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Abstract: In this paper, the objective is to obtain an estimate of a particular module embedded
in a dynamic network using noisy measurements of the internal variables. This is an extension
of the errors-in-variables (EIV) framework to the case of dynamic networks. The consequence of
measuring the variables with noise is that the prediction error identification methods no longer
result in consistent estimates. The method proposed in this paper is based on a combination of
the instrumental variable approach and closed-loop prediction-error identification methods.

1. INTRODUCTION

Systems in engineering are becoming more complex and
interconnected. Consider for example, power systems,
telecommunication systems, flexible mechanical structures
and distributed control systems. Models of these net-
works are important either for prediction, simulation or
controller design. Fortunately sensors are becoming more
ubiquitous and cheaper with the result that data can
be collected from many variables in an interconnected
dynamic network. Often the interconnection structure of
the network is known, and the objective is to obtain an
estimate of a particular module embedded in the network.

In many identification methods, the inputs are assumed to
be measured without sensor noise [Ljung, 1999]. Moreover,
if there is sensor noise on the inputs, the methods do
not lead to consistent estimates. When sensors are used
to measure the inputs, sensor noise is unavoidable and
often not negligible. In this paper the following question
is addressed: under what conditions is it possible to
consistently identify a particular module that is embedded
in a dynamic network when only noisy measurements of
the internal variables of the network are available? This
is an extension of the so-called Errors-in-Variables (EIV)
framework to the case of dynamic networks.

The open loop EIV problem has been extensively studied
(see the survey papers Söderström [2007, 2012]). The main
conclusion in these papers is that prior knowledge about
the system or a controlled experimental setup is required
to ensure consistent estimates. In Söderström and Hong
[2005] and Schoukens et al. [1997] it is shown that using
periodic excitation or repeated experiments it is possible
to consistently estimate the plant in an open loop setting.
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The main idea behind our method is as follows. In a
roughly similar vein to Söderström and Hong [2005],
instead of using repeated experiments, additional (noisy)
measurements generated by the dynamic network are used
to deal with the sensor noise. We extend the results of
Van den Hof et al. [2013] where it is shown that if noise
free measurements of internal variables are known then
consistent estimates of a module embedded in a network
are possible to the case where only noisy measurements of
the internal variables are available. The method proposed
in this paper is based on a combination of the instrumental
variable (IV) and prediction error identification lines of
reasoning. It can be cast as a generalization of the IV
method using a one-step-ahead predictor model with a
Box-Jenkins model structure.

In Section 2 dynamic networks, prediction error iden-
tification and instrumental variable methods are briefly
presented. In Section 3 the main results are presented.

2. BACKGROUND

In this section dynamic networks are formally defined, then
prediction error identification and the basic closed-loop
Instrumental Variable (IV) Method are presented.

2.1 Dynamic Networks

The networks considered in this paper is based on Van
den Hof et al. [2013]. A dynamic network is built up of L
elements (or nodes), related to L scalar internal variables
wj , j = 1, . . . , L. Each internal variable can be written as:

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (1)

where G0
jk, k ∈ Nj is a proper rational transfer function,

q−1 is the delay operator q−1wj(t) = wj(t− 1) and,
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• Nj is the set of indeces of internal variables with
direct causal connections to wj , i.e. k ∈ Nj iff G0

jk 6=
0;
• vj is process noise, that is modeled as a realization of

a stationary stochastic process with rational spectral
density: vj = H0

j (q)ej where ej is a white noise
process, and H0

j is a monic, stable, minimum phase
transfer function;
• rj is an external variable that is known to the user,

and can be manipulated by the user.

It may be that the disturbance and/or external variables
are not present at some nodes. The network is defined by:

w1

w2

...
wL

=


0 G0

12 · · · G0
1L

G0
21 0

. . .
...

