgs(p,q)
Add stm to unknownStatements
wildcard← getWildcard(p)
if wildcard found then

Add wildcard to unknownStatements
end

end
else

stm← createArgs(p, p)
Add stm to actions with sentenceNbr
wildcard← getWildcard(p)
if wildcard found then

Add wildcard to actions with sentenceNbr
end

end
Remove nested predicates in stm from q

end

end

end
return actions and unknownStatements

Function sortPredicates(semOutput)

if semOutput has a root element then
Let q be an empty queue
root← get root predicate from semOutput
if root is a predicate then

Add root to q
Parse the tree breath first adding all predicates to q

end

end
else

predicates← all predicates from semOutput in input order
Add all predicates to q

end
return q

object where the name matches the argument value in the
first case, but in the second case, the argument value is
an object type and the system will return objects of the
given type instead. When the cardinality of an argument
is larger than one, the resulting program structure is a
loop, the sentence number is used to determine its scope,
where actions in the same sentence are in the same loop.
“Take all needles. Put them in the pallet.” will thus be two
loops, and in a single robot system the planning service will
complain about such instructions.

Until is a keyword for extracting the exit condition.
Until is used to express guarded motions such as Search

Function createArgs(p)

args ← findArgs(p)
stm← (p, args)
if hasIfCondition(p) then

word← the child of p of form ”if” or ”when”
condition← recursiveSearch(word)
stm← if-statement with condtion and stm

end
if hasBreakCondition(p) then

word← the child of p of form ”until”
condition← recursiveSearch(word)
stm← break-statement with condtion and stm

end
if hasParallellActivity(p) then

word← the child of p of form ”while”
condition← recursiveSearch(word)
stm← while-statement with a and stm

end
return stm

Function findArgs(p)

a1 ← argument ”A1” of p
if a1does not exist then

a1 ← search for an argument labelled ”TMP”, ”IN”,
”AM-LOC”
if a1is not found then

a1 ← search among children to p labelled ”LOC”
end

end
a2 ← argument ”A2” in p
if a2is not found then

a2 ← search for an argument labelled ”TMP”, ”IN”,
”AM-LOC”

end
if a1is not found and a2 is found then

a1 ← a2
a2 ← void

end
return (a1, a2)

Function recursiveSearch(w)

foreach child c of word do
if c is predicate then

cond← createArgs(c)
if any child cc to c has POS-tag ”CC” then

nestedStm← recursiveSearch(cc) (cc is ”and” or ”or”)
Add nestedStm to cond

end

end

end
return cond

Function getWildcard(p)

manner ← get argument from p with tag ”AM-MNR”
if manner found then

word← recursively search all descendants of manner for a
word labelled ”NN”, ”NNS” or ”NNP”
if word found then

stm← new statement(”use”, word)
return stm

end

end
return empty statement
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in the z-direction until contact. The conditions can be
nested PA structures as well, for example: Move in the
z-direction until you measure 5 N. The results from the
parsing of the two example sentences are displayed in
Figs 5 and 6. In order to extract the program statements,
the analysis starts with the root in case the root is a
predicate. If the predicate belongs to the set of understood
predicates, it is added as a program statement, together
with its arguments. In the first example, the direction
was identified as argument A1 to search.01, however,
in the second sentence, the direction is considered a
location argument to move.01. In the case of missing object
arguments, the location arguments are used instead, since
these are valid parameters to motions. The default frame
of the direction is the tool frame.

Fig. 5. The parse result of “Search in the z-direction until
contact”, together with the dependency graph.

Fig. 6. The parse result of “Move in the z-direction until
you measure 5 N”.

If the predicate has any temporal constraints, expressed
by for example until and while, these are labelled TMP in
the dependency graphs. The temporal constraints can be
either a noun describing an event, or nested PA structures
such as measure (pred) 5 N (A1). The temporal constraints
are added as a condition to the main program statement
(Move - z-direction) and will later be used to create tran-
sition conditions and thresholds for the guarded motion.
Conditions will be discussed in more detail later.

