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Abstract: In this paper, active disturbance rejection control (ADRC) approach is used to stabilize a
2×2 system of first-order linear hyperbolic partial differential equations (PDEs) subject to a boundary
input disturbance. Disturbance attenuation is achieved with the designed controller, and the resulting
closed-loop control system admits a unique solution, which could tend to any arbitrary vicinity of zero.
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1. INTRODUCTION

This paper considers a 2×2 system of first-order linear hy-
perbolic PDEs with a boundary input disturbance. The control
objective is to stabilize the system while attenuating the distur-
bance, and the control method is active disturbance rejection
boundary control.

2×2 hyperbolic systems have wide physical backgrounds, such
as oil wells (Landet et al. (2013)), gas flow (Gugat and Dick
(2011)), transmission lines (Curró et al. (2011)), road traffic
(Goatin (2006)), open channels (Gugat and Leugering (2003)),
and so on. And stabilization of these systems has attracted many
researchers, see, e.g., Aamo (2013), Bastin and Coron (2010),
Vazquez et al. (2011).

Different methods have been employed to deal with partic-
ular types of boundary input disturbances, see, e. g., Guo
and Guo (2013a), Guo and Guo (2013b). Disturbance rejec-
tion/attenuation is usually desirable in system control designs.
Application of the ADRC method, firstly proposed by Han in
1990s (see, Han (2009)), has been studied for decades. Recent-
ly, this approach has been generalized to distributed parameter
systems. For example, it is used to attenuate the more general
boundary input disturbance in wave equation (Guo and Jin
(2013b)), Euler-Bernoulli beam equation (Guo and Jin (2013a))
and Schrödinger equation (Guo and Liu (2013)).

This paper is organized as follows. In Section 2, the system
to be considered is introduced. In Section 3, previous result-
s from the sliding mode control (SMC) design in Tang and
Krstic (2014) are presented. Inspired by the SMC, an active
disturbance rejection boundary controller is designed in Sec-
tion 4. Existence and uniqueness of solutions to the resulting
closed-loop system are also proved. Moreover, the solution
could tend to any arbitrary vicinity of zero. Effectiveness and

performances of both SMC and ADRC are shown from the
simulation results in Section 5.

2. PROBLEM STATEMENT

In this paper, we intend to stabilize the following 2×2 system
of coupled hyperbolic PDEs:

ut(x, t) =− ε1(x)ux(x, t)+ c1(x)v(x, t) (1)
vt(x, t) =ε2(x)vx(x, t)+ c2(x)u(x, t) (2)
u(0, t) =qv(0, t) (3)
v(1, t) =U(t)+d(t), (4)

where u(x, t),v(x, t) are system states with x∈ [0,1], t > 0; U(t)
is control input; d(t) is external disturbance at the control end.

Here are some assumptions:
1. ε1(x),ε2(x) ∈C1[0,1], ε1(x),ε2(x)> 0,
2. c1(x),c2(x) ∈C[0,1],
3. q 6= 0,
4. d(t) and ḋ(t) are uniformly bounded measurable,
5. Initial data u0(x),v0(x) ∈ L2[0,1].

Following Vazquez et al. (2011), we introduce a backstepping
transformation

α(x, t) =u(x, t)−
∫ x

0
Kuu(x,ξ )u(ξ , t)dξ

−
∫ x

0
Kuv(x,ξ )v(ξ , t)dξ (5)

β (x, t) =v(x, t)−
∫ x

0
Kvu(x,ξ )u(ξ , t)dξ

−
∫ x

0
Kvv(x,ξ )v(ξ , t)dξ , (6)

in which the continuous kernel functions are uniquely deter-
mined by the following system of coupled PDEs:
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ε1(x)Kuu
x + ε1(ξ )Kuu

ξ
=−ε

′
1(ξ )K

uu− c2(ξ )Kuv (7)

ε1(x)Kuv
x − ε2(ξ )Kuv

ξ
= ε

′
2(ξ )K

uv− c1(ξ )Kuu (8)

ε2(x)Kvu
x − ε1(ξ )Kvu

ξ
= ε

′
1(ξ )K

vu + c2(ξ )Kvv (9)

ε2(x)Kvv
x + ε2(ξ )Kvv

ξ
=−ε

′
2(ξ )K

vv + c1(ξ )Kvu (10)

with boundary conditions

Kuu(x,0) =
ε2(0)

qε1(0)
Kuv(x,0), Kuv(x,x) =

c1(x)
ε1(x)+ ε2(x)

, (11)

Kvu(x,x) =− c2(x)
ε1(x)+ ε2(x)

, Kvv(x,0) =
qε1(0)
ε2(0)

Kvu(x,0).

