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Abstract: This paper presents a preliminary study of performance limitations that arise in the
closed-loop control of blood glucose, using an autonomous artificial pancreas. It is shown that a
major source of limitations is due to model uncertainty, specifically due to the combined effect of
the insulin infusion system (IIS), the continuous glucose monitor (CGM) and the human glucose
regulatory system. It is argued that the uncertainty associated with each of these elements
compromises the achievable closed-loop bandwidth, and, in the presence of disturbances, e.g.
meal intake and exercise, the closed-loop response will necessarily be poor. A proposition to
overcome this problem is given based on feedforward action.
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1. INTRODUCTION

Diabetes is a major health issue in the world. For exam-
ple, 8% of the USA population are affected by this disease.
Moreover, the incidence of diabetes, as a percentage of
the world population, is rapidly growing especially in de-
veloping countries. Whilst diabetes can be managed, the
treatment is extremely invasive. Hence, there has been a
major worldwide effort aimed at developing an artificial
pancreas to provide closed loop control of blood glucose
concentration. The ultimate goal is to have a system that
requires minimal patient intervention. Although important
progress has been made, a fully operational autonomous
closed loop system is, as of yet, unavailable.

Because of the massive impact of diabetes, there has been
a significant effort aimed at developing and comparing
different control architectures. This effort is accompanied
by claims and counter claims regarding which strategy is
best. In this paper, we adopt a different point of view and
ask, “What are the fundamental limitations that underly
blood glucose control and how can they be addressed?” We
believe that this approach has several merits, including (i)
understanding the fundamental limitations underlying all
control strategies aimed at this problem and (ii) pointing
to areas where additional research effort would have the
biggest impact.

Diabetes results in inadequate release of insulin. Hence,
external insulin analogues must be provided to restore
glucose homeostasis. To achieve this, blood glucose must
be monitored to ensure that the correct amount of insulin

is injected, at appropriate times, to avoid both hypogly-
caemia (excessively low glucose concentration) and hyper-
glycaemia (excessively high glucose concentration). The
former is particularly dangerous as it can lead to coma
and even death.

Many of the regulation techniques currently in use are
dependent upon patient intervention. This can be a dif-
ficult task in the face of unpredictable glucose excursions
caused by the variability of the system especially after the
ingestion of food or the onset of exercise. For example, the
efficacy of a pre-meal insulin bolus is highly dependent on
the correct estimation of meal carbohydrate content (Ryan
et al., 2008) and on estimating the correct time for the
infusion (Scaramuzza and Iafusco, 2010). Hence, there has
been a major international research effort directed at the
development of a system, loosely called artificial pancreas,
which interconnects a continuous glucose measurement
(CGM) and an insulin infusion system (IIS) to achieve
autonomous glucose regulation.

An artificial pancreas consists of three main components,
all of which are actively under research and development:

(1) An insulin pump (actuator)
(2) A control algorithm
(3) A blood glucose monitor (sensor)

The prime focus of the current paper relates to the control
algorithm. We argue that the actuator and sensor dynam-
ics and limitations are an integral part of the problem and
hence the control algorithm has to be designed with their
characteristics in mind.
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The available literature contains a vast array of ideas
that have been proposed as candidates for the control
algorithm (Santiago et al., 1978; Fischer et al., 1987; Steil,
2004; Bequette, 2005; Steil and Rebrin, 2005; Hovorka,
2006; Klonoff et al., 2009; Harvey et al., 2010; Lunze et al.,
2013). Some of the algorithms under study include:

• PI/PID (with/without feedforward)
• Linear/Nonlinear MPC
• Periodic Control (run-to-run)
• Fuzzy control

Several studies have compared different control strategies.
For example, a very recent paper (Luijf et al., 2013) has
compared two versions of MPC algorithms (Soru et al.,
2012; Patek et al., 2012) against patient self management
(open loop). However, an inherent difficulty is that the to-
tal set of available strategies are often implemented under
different conditions. Hence it is difficult to draw definitive
conclusions. Moreover, it has been reported (Luijf et al.,
2013) that MPC performs marginally better than manual
patient control in terms of mean square tracking error but
has the major advantage of reducing the proportion of
hypoglycaemic events from 6% to 2%.