...
. . . . . . G0

L−1 L

G0
L1 · · · G0

L L−1 0



w1

w2

...
wL

+


r1
r2
...
rL

+


v1
v2
...
vL

,
where G0

jk is non-zero if and only if k ∈ Nj for row j,
and vi (or ri) is zero if it is not present. Using an obvious
notation this results in the matrix equation:

w(t) = G0(q)w(t) + r(t) + v(t) (2)
Each internal variable is measured with some noise:

w̃k(t) = wk(t) + sk(t)
where w̃k denotes the measurement of wk, and sk is sensor
noise, which is represented by a stationary stochastic
process with rational spectral density (sk is not necessarily
white noise).

There exists a path from wi to wj if there exist integers
n1, . . . , nk such that G0

jn1
G0
n1n2
· · ·G0

nki
is non-zero.

The following assumption will hold throughout the paper.
Assumption 1. General Conditions.

(a) The network is well-posed in the sense that all princi-
pal minors of limz→∞(I −G0(z)) are non-zero.

(b) (I −G0)−1 is stable.
(c) All process noise vk, k∈{1, . . . , L} are uncorrelated to

all sensor noise s`, `∈{1, . . . , L}. 1

2.2 Prediction Error Identification

In this section some key results of the prediction error
identification method are presented. See Ljung [1999] for
more details. Let wj denote the variable which is to be
predicted. The predictor inputs are those variables that are
used to predict wj . The set Dj is used to denote the set of
indeces of the measurements that are chosen as predictor
inputs, i.e. w̃k is a predictor input iff k ∈ Dj . The one-
step-ahead predictor for wj is [Ljung, 1999]:

ŵj(t|t− 1, θ) = H−1
j (q, θ)

∑
k∈Dj

Gjk(q, θ)w̃k(t)

+
(

1−H−1
j (q, θ)

)
w̃j(t) (3)

where Hj(q, θ) is a (monic) noise model and Gjk(q, θ),
k ∈ Dj are module models. The prediction error is:

1 uncorrelated in the sense that the the cross-correlation function
Rvks` (τ) is zero for all τ .

εj(t, θ) = w̃j(t)− ŵj(t|t− 1, θ)

= Hj(q, θ)−1
(
w̃j(t)−

∑
k∈Dj

Gjk(q, θ)w̃k(t)
)
. (4)

Usually the parameterized transfer functions Gjk(θ), k ∈
Dj , and Hj(θ) are estimated by minimizing the sum of
squared (prediction) errors. Let θ̂N denote the estimated
parameter vector. If θ̂N → θ0 as N →∞ with probability
1, then the obtained estimates are consistent.

When analyzing the consistency of a method, a notation
common in the prediction error literature is:

Ē[ · ] = lim
N→∞

1
N

N−1∑
t=0

E[ · ]

where E denotes the expected value operator.

The method presented in this paper is based on a combina-
tion of the prediction error method and the instrumental
variable philosophy. Thus, the instrumental variable tech-
nique is briefly presented in the next section.

2.3 Closed Loop Instrumental Variable Methods

The instrumental variable method is well suited to closed-
loop identification because it makes effective use of the
reference signal to deal with the problem that the input
to the plant is correlated to the noise on the output (due
to the feedback) [Gilson and Van den Hof, 2005]. We will
focus our attention on the Basic Closed-Loop Instrumental
Variable (BCLIV) method of Gilson and Van den Hof
[2005]. A closed-loop data generating system is:

w2 = G0
21w1 + v2, (5a)

w1 = G0
12w2 + r1. (5b)

where there is no sensor noise. The objective is to obtain
a consistent estimate of G0

21. Consider an ARX model
structure, i.e. the module transfer function G21(θ) is
parameterized as [Ljung, 1999]:

G21(θ)=
B21(θ)
A21(θ)

=
q−nk(b210 + · · ·+ b21nb

q−nb)
1 + a21

1 q
−1 + · · ·+ a21

na
q−na

(6)

and the noise model is parameterized as H2(θ) = 1
A21(θ)

.
From (4) the prediction error is:

ε2(t) = A21(q, θ)w2(t)−B21(q, θ)w1(t)
= w2(t)− φT21(t)θ21 (7)

where θ21 = [a21
1 · · · a21

na
b210 · · · b21nb

]T and

φT21(t)=[−w2(t−1) · · · −w2(t−na) w1(t) · · · w1(t−nb)].