(12)
The transformation (5)− (6) is invertible and the inverse is:

u(x, t) =α(x, t)+
∫ x

0
Lαα(x,ξ )α(ξ , t)dξ

+
∫ x

0
Lαβ (x,ξ )β (ξ , t)dξ (13)

v(x, t) =β (x, t)+
∫ x

0
Lβα(x,ξ )α(ξ , t)dξ

+
∫ x

0
Lββ (x,ξ )β (ξ , t)dξ , (14)

where the continuous kernel functions are uniquely determined
by the following system of coupled PDEs:

ε1(x)Lαα
x + ε1(ξ )Lαα

ξ
=−ε

′
1(ξ )L

αα + c1(x)Lβα (15)

ε1(x)Lαβ
x − ε2(ξ )L

αβ

ξ
= ε

′
2(ξ )L

αβ + c1(x)Lββ (16)

ε2(x)Lβα
x − ε1(ξ )L

βα

ξ
= ε

′
1(ξ )L

βα − c2(x)Lαα (17)

ε2(x)Lββ
x + ε2(ξ )L

ββ

ξ
=−ε

′
2(ξ )L

ββ − c2(x)Lαβ (18)

with boundary conditions

Lαα(x,0) =
ε2(0)

qε1(0)
Lαβ (x,0), Lαβ (x,x) =

c1(x)
ε1(x)+ ε2(x)

,

(19)

Lβα(x,x) =− c2(x)
ε1(x)+ ε2(x)

, Lββ (x,0) =
qε1(0)
ε2(0)

Lβα(x,0).

(20)
The transformation (5)− (6) brings the system (1)− (4) into
the following system :
αt(x, t) =− ε1(x)αx(x, t) (21)
βt(x, t) =ε2(x)βx(x, t) (22)
α(0, t) =qβ (0, t) (23)
β (1, t) =U(t)+d(t)

−
∫ 1

0
α(ξ , t)

(
Kvu(1,ξ )+

∫ 1

ξ

Kvu(1,η)Lαα(η ,ξ )dη

+
∫ 1

ξ

Kvv(1,η)Lβα(η ,ξ )dη

)
dξ

−
∫ 1

0
β (ξ , t)

(
Kvv(1,ξ )+

∫ 1

ξ

Kvu(1,η)Lαβ (η ,ξ )dη

+
∫ 1

ξ

Kvv(1,η)Lββ (η ,ξ )dη

)
dξ . (24)

3. RESULTS FROM SLIDING MODE CONTROL DESIGN

Consider the systems (1)− (4) and (21)− (24) in the state
Hilbert space H =

(
L2(0,1)

)2 with an induced norm from the
following inner product

<( f1, g1)
T ,( f2, g2)

T >

=
∫ 1

0

(
2− x
ε1(x)

f1(x) f2(x)+
2q2(1+ x)

ε2(x)
g1(x)g2(x)

)
dx,

∀ ( f1, g1)
T ,( f2, g2)

T ∈H. (25)

In Tang and Krstic (2014), firstly, a sliding surface for the
system (21)− (24) is chosen as follows:

S(α,β )T (t) = β (1, t) = 0, (26)
i.e.,

S(α,β )T = {( f ,g)T ∈H | g(1) = 0}. (27)

For the system (1)− (4), the sliding surface is

S(u,v)T =
{
( f ,g)T ∈H | g(1)−

∫ 1

0
Kvu(1,ξ ) f (ξ )dξ

−
∫ 1

0
Kvv(1,ξ )g(ξ )dξ = 0

}
. (28)

Secondly, a sliding mode boundary control is designed as

U(t) =
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ

−K
∫ t

0

S(u,v)T (τ)

|S(u,v)T (τ)|
dτ for S(u,v)T (t) 6= 0. (29)

The following main result is then proved in Tang and Krstic
(2014).
Theorem 1. Suppose that d and ḋ are bounded measurable in
time, then for any initial data (u(·,0),v(·,0))T ∈H, there exists
Tmax ≥ 0, depending on initial data, such that the system (1)−
(4) with controller (29) admits a unique solution

(u(·, t),v(·, t))T ∈C([0,Tmax];H) (30)
and

S(u,v)T (t) =v(1, t)−
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ

−
∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ = 0 (31)

for all t ≥ Tmax. Moreover, S(u,v)T (t) is continuous and mono-
tone in [0,Tmax]. On the sliding mode surface S(u,v)T (t) = 0, the
system (1)− (4) becomes exponentially stable.