In the current paper we will pursue a different point of
view. In particular, we will address the issue of funda-
mental limitations that apply to the artificial pancreas
problem. We point to limitations that transcend the choice
of any particular control strategy. Our motivation is two-
fold, namely

(1) to gain an understanding of the key issues which limit
achievable performance,

(2) point to areas where additional research efforts might
have the biggest impact.

The layout of the remainder of the paper is as follows:
Section 2 describes the sources of limitations in artifi-
cial pancreas. Section 3 describes a realistic, yet simple,
model of the blood glucose regulation system, including
actuator and sensor dynamics. Section 4 presents a lin-
earised form of the model. Section 5 develops insights into
the fundamental performance limitations that arise from
model uncertainty. Section 6 proposes remedial solutions.
Section 7 explores the use of feedforward MPC. Section 8
draws conclusions.

2. FUNDAMENTAL LIMITATIONS DUE TO MODEL
UNCERTAINTY IN ARTIFICIAL PANCREAS

A central theme in the current paper is that of fundamen-
tal limitations. In this context, it is relevant to point to
the extensive literature that exists on this topic in the
systems and control area, see for example Seron et al.
(1997). Indeed, it has been a source of major research effort
over the past five decades.

An admittedly simplified summary of the fundamental
limitations literature is given below. One way of think-
ing about the control problem is that of constructing
an inverse for the system. Hence fundamental limitations
are typically ascribable to inherent difficulties involved in
building an inverse (Goodwin et al., 2001). Not surpris-
ingly, pure delays and (multivariable) non-minimum phase
zeros are recurring themes in the fundamental limitations

literature. Unstable poles are also important since those
cannot be cancelled by the controller leading to the need
for interpolation constraints. Another source of limitations
is model uncertainty, which again inhibits finding a single
inverse that applies to all possible models.

In the artificial pancreas problem, model uncertainty is
the major source of limitations. Specifically, relative model
errors directly translate into relative response errors. This
places a lower limit on the achievable response time and
hence, on the achievable performance. Importantly, note
that these limitations are unavoidable and have nothing
to do with the specific control algorithm.

For the sake of simplicity, we distinguish three components
in the closed-loop control system of blood glucose, namely:

• The actuator, including the insulin pump and the
transportation of insulin from the injection point to
the blood stream.

• The blood glucose system, including the biomechanics
that link insulin that appear in the plasma to the
glucose response.

• The sensor, including the glucose transportation dy-
namics to the tissue and the sensor dynamics. It is
assumed that a continuous glucose monitor is used in
the artificial pancreas.

An important observation in the context of the current
paper is that each of the aforementioned components has
major model uncertainty. For example,

• The action of the insulin pump can depend on a host
of factors. From anything like positioning and angle
of insertion of the needle to air pressure changes that
modify the way the tissue absorbs the insulin (King
et al., 2011).

• There exists extremely high inter and intra patient
variability that affect the dynamics of glucose regula-
tion. These dynamics are also affected by stress and
mood. There are also external disturbances such as
food and exercise.

• Continuous glucose monitors usually have their own
correction algorithms embedded, which are not pub-
licly available, i.e. the reading is actually a filtered
version of the actual measurement. In addition, they
need to be periodically calibrated and even body
movement can affect the resulting measurement.

Clearly, model uncertainty is a crucial factor in each
component. Our goal in the current paper is to raise the
issue of unavoidable limitations and present a preliminary
study of how these limitations can be addressed in an
artificial pancreas.

We will use a linear model for each of the components
described above. The use of a nonlinear model is unlikely
to improve the situation since the inherent variability
of the parameters also applies in the nonlinear case.
Thus nonlinear models give additional insight into the
underlying dynamics but do not reduce the inter and intra
model variability which arises due to other factors.

3. TYPE 1 DIABETES MODEL

In this section we describe a simple, yet realistic model.
The model was presented in Kanderian et al. (2009) and
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is based on Bergman’s minimal model (Bergman, 2005).
One advantage of such a model, in the current context, is
that Kanderian et al. (2009) reports the identified param-
eters for a set of subjects, including intraday variability
for some of them (see Table 1), hence providing a realistic
framework for the characterisation of the uncertainty.