The BCLIV method is defined by the following algorithm.
Algorithm 1. Objective: obtain an estimate of G0

21.

1. Choose r1 as the instrumental variable. Let z = r1.
2. Choose an ARX model structure and construct the

prediction error (7).
3. Find a solution to the set of equations

1
N

N−1∑
t=0

εj(t, θ)z(t−τ)=0, for τ=0, . . . , na+nb (8)

In Step 3 of Algorithm 1 a solution to a set of equations
must be found. From (7) it follows that this solution can
be found by linear regression.
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Proposition 1. (BCLIV [Gilson and Van den Hof, 2005]).
Consider the closed-loop system (5) that satisfies Assump-
tion 1. A consistent estimate of G0

21 can be obtained using
Algorithm 1 if the following conditions hold:

(a) Ē
[
φ(t) · [z(t) · · · z(t− na − nb)]

]
is nonsingular,

(b) Ē[v2(t) · z(t− τ)] = 0, ∀τ ≥ 0.
(c) The parameterization is chosen flexible enough, i.e.

there exists a θ such that G21(θ) = G0
21. 2

In the following section two methods are presented for
identification in networks that can be cast as extensions
of the BCLIV method.

3. IV METHOD EXTENDED TO DYNAMIC
NETWORKS AND SENSOR NOISE

Recall, the objective considered in this paper is to obtain
an estimate of a module, G0

ji, embedded in a dynamic
network using noisy measurements of the internal vari-
ables. This section is structured as follows: first a method
is presented that is a straight-forward extension of the
BCLIV method. For this method not all internal variables
w`, ` /∈ Dj ∪ {j} are candidate instrumental variables.
Subsequently, a method is presented for which all internal
variables w`, ` /∈ Dj ∪ {j} are candidate instrumental
variables. The key difference in the second method is
that a Box-Jenkins model structure is used instead of an
ARX model structure. This change is in line with closed-
loop identification reasoning where is it well known that
consistent estimates are possible if the noise is correctly
modelled [Forssell and Ljung, 1999].

Throughout the paper it is always important to choose
instrumental variables that are correlated to the predictor
inputs. The presence of a correlation is key to any IV
method (in Proposition 1 it ensures that Condition (a)
holds). The following lemma presents conditions that
ensure two internal variables are correlated.
Lemma 2. Consider a dynamic network (2) that satisfies
Assumption 1. Two internal variables w` and wk are
correlated if one (or more) of the following conditions hold:

(a) There is a path from w` to an wk.
(b) There is a path from wk to w`.
(c) There is a variable wn, n 6= `, k, such that there are

paths from wn to w` and wn to wk. 2

The proof can be found in Appendix A.

To extend the BCLIV method to be able to use it in
dynamic networks, a multiple input, single output ARX
model structure must be used. In this case, the modules
and noise model are parameterized as:

Gjk(q, θ) =
Bjk(q, θ)
Aj(q, θ)

, and Hj(q, θ) =
1

Aj(q, θ)
, (9)

for all k ∈ Dj , where all modules have the same denomi-
nator. From (1), wj can be expressed using modules with
a common denominator as follows:

wj(t) =
1

A0
j (q)

∑
k∈Nj

B̆0
jk(q)wk(t) + vj(t)

where
A0
j (q) =

∏
n∈Nj

A0
jn(q) and B̆0

jk(q) =
∏

n∈Nj\k

B0
jk(q)A0

jn(q).