4. ACTIVE DISTURBANCE REJECTION CONTROL

Inspired by the controller (29) from SMC design, we imple-
ment a to-be-designed controller U0(t) in U(t):

U(t) =
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ +U0(t),

(32)
that is,

U(t) =
∫ 1

0
α(ξ , t)(Kvu(1,ξ )

+
∫ 1

ξ

Kvu(1,η)Lαα(η ,ξ )dη

+
∫ 1

ξ

Kvv(1,η)Lβα(η ,ξ )dη

)
dξ

+
∫ 1

0
β (ξ , t)

(
Kvv(1,ξ )+

∫ 1

ξ

Kvu(1,η)Lαβ (η ,ξ )dη

+
∫ 1

ξ

Kvv(1,η)Lββ (η ,ξ )dη

)
dξ +U0(t). (33)
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Then the system (21)− (24) becomes
αt(x, t) =− ε1(x)αx(x, t) (34)
βt(x, t) =ε2(x)βx(x, t) (35)
α(0, t) =qβ (0, t) (36)
β (1, t) =U0(t)+d(t), (37)

which can be written into the following operator form:
d
dt

(
α

β

)
= A

(
α

β

)
+B(U0(t)+d(t)). (38)

Here the operator A : D(A )(⊂H)→H is defined as follows:

A ( f ,g)T =
(
−ε1(x) f ′, ε2(x)g′

)T
, ∀( f ,g)T ∈ D(A ), (39)

D(A ) = {( f ,g)T ∈
(
H1(0,1)

)2 | f (0) = qg(0),g(1) = 0},
(40)

and

B =

(
0

4q2
δ (x−1)

)
, (41)

where δ (·) denotes the Dirac distribution. In Tang and Krstic
(2014), it has been proved that A generates a C0-semigroup
eA t of contractions in H and B is admissible for eA t .

The adjoint operator of A is

A ∗(φ ,ψ)T =

(
ε1(x)

(
φ
′+

φ

x−2

)
,−ε2(x)

(
ψ
′+

ψ

x+1

))T

,

∀(φ ,ψ)T ∈ D(A ∗), (42)

D(A ∗) = {(φ ,ψ)T ∈
(
H1(0,1)

)2 | φ(0) = qψ(0),φ(1) = 0}.
(43)

Choose (
φ

ψ

)
=

(
0
x

)
∈ D(A ∗) (44)

and let

y1(t) =
〈(

α

β

)
,

(
φ

ψ

)〉
=
∫ 1

0

2q2(1+ x)
ε2(x)

β (x, t)xdx, (45)

y2(t) =
〈(

α

β

)
, A ∗

(
φ

ψ

)〉
=−2q2

∫ 1

0
β (x, t)(1+2x)dx,

(46)
then we can get

ẏ1(t) = 4q2(U0(t)+d(t))+ y2(t). (47)
Design the following extended state observer for y1(t) and d(t):

˙̂yε(t) = 4q2(U0(t)+ d̂ε(t))+ y2(t)+
1
ε
(y1(t)− ŷε(t))

˙̂dε(t) =
1

4q2ε2 (y1(t)− ŷε(t)), (48)

where ε > 0 is the small tuning parameter, then the errors
ỹε = y1− ŷε , d̃ε = d− d̂ε (49)

satisfy
d
dt

(
ỹε(t)
d̃ε(t)

)
= A

(
ỹε(t)
d̃ε(t)

)
+Bḋ(t), (50)

where

A =

 −1
ε

4q2

− 1
4q2ε2 0

 , B =

(
0
1

)
. (51)

The eigenvalues of A are

λ =− 1
2ε
±
√

3
2ε

j. (52)

The following state feedback controller to (34)− (37) is de-
signed:

U0(t) =−d̂ε(t), (53)
and then the closed-loop system becomes

αt(x, t) =−ε1(x)αx(x, t) (54)
βt(x, t) = ε2(x)βx(x, t) (55)
α(0, t) = qβ (0, t) (56)