3.1 Actuator:

The following are the associated actuator dynamics:

dISC(t)

dt
= − 1

τ1
· ISC(t) +

1

τ1
· ID(t)

Cl
(1)

dIp(t)

dt
= − 1

τ2
· Ip(t) +

1

τ2
· ISC(t) (2)

where

• ISC(t): subcutaneous insulin concentration
• Ip(t): plasma insulin concentration
• ID(t): subcutaneous insulin delivery (input)
• τ1 [min], τ2 [min]: time constants
• Cl [ml/min]: insulin clearance

3.2 Patient:

The following are the associated patient dynamics:

dIEFF (t)

dt
= − p2 · IEFF (t) + p2 · SI · Ip(t) (3)

dG(t)

dt
= − (GEZI + IEFF(t))G(t) + EGP +RA(t)

(4)

where

• IEFF (t) [min−1]: insulin effect on plasma glucose
• G(t) [mg/dL]: plasma glucose
• RA(t) [mg/dL/min]: glucose rate of absorption from

meals (disturbance)
• SI [ml/µU ]: insulin sensitivity.
• GEZI [min−1]: glucose effect to increase glucose

uptake and lower endogenous glucose production at
zero insulin.
• EGP [mg/dl/min]: endogenous glucose production.

3.3 Sensor

The following are typical sensor dynamics:

dGISF (t)

dt
= − 1

τSEN
·GISF (t) +

1

τSEN
·G(t) (5)

where

• GISF (t): interstitial fluid glucose concentration.
• τSEN [min]: sensor time constant.

3.4 Food absorption

The following are the associated food absorption dynam-
ics:

RA(t) =
t · e−

t
τm

VG · τ2
m

· CH(t), t ≥ 0 (6)

where

• CH(t) = CHδ(t): where CH are the consumed carbo-
hydrates in [mg] and δ(t) is a unit impulse at t = 0.
• VG [dl]: distribution volume for glucose equilibria
• τm [min]: absorption peak time.

y(t)

  

u(t)

d(t)

E

g(t)
GA(s) GB(s)

Ip(t)

GD(s)

d̄(t)

BN

IEFF (t)
GP (s) GS(s)

Fig. 1. Block diagram of approximated model

3.5 Exercise

Exercise is also an important factor but is not included in
the above model. We will focus primarily on food distur-
bances but the core conclusions hold, mutatis mutandis,
when exercise is added to the problem.

4. MODEL APPROXIMATION

The model described in Section 3 is linear save for
equation (4). Assuming that G(t) is regulated close to
some nominal value Go, and IEFF (t) is regulated close
to IEFFo, then the equation can be linearised as follows:

dG(t)

dt
= AN ·G(t) +BN · IEFF (t) + EN +RA(t), (7)

where

AN = − (GEZI + IEFFo)

BN = −Go

EN = EGP + IEFFo ·Go

Also, we recognise equation (6) as the impulse response
of a simple double pole system where the pole is located
at −1/τm. With these observations, the model can be
represented in block diagram form as in Fig. 1.

In Fig 1, we use the notation,

• u(t): input (subcutaneous delivery rate)
• i(t): intermediate variable (rate of change of plasma

insulin concentration)
• d(t): disturbance (rate of consumed carbohydrates)
• E: constant (including EGP rate)
• g(t): performance variable (plasma glucose concentra-

tion)
• y(t): measured output (interstitial fluid glucose con-

centration)

In addition, GA, GB , GD, GP , GS are five linear transfer
functions which take the form:

GA =
kA

(τ1s+ 1)(τ2s+ 1)

GB =
SI

1/p2 · s+ 1
GD =

kD
(τms+ 1)2

GP =
1

(τ3s+ 1)
GS =

1

τSENs+ 1

The range of the original parameters is given in Table 1
(see Kanderian et al. (2009)). It is immediately evident
that there is a huge range in behaviour. We will argue
below that this variability renders high gain feedback
impossible.

5. INSIGHTS INTO PERFORMANCE LIMITATIONS

To gain insight into the effect of model uncertainty, we
represent each of the blocks in Fig. 1 as a first order lag.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2084



10
−3

10
−2

10
−1

10
0

0

0.5

1

1.5

2

Frequency [rad/s]

|
G

∆
(
j

ω
)
|

 

 

K=0.8 T=10

K=0.8 T=20

K=1.2 T=10

K=1.2 T=20

Fig. 2. Multiplicative Model Error G∆

We also assume that each transfer function has the same
nominal time constant of 30 [min] with a range from 10
to 50 [min]. We note that this is consistent with the
parameter variation given above. In the sequel, we focus
on the total relative model error defined by G∆ = (GT −
Go

T )/Go
T , where GT is the composite transfer function GA ·

GB ·GP ·GS and Go
T is its nominal value. Figure 2 shows

the magnitude of G∆ as a function of ω (in radians per
minute) for the extreme values of model uncertainty.