From (4) and (9) the prediction error is:

εj(θ) = Aj(q, θ)w̃j −
∑
k∈Dj

Bjk(q, θ)w̃k(t)

= w̃j(t)−
[
φTk1(t) · · · φTkn

(t) φTj (t)
]
θ

= w̃j − φT (t)θ. (10)

where φTki
(t) = [w̃ki(t) · · · w̃ki(t−nb)], {k1, . . . , kn} = Dj

and φTj (t) = [−w̃j(t− 1) · · · − w̃j(t− na)].

Consider the following algorithm which can be used to
obtain a consistent estimate of G0

ji.

Algorithm 2. Objective: obtain an estimate of G0
ji.

1. Choose a measurement w̃` where ` /∈ Nj ∪ {j} or an
external variable rm to use as the instrumental variable.
The instrumental variable and wi must be correlated
(i.e. at least one of the conditions of Lemma 2 must
hold). Let z denote the variable chosen as instrumental
variable.

2. Choose the set of predictor inputs, Dj , as follows:
k ∈ Dj iff k ∈ Nj and at least one of the conditions
of Lemma 2 is satisfied for wk and z.

3. Choose an ARX model structure and construct the
prediction error (10).

4. Find a solution to the set of equations

1
N

N−1∑
t=0

εj(t, θ)z(t− τ) = 0, for τ = 1, . . . , nθ, (11)

where nθ is the number of parameters in the model.

This algorithm is very similar to that of the BCLIV
(Algorithm 1). Only Steps 1 and 2 are more involved
due to the increased complexity of a network vs. a closed
loop. In Step 2 of Algorithm 2 only those variables wk,
k ∈ Nj that are somehow correlated to the instrumental
variable z are included as predictor inputs. In the following
proposition the conditions that ensure Algorithm 2 results
in consistent estimates of G0

jk are presented.
Proposition 3. Consider a dynamic network as defined in
Section 2.1 that satisfies Assumption 1. Let z denote the
variable w̃` or r` chosen as the instrumental variable. A
consistent estimate ofG0

ji can be obtained using Algorithm
2 if the following conditions hold:

(a) If vj is present, then there is no path from wj to z
(b) Ē

[
φT (t)[z(t) · · · z(t − nθ)] is nonsingular, where φ(t)

is defined in (10).
(c) If z = w̃`, then the sensor noise s` is uncorrelated to

all sk , k ∈ Dj .
(d) The process noise variable vj is uncorrelated to all vn

with a path to wj .
(e) The parameterization is flexible enough, i.e. there

exists a θ such that Gjk(q,θ)=G0
jk(q), ∀k∈Dj . 2

Condition (b) is a condition on the informativity of the
data. Condition (a) puts a restriction on which internal
variables are candidate instrumental variables. Depending
on the interconnection structure, there may be no candi-
dates. Condition (a) does not put a restriction on which
external variables are candidate instrumental variables
since, by definition there is never a path from any internal
variable to an external variable. Thus all external variables
are candidate instrumental variables irrespective of the
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interconnection structure. The idea is illustrated in the
following two examples.

G0
21 G0

32

G0
23

w1

s1

w̃1

w2

s2

w̃2

s3

w̃3

v1 v2 v3

w3

(a)

G0
21 G0

32 G0
43

G0
14

w1

s1

w̃1

w2

s2

w̃2

w3

s3

w̃3

w4

s4

w̃4

v1 v2 v3 v4

(b)

Fig. 1. Closed loop data generating systems

Example 1. Consider the data generating system shown in
Fig. 1a. Suppose that the objective is to obtain a consistent
estimate of G0

32. Thus, {j} = {3}, and N3 = {2}. The only
choice for the instrumental variable that satisfies Step 1 of
Algorithm 2 is z = w̃1. Since there is no path from w3 to
w1, Condition (a) of Proposition 3 holds. Thus, consistent
estimates of G0

32 are possible using Algorithm 2. 2

Example 2. Consider the data generating system shown in
Fig. 1b. Suppose that the objective is to obtain a consistent
estimate of G0

32. In this case it is not possible to satisfy
Condition (a) of Proposition 3. 2

In the following text a method is presented that can be
used when Condition (a) of Proposition 3 does not hold.