β (1, t) =−d̂ε(t)+d(t) (57)

˙̂yε(t) = y2(t)+
1
ε
(y1(t)− ŷε(t)) (58)

˙̂dε(t) =
1

4q2ε2 (y1(t)− ŷε(t)). (59)

Lemma 2. Suppose that d and ḋ are uniformly bounded mea-
surable, then for any initial data (α(·,0),β (·,0))T ∈ H, there
exists a unique solution

(α(·, t),β (·, t))T ∈C([0,∞);H) (60)
to the closed-loop system (54)− (59). Moreover, the solution
tends to any arbitrary vicinity of zero as t→ ∞,ε → 0.

Proof. The system (54)− (59) is equivalent to the following
system:

αt(x, t) =−ε1(x)αx(x, t) (61)
βt(x, t) = ε2(x)βx(x, t) (62)
α(0, t) = qβ (0, t) (63)
β (1, t) = d̃ε(t) (64)

˙̃yε(t) =−
1
ε

ỹε(t)+4q2d̃ε(t) (65)

˙̃dε(t) =−
1

4q2ε2 ỹε(t)+ ḋ(t). (66)

Firstly, the
(
ỹε(t), d̃ε(t)

)T -subsystem (65)−(66) can be solved
separately:(

ỹε(t)
d̃ε(t)

)
= eAt

(
ỹε(0)
d̃ε(0)

)
+
∫ t

0
eA(t−τ)Bḋ(τ)dτ. (67)

From (52), it can be derived that(
ỹε(t), d̃ε(t)

)
→ 0 as t→ ∞,ε → 0. (68)

Secondly, the (α,β )T -subsystem (61)− (64) can be written as
d
dt

(
α

β

)
= A

(
α

β

)
+Bd̃ε(t). (69)

Since from Tang and Krstic (2014), it can be proved that for the
system

d
dt

(
γ

δ

)
= A

(
γ

δ

)
,

(
γ(·,0)
δ (·,0)

)
∈H, (70)

there exists a unique solution

(γ(·, t),δ (·, t))T ∈C([0,∞);H), (71)
and∥∥∥(γ(·, t),δ (·, t))T

∥∥∥
H
6 e−a/2t

∥∥∥(γ(·,0),δ (·,0))T )
∥∥∥

H
, (72)

where

a =
1
2

min
x∈[0,1]

{ε1(x),ε2(x)}> 0, (73)

then it can be derived that the C0-semigroup eA t generated by
A is exponentially stable. Moreover, since B is admissible for
eA t , there exists a unique solution to the system (69):
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(
α(·, t)
β (·, t)

)
= eA t

(
α(·,0)
β (·,0)

)
+
∫ t

0
eA (t−τ)Bd̃ε(τ)dτ. (74)

From (68), for any given ε0 > 0, there exist t0 > 0 and ε1 > 0
such that |d̃ε(t)|< ε0 for all t > t0, 0 < ε < ε1. Thus,(

α(·, t)
β (·, t)

)
=eA t

(
α(·,0)
β (·,0)

)
+
∫ t

t0
eA (t−τ)Bd̃ε(τ)dτ

+ eA (t−t0)
∫ t0

0
eA (t0−τ)Bd̃ε(τ)dτ. (75)

With admissibility of B, it can be derived that∥∥∥∥∫ t0

0
eA (t0−τ)Bd̃ε(τ)dτ

∥∥∥∥2

H

6Ct0

∥∥d̃ε

∥∥2
L2

loc(0,t0)
6Ct0t2

0
∥∥d̃ε

∥∥2
L∞(0,t0)

,∀d̃ε ∈ L∞(0,∞),

(76)

where Ct0 is a constant that is independent of d̃ε . With exponen-
tial stability of eA t , it can be derived that∥∥∥∥∫ t

t0
eA (t−τ)Bd̃ε(τ)dτ

∥∥∥∥
H
=

∥∥∥∥∫ t

0
eA (t−τ)B(0 �

t0
d̃ε)(τ)dτ

∥∥∥∥
H

6N
∥∥d̃ε

∥∥
L∞(0,∞)

6 Nε0, (77)

where N is a constant independent of d̃ε , and d1 �
s

d2 denotes the

s-concatenation of d1 and d2. Since ‖eA t‖6 e−a/2t , then from
(75), (76) and (77),∥∥∥∥( α(·, t)

β (·, t)

)∥∥∥∥
H
6e−a/2t

∥∥∥∥( α(·,0)
β (·,0)

)∥∥∥∥
H

+Ct0e−a/2(t−t0)
∥∥d̃ε

∥∥
L∞(0,t0)

+Nε0. (78)

With arbitrariness of ε0, the proof is completed.