From robust control theory (Zhou and Doyle, 1998; Good-
win et al., 2001), we know that a sufficient condition for
robust stability is that the product of the closed loop
nominal complementary sensitivity function To, and G∆

should have magnitude less than one at all frequencies.
Indeed, a margin is required so that |ToG∆| should be
much less than 1, in our case, say 0.5 at all frequencies.
The closed loop bandwidth can also be defined (Goodwin
et al., 2001) as the frequency where the gain of To falls
below 0.7. Hence the bandwidth cannot be greater than
the frequency where |G∆| reaches 0.7. Based on the above
considerations, we see from Fig. 2 that the practical closed
loop bandwidth is limited to about 2 ·10−2 [rad/min]. We
also note that the nominal bandwidth of the disturbance
model is ωd = 1/30 = 3.3 · 10−2. Hence, any closed loop
controller that achieves robust stability for all possible
parametric variations can only eliminate the disturbance
up to about 2 [rad/min].

Remark 1. The reader may wonder why this poor perfor-
mance has resulted. The key issue is that the parametric
uncertainty, in all four transfer functionsGA, GB , GP , Gs,
means that high gain feedback cannot be used whilst
ensuring stability for all possible parametric values. The
situation would be very different if d̄(t) in Fig. 1 could be
measured. If this were possible, then high-gain feedback
could be used from d̄(t) to u(t) which would have a major
impact on the effect of the disturbance. However, the
additional uncertain phase shift introduced by GP and GS

makes this ideal result unachievable in practice.

6. POSSIBLE REMEDIES

6.1 Adaptive Control

One option to allow a greater achievable feedback band-
width would be to estimate the parameters appearing in
the model from online data obtained from each patient,
then the inter-patient variability could be eliminated. It is
clear that this strategy must be used to obtain a market-
ready artificial pancreas. However, here we will examine a
different strategy, namely feedforward MPC. Our aim is to
show that feedforward MPC could prove beneficial in its

Minimum Value Nominal Maximum Value

τ1 41 85 131
τ2 10 40 70

τSEN 10 15 20
p2 9.5 · 10−3 1.6 · 10−2 2.33 · 10−2

Cl 540 1250 2010
SI 9.64 · 10−5 9 · 10−4 1.73 · 10−3

EGP 0.6 2 3.45
GEZI 10−8 3.19 · 10−3 6.39 · 10−3

VG 104 220 337
τm 21 126 231

Table 1. Range of parameter values

own regard. The joint study of adaptive feedforward MPC
is left for future research.

6.2 Feedforward

Assume that a mechanism could be developed to make
an approximate estimate of the disturbance d. Then,
this signal would become available as an extra degree of
freedom in the design.

It is important how this extra degree of freedom is utilised.
One option would be to use d(t) as a “preview signal”
in a standard MPC algorithm. In this context, “preview”
denotes prior knowledge of current and future disturbances
over the optimisation horizon. However, this is not partic-
ularly beneficial since standard MPC uses only one cost
function, and hence, the bandwidth available for both
preview and feedback is limited by the need to achieve
robust stability for all possible parameter values. A key
observation in this regard is that, since feedforward in-
volves no signals that depend on the input, then there are
never stability issues arising from feedforward. This has
motivated recent work described in Carrasco and Goodwin
(2011) where a separate cost function is used for the feed-
back design and for the feedforward design. This enables a
much higher bandwidth to be utilised by the feedforward
component. We demonstrate the effectiveness of this idea
in the sext section.

7. ILLUSTRATING THE ADVANTAGES OF
FEEDFORWARD MPC

Here we utilise the linear model described in Section 4.
We map the parameter ranges quoted in Section 3 to the
equivalent parameters in the linear model – see Table 1.
We then consider all different combinations of the extreme
and nominal values of the parameters.

A linear observer was used to estimate the model states.
The poles of the observer were placed in the range
(0.8, 0.84). This yields an observer response time of ap-
proximately 20 minutes. The system was sampled with
period h = 1 [min]. Two designs were carried out based
on the nominal parameter values as follows.