The main reason that a feedback path from wj to the
instrumental variable wi causes a problem is because
then the projections of the predictor inputs onto the
instrumental variable are correlated to the output noise.
This is equivalent to the closed-loop identification problem
where the plant input is correlated to the output noise.
From the closed-loop identification literature, there are
several methods to deal with this correlation that is
induced by feedback [Forssell and Ljung, 1999, Van den
Hof et al., 2013]. One method, called the Direct Method,
deals with the problem by exactly modeling the noise.
In the following text it is shown that this idea can be
extended to the IV framework, so that measured variables
that are part of a loop containing wj can be used as
instruments. Note that the idea is to exactly model the
process noise term vj , and not the sensor noise (or a
sum of the two). The sensor noise is dealt with using the
instrumental variable.

To exactly model the noise, a Box-Jenkins model structure
is required. This amounts to the parameterization:

Gjk(q,θ)=
Bjk(q,θ)
Ajk(q,θ)

, k∈Dj and Hj(q,θ)=
Cj(q,θ)
Dj(q,θ)

, (12)

where Ajk(θ), Bjk(θ), Cj(θ), Dj(θ) are polynomials in q.
Algorithm 3. Objective: obtain an estimate of G0

ji.

1. Choose the set of predictor inputs as Dj = Nj .
2. For each w̃k, k ∈ Dj ∪ {j} choose a measurement w̃`,
` /∈ Dj∪{j} or external variable rm that will be used as
an instrumental variable. The chosen variable must be
correlated to wk (i.e. the chosen instrumental variable
and wk satisfy one of the conditions of Lemma 2).
Let Ij and Xj denote the sets of indeces of internal
and external variables respectively that are chosen as
instrumental variables.

3. Construct the vector of instrumental variables z(t) =
[w̃`1(t) · · · w̃`n(t) rm1 · · · rmd

], where {`1, . . . , `n} = Ij
and {m1, . . . ,md} = Xj .

4. Choose a Box-Jenkins model structure, (12), and con-
struct the prediction error (4).

5. Find a solution to the set of equations

1
N

N−1∑
t=0

ε(t, θ)z(t− τ) = 0, for τ = 1, . . . , nz, (13)

where nz ≥ nθ, the number of parameters in the model.

Note from Step 2 that card(Dj ∪ {j}) = card(Ij) +
card(Xj). Also note that predictor inputs and w̃j cannot
be chosen as instrumental variables, i.e. (Dj∪{j})∩Ij = ∅.
There are several differences in this algorithm as compared
to Algorithm 2. Firstly, a BJ model structure is used
instead of an ARX model structure. Consequently, the set
of equations in Step 5 are no longer linear in θ.

The second main difference that a set of instrumental
variables is used, instead of just one instrumental variable.
This is not a necessary choice, it is also possible to choose
fewer instrumental variables. However, since the equations
in (13) are no longer linear in θ, a condition to ensure
the data is informative becomes more complex with fewer
instrumental variables. Thus, we leave it for a future paper.
Proposition 4. Consider a dynamic network (2) that satis-
fies Assumption 1. A consistent estimate of G0

ji is obtained
using Algorithm 3 if the following conditions hold:

(a) Every w`, ` ∈ Ij is a function of only wj(t− d), d≥1.
(b) The cross-power spectral density matrix

ΦDZ(ω) =


Φwk1z1

(ω) · · · Φwk1zn(ω)
...

. . .
...

Φwkn−1z1
(ω) · · · Φwkn−1zn

(ω)
Φwjz1(ω) · · · Φwjzn

(ω)

 (14)

is full rank for all ω ∈ [−π, π] where {k1, . . . , kn−1} =
Dj , and zn is the nth element of the vector of instru-
mental variables z.