While. In most programming languages while statements
are equivalent to until, however, in natural language they
also express parallelism. For example “While holding 5
N in z-direction, search in x-direction until contact” is a
guarded motion along one axis, while adding a constraint
in another direction. The result is translated into program
statements similarly to until-statements. This sentence
results in a while-statement describing the parallell actions
of searching and holding, while the search is a nested until-
statement with the transition condition.

Conditions. Conditions can be events or PA structures.
In our system, the events that can be used are contact,
collision and timeout. The predicates that are allowed

are limited to measure, reach, sense, thus limiting the
expressions to sensor values. The system also supports
nested conditions using AND and OR, such as contact or
timeout, because and and or are tagged as coordination
conjunctions (CC) by the dependency parser.

If and when. In our system, these are considered equiva-
lent, however, in the if-sentence the condition is considered
an adverbial while in the when-sentence it is a temporal,
see Fig. 7 and Fig. 8. This difference is ignored and the
PA structure is used as a condition in both cases.

Fig. 7. Result for an if-sentence.

Fig. 8. Result for a when-sentence.

Keywords. All robot skills are not suited to be mapped
to predicates, e.g., in a Snapfit skill two plastic pieces
are snapped into position. Hence, the predicate use is
dedicated as a keyword, where the argument is either
another program or a device that is not part of the
assembled parts, such as sensors or tools. That allows
sentences such as “Assemble the shieldcan and the PCB
using myskill”, see Fig. 9. Here myskill can be snapfit
or peg-in-hole, or be replaced with tool such as gripper2.
When a use-predicate is evaluated by the system, it first
searches among the sensors and tools for devices that the
skill can use, and then online for a skill which can be used
to replace the generic assemble action.

Fig. 9. Example of the usage of the wildcard word use.

Another way to express similar commands is by using
the word with. This will naturally not be parsed into
a predicate, but rather be an argument to assemble.2
called manner which is labelled AM-MNR in the result
shown in Fig. 10. Adverbs typically describe the manner
of a predicate, such as Carefully assemble.... In case the
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Fig. 10. Example of the usage of the word with.

manner contains with and a noun it is simply interpreted
as a use with the noun as its argument.

Program references. A small set of predicates and PA
structures are used to describe the program itself. For
example Repeat the task. The predicates are pause, stop,
start, repeat, and restart, while the arguments can be skills
or general references such as the task and the program.

Negation. Predicates with negation are ignored. Al-
though it is possible to imagine commands such as Don’t go
close to the human, we have chosen to require usage of an
active command such as Avoid the human. For a negation
to be meaningful, both an action and its negation have to
be mapped to different skills, since the complement of an
action is not a well defined concept.

When the program statements have been extracted from
English sentences, the predicates are mapped into pro-
grams and functions, and the arguments are linked to
objects in the world or to skills that are downloaded
to the station. Thresholds for sensor values and parallell
constraints are added to the guarded motions. Executable
robot code for the task is generated from the guarded
motions and skills. The resulting code has been verified
by virtual robot execution in the Engineering System.

5. DISCUSSION

Using the standard predicate argument-structures to-
gether with the dependency graphs, it is possible to ex-
tract the semantic meaning of complicated assembly task
descriptions from unstructured English. The bottleneck is
rather the availability of robotic skills and functionalities
in the system, not the natural language understanding by
itself.

In a virtual world, control parameters and sensor thresh-
olds can be set to default values. In order to carry out
robust task execution on a physical platform though, the
damping and stiffness factors of the impedance controller
and force signatures should be learnt for the task. The
parameters to the impedance control can be learnt by
experimentation, as shown by Stolt et al. (2012).

The approach and algorithms presented in this paper are
not limited to just assembly tasks, or just to industrial
robot task descriptions. After having completed experi-
ments involving skill parameter learning, we plan to extend
this approach to other manufacturing domains.
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