By equivalence between the transformations (5) − (6) and
(13)− (14), we summarize our closed-loop construction in the
following main theorem.
Theorem 3. Suppose that d and ḋ are uniformly bounded mea-
surable, then for any initial data (u(·,0),v(·,0))T ∈ H, there
exists a unique solution

(u(·, t),v(·, t))T ∈C([0,∞);H) (79)

to the following closed-loop system:

ut(x, t) =−ε1(x)ux(x, t)+ c1(x)v(x, t) (80)
vt(x, t) = ε2(x)vx(x, t)+ c2(x)u(x, t) (81)
u(0, t) = qv(0, t) (82)
v(1, t) =U(t)+d(t) (83)

˙̂yε(t) = y2(t)+
1
ε
(y1(t)− ŷε(t)) (84)

˙̂dε(t) =
1

4q2ε2 (y1(t)− ŷε(t)), (85)

where the control is

U(t) =
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ − d̂ε(t),

(86)

and

y1(t) =
∫ 1

0

2q2(1+ x)
ε2(x)

x
(

v(x, t)−
∫ x

0
Kvu(x,ξ )u(ξ , t)dξ

−
∫ x

0
Kvv(x,ξ )v(ξ , t)dξ

)
dx, (87)

y2(t) =−2q2
∫ 1

0
(1+2x)

(
v(x, t)−

∫ x

0
Kvu(x,ξ )u(ξ , t)dξ

−
∫ x

0
Kvv(x,ξ )v(ξ , t)dξ

)
dx. (88)

Moreover, the solution tends to any arbitrary vicinity of zero as
t→ ∞,ε → 0.

5. NUMERICAL SIMULATIONS

5.1 Example 1

Consider the system (1) − (4) with ε1(x) = 0.1, ε2(x) =
0.2, c1(x) = 0.03, c2(x) = 0.04, q = 1/4 and disturbance
d(t) = 10sin t. Set initial data u(x,0) = 5

2 (1− x), v(x,0) =
10(1− x).

Take the time length, steps of time and space as 50, 0.01 and
0.01, then open-loop response and and closed-loop response
with ADRC (choosing ε = 0.001) of the (u,v)T−system are
shown in Fig. 1 and Fig. 3, respectively. The control kernel
functions Kvu(1,ξ ),Kvv(1,ξ ) are depicted in Fig. 2. Also,
for the closed-loop (u,v)T−system with SMC (choosing K =
20), a figure very similar to Fig. 3 is obtained, which is not
shown here due to the page limit. As can be seen from these
figures, the designed ADRC, as well as SMC, has stabilized the
(u,v)T−system to very small vicinities of zero.
Remark 4. From the above simulation results, it’s worth noting
that the first order SMC designed in Tang and Krstic (2014)
exhibits a non-chattering character and could achieve satisfac-
tory results as well as ADRC. However, if we set the time step
to be bigger (0.05), a figure very similar to Fig. 3 is obtained
for the closed-loop (u,v)T−system with ADRC, while Fig. 4
is obtained for that with SMC. Thus, considering SMC’s higher
requirement to integrators than ADRC, ADRC is a better choice
than SMC.

5.2 Example 2

Consider the system (1)− (4), where system parameters, dis-
turbance and initial data are chosen to be the same as those in
Example 1 except that c1(x) = 0.3, c2(x) = 0.4.

Take the time length, steps of time and space as 50, 0.01 and
0.01, then open-loop response and and closed-loop response
with ADRC (choosing ε = 0.001) of the system are shown
in Fig. 5 and Fig. 7, respectively. The control kernel functions
Kvu(1,ξ ),Kvv(1,ξ ) are depicted in Fig. 6. If choosing K = 20,
a figure very similar as Fig. 7 is obtained for the closed-loop
system with SMC. Thus, although the open-loop system blows
up, ADRC, as well as SMC, has still successfully stabilized
them.
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(a)

(b)

Fig. 1. Simulation results for open-loop (u,v)T−systems (time
step=0.01, space step=0.01)
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