(c) Every sensor noise sk, k ∈ Dj ∪ {j} is uncorrelated to
every s`, ` ∈ Ij .

(d) The process noise variable vj is uncorrelated to all vm
with a path to wj .

(e) The parameterization is chosen flexible enough, i.e.
there exists a parameter θ such that Gjk(q, θ) =
G0
jk(q), ∀k ∈ Dj , and Hj(q, θ) = H0

j (q). 2

The proof can be found in the Appendix C. Condition
(a) is satisfied if there is a delay in the path from wj
to the instrumental variable w`. If there is no delay from
wj to w` then the condition can be satisfied by choosing
w`(t − 1) as the instrumental variable. Condition (b) is a
condition on the informativity of the data. By choosing
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the instrumental variables as in Step 2, it ensures that at
least there will not be any rows or columns of zeros in the
matrix ΦDI (i.e. each predictor input is correlated to at
least one instrumental variable).
Example 3. Consider again the situation of Example 2.
Choose, {j} = {3}, N2 = {2}, and I2 = {1, 4}. By
Proposition 4, consistent estimates of G0

32 are possible. 2

w1G0
17

w7 G0
21

w2 G0
32

w3

G0
26

G0
63

w6

G0
72

G0
24

w4

G0
45

G0
54

w5

G0
86

w8

G0
57

v1 v2 v3

v4

v5

v6v7

v8

Fig. 2. Example of a dynamic network. The measurements
of the internal variables are not shown. The labels
of the wis have been placed inside the summations
indicating that the output of the sum is wi.

Example 4. Consider the network shown in Fig. 2. Sup-
pose that the objective is to obtain a consistent estimate
of G0

21. Thus, {j} = {2}, and N2 = {1, 4, 6}. By Algorithm
3 the predictor inputs must be chosen as w̃1, w̃6, and w̃4

(D2 = N2 = {1, 6, 4}). Choose {w̃3, w̃5, w̃7, w̃8} as the
set of instrumental variables. By Proposition 4 consistent
estimates of G0

21 are possible using Algorithm 3. 2

4. CONCLUSION

In this paper a novel method is presented to obtain con-
sistent estimates of a module embedded in a dynamic net-
work using only noisy measurements of internal variables.
In future work Algorithm 3 will be extended to allow the
option to choose fewer instrumental variables.

Appendix A. PROOF OF LEMMA 2

The following lemma is used in the proof.
Lemma 5. Consider a dynamic network as defined in Sec-
tion 2.1 that satisfies Assumption 1. Let G0

mn be the
(m,n)th entry of (I −G0)−1. If there are no paths from n
to m then G0

mn is zero. 2

For a proof use Mason’s Rules [Mason, 1953], or see Van
den Hof et al. [2013]. Now follows the proof of Lemma 2.

Proof. The proof proceeds by showing that if none of the
expressions (a)-(c) hold, then w` and wk are uncorrelated.
First both w` and wk are expressed in terms of process
noise variables. Then Lemma 5 is used to prove the result.

Using the notation of Lemma 5, w` and wk can be
expressed in terms of only process noise terms:

w`(t)=
L∑
n=1

G0
`n(q)vn(t) and wk(t)=

L∑
n=1

G0
kn(q)vn(t). (A.1)

Consider the cross-correlation between w` and wk:
Rw`wk

(τ) = Ē[w`(t)wk(t− τ)] (A.2)

By Pareseval’s theorem and substituting (A.1) into (A.2):

Φw`wk
(z) =

L∑
n=1
n6=`,k

G0
`n(ejω)Φvk

(ω)G0
kn(e−jω)+

G0
`k(ejω)Φvk

(ω)G0
kk(e−jω) + G0

``(e
jω)Φvk

(ω)G0
k`(e

−jω)
By Lemma 5 if Condition (a) does not hold, G0

`m is zero.
Thus the first term of Φw`wm(z) is zero. Similarly, if
Condition (b) does not hold the second term is zero. If
Condition (c) does not hold then for each k ∈ {1, . . . , L} \
{i, j} either G0

`k or G0
mk is zero. Thus the third term of

Φw`wm
(z) is zero, concluding the proof.

Appendix B. PROOF OF PROPOSITION 3

Proof. Using (10) the asymptotic expression for the ob-
jective function (11) is:

Ē[ε(t)z(t−τ)]= Ē
[(
w̃j(t)−θTφ(t)

)
[w̃i(t) · · · w̃i(t−nθ)]

]
Let x(t) = [w̃i(t) · · · w̃i(t− nθ)]. Then, by solving the set
of equations (11) for τ = 1, . . . , nθ, θ can be expressed:

θT = Ē[w̃j(t)x(t)]
(
Ē[φ(t)x(t)]

)−1

where Ē[φ(t)x(t)] is invertible by Condition (b). Express-
ing w̃j in terms of φ results in:

θT=θ0
T

+Ē[A0
j (q)

(
vj(t)+sj(t)

)
x(t)]

(
Ē[φ(t)x(t)]

)−1
(B.1)

where θ0 is the parameter vector of the data generating
system (Condition (e)). Thus, it must be shown that the
second term of (B.1) is zero.

By Condition (c) the term involving sj is zero. By the
following reasoning, Condition (a) ensures that the term
involving vj in (B.1) is also zero. Using the notation of
Lemma 5, express wi in terms of v:

wi =
L∑
k=1

G0
nkvk.

Since there is no path from wj to wi, by Lemma 5 G0
ij is

zero. Thus, wi(t− τ) is not a function of vj , and so (B.1)
reduces to θT = θ0

T

which proves the result.

Appendix C. PROOF OF PROPOSITION 4

Proof. First simplified expressions for εj and z are de-
rived. Then the two expressions are combined as

Rεz(τ) = Ē[ε(t, θ)z(t− τ)] (C.1)
which is the asymptotic expression of (13). It is shown that
this expression equals zero for τ ≥ 0 iff Gjk(θ) = G0

jk. For
notational simplicity we assume throughout the proof that
Xj = ∅. It is easily be extended to include non-empty Xj
Consider first an expression for the prediction error. Sub-
stitute the expressions for w̃j and w̃k into (4):

εj(θ)=H−1
j (θ)

(∑
k∈Nj

G0
jkwk+vj+sj −

∑
k∈Nj

Gjk(θ)(wk+sk)
)

=H−1
j (θ)

∑
k∈Nj

∆Gjk(θ)wk+ ∆Hj(θ)vj+ ej

+H−1
j (θ)

(
sj −

∑
k∈Nj

Gjk(θ)sk
)

(C.2)
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where ∆Gjk(θ)=G0
jk−Gjk(θ) and ∆Hj(θ)=H−1j (θ)−H0−1

j .

Now consider the expression for the instrumental vector:
z(t) = [w̃`1(t) · · · w̃`m(t)]

= [w`1(t) + s`1(t) · · · w`m(t) + s`m(t)] . (C.3)

In the following text, an expression for Rεz(τ) is derived
using (C.2) and (C.3) that is valid for all τ ≥ 0. Subse-
quently, this expression is used to prove the proposition.

No measurement chosen as an instrumental variable can
be a predictor input (Nj ∩ Ij = ∅ by the statement of the
algorithm). Thus, no sk that appears in the instrumental
variable vector z (C.3), will appear in the expression for
εj , (C.2). By Condition (c) the s terms can be eliminated
from (C.1) resulting in:

Ē[εj(t,θ) · z(t− τ)]= Ē
[(
H−1
j (q,θ)

∑
k∈Nj

∆Gjk(q,θ)wk(t)

+∆Hj(q, θ)vj(t)+ej(t)
)
·[w`1(t−τ) · · · w`m(t−τ)]

]
(C.4)

By Condition (a) each each w`, ` ∈ Ij is a function of only
delayed versions of vj (and thus delayed versions of ej).
Thus, Ē[ej(t) ·wn(t− τ)] = 0 for all τ ≥ 0 and ` ∈ Ij , and
so from (C.4) it follows that

Ē[εj(t,θ) · z(t− τ)]= Ē
[(
H−1
j (q,θ)

∑
k∈Nj

∆Gjk(q,θ)wk(t)

+ ∆Hj(q, θ)vj(t)
)
· [w`1(t−τ) · · · w`m(t−τ)]

]
. (C.5)

which holds for all τ ≥ 0. Using a vector notation (C.5)
can be expressed as:

Rεz(τ)= Ē
[
∆X(q,θ)T


wk1(t)

...
wkn(t)
vj(t)

·[w`1(t−τ) · · · w`m(t−τ)]
]

which holds for τ ≥ 0 and where

∆X(q, θ) =


H−1
j (q, θ)∆Gjk1(q, θ)

...
H−1
j (q, θ)∆Gjkn

(q, θ)
∆Hj(q, θ)


and {k1, . . . , kn} = Nj . The variable vj can be expressed
in terms of internal variables as:

vj = wj −
∑
k∈Nj

G0
jk(q)wk

and so
wk1(t)

...
wkn

(t)
vj(t)

=


1

. . .
1

−G0
jk1(q) · · · −G0

jkn
(q) 1



wk1(t)

...
wkn

(t)
wj(t)

 (C.6)

Denote the matrix in (C.6) as J0(q). Using this notation,

Rεz(τ)= Ē
[
∆X(q, θ)TJ0(q)


wk1(t)

...
wkn

(t)
wj(t)


·[w`1(t−τ) · · · w`m(t−τ)]

]
(C.7)

which is valid for all τ ≥ 0.

Now, first consider the ‘if’ statement. It must be shown
that if Gjk(q, θ) = G0

jk, for all k ∈ Nj and Hj(q, θ) = H0
j ,

then (C.1) holds. Let θ0 denote the particular parameter
vector such that Gjk(q, θ0) = G0

jk, for all k ∈ Nj , and
Hj(θ0) = H0

j . Thus ∆Gjk(θ0) = 0 and ∆Hj(θ0) = 0.
From (C.7) it follows that at θ0,

Ē[εj(t, θ0) · z(t− τ)] = 0, ∀τ ≥ 0.

Now consider the ‘only if’ statement. It must be shown
that if (C.1) holds, then Gjk(θ) = G0

jk, for all k ∈ Nj and
Hj(θ) = H0

j . Since Rεz(τ) = 0 for all τ ≥ 0, it follows that

Rεz(τ)RTεz(−τ) = 0, ∀τ.
Thus the following equation also holds

∞∑
τ=−∞

Rεz(τ)RTεz(−τ) = 0.

Taking the Fourier Transform of both sides results in
1

2π

∫ π

−π
Φεz(ejω)ΦTεz(e

−jω)dω = 0. (C.8)

Finally, substitute (C.7) into (C.8):
1

2π

∫ π

−π
∆X(ejω, θ)J0(ejω)ΦDI(ejω)

· ΦTDI(e−jω)J0T

(e−jω)∆XT (e−jω, θ)dω = 0, (C.9)
where ΦDI(ejω) is defined in (14). By Condition (b) it is
full rank for all ω ∈ [−π, π]. Moreover, by (C.6), the matrix
J0(ejω) is also full rank for all ω ∈ [−π, π]. Consequently,

J0(ejω)ΦDI(ejω)ΦTDI(e
−jω)J0T

(e−jω)
in (C.9) is positive definite ∀ω ∈ [−π, π]. Thus the only
way (C.9) can hold is if ∆X(ejω, θ) = 0 ∀ω ∈ [−π, π]. 2
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