7.1 Robust Feedback MPC

A robust MPC controller incorporating integral action was
designed so that, with a food bolus of 60 [g], the system
remains stable and the blood glucose concentration never
falls below 50 [mg/dL] for all possible parameter values.
Note that this is a reasonable lower limit to avoid the
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Fig. 3. Output Performance for nominal case

potentially catastrophic impact of hypoglycaemia. This
design will be referred to as MPC in the sequel.

Remark 2. Note that the MPC algorithm used in the
current study is based on a quadratic cost function.
In future work, it would be sensible to use a different
cost in the hypoglycaemic region to that used in the
hyperglycaemic region.

7.2 Feedforward MPC (FFMPC)

The ideas of Carrasco and Goodwin (2011) were used
to design a feedforward component, separate from the
feedback MPC previously designed. Based on the nom-
inal model, an MPC problem is solved for the feedfor-
ward component. The solution to this problem is then
fed to a separate robust MPC problem for the feedback
component. The feedforward controller is based only on
information of the nominal model and the disturbance,
whereas the feedback controller is based on steady state
reference values, estimated states from output informa-
tion, the nominal model, the disturbance and the control
input from the feedforward controller. The basic idea is
described in more detail in Carrasco and Goodwin (2011).
In the sequel, the design that includes a feedback and a
feedforward controller will be referred to as FFMPC.

For the example below, a very high bandwidth was as-
signed to the feedforward controller. On the other hand,
the feedback controller bandwidth was reduced so as to
achieve stability and satisfactory performance for all pos-
sible parameter values. Figure 3 shows simulated results
following a food bolus of 60 [g] at time t = 700 [min].
Figure 3 shows the output response of the nominal sys-
tem for both robust feedback MPC (FB: solid line),
FFMPC (FB+FF: dashed line) and No Control case (dash-
dot line), i.e. the control input was constant and set
to the steady state value corresponding to an output
of 70 [mg/dL]. Note that the robust MPC design is
marginally better than having no feedback controller. This
is due to the need to achieve stability for all parameter
values.

7.3 Performance quantification

To provide a quantitative performance comparison, Ta-
ble 2 presents the mean square error around a setpoint
of 70 [mg/dL]. The cases shown represent the nominal,
best, worst and average performance over all possible
combinations of the parameter values. The model used for
both the controller and the observer is always based on
the nominal parameters.

It can be seen from Table 2 that FFMPC provides an
improvement of at least 5:1 over MPC in the nominal and

Nominal Best Worst Average

No Control 169.8 11.4 14936.6 2284.9
MPC 164.4 11.6 19345.1 1882.6

FFMPC 33.8 1.8 22724.8 1829.3

Table 2. Mean Squared Error Performance
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Fig. 4. Cumulative Probability Distribution (zoomed)

best performance scenarios. Moreover, Table 2 shows the
FFMPC strategy provides, on average, an improvement in
performance.

Remark 3. Note that the robust MPC design used above
is “universal” in the sense that one controller is asked
to achieve stability and satisfactory performance for all
patients based on a single nominal model. Adaptation of
the type described in Section 6.1 would allow the nomi-
nal model to be tailored to each individual. This would
undoubtedly improve the performance, specially for the
extreme cases where the use of feedforward is detrimental.
However, variability in the total model would still exist
due to the actuator, sensor and intraday variability of the
patient. Thus we anticipate that feedforward would still
be of great benefit.

7.4 Probabilistic Analysis

Consider a uniform probability distribution on the set
of parameters variations, i.e. every combination of pa-
rameters has the same probability of being the real sys-
tem. We can then determine the corresponding cumulative
distribution of performance. The results are presented
in Figure 4, where three curves are shown, namely the
cumulative probability distribution when FFMPC, MPC
and No Control scenarios are considered. The plots should
be interpreted as follows: the pair (xo, yo) describes the
probability yo that a system will have performance equal
or better than xo, for any given curve. Note that Fig. 4 en-
compasses an ensemble of experiments rather than a single
experiment. We conclude from Figure 4 that, under uni-
form probabilistic uncertainty, feedforward provides better
performance than feedback in 90% of cases. Moreover, in
the remainder 10% of cases, the feedforward performance
is at least 1.5 times better than no control at all.

Remark 4. We have assumed a uniform distribution of
the parameters as a worst case scenario since any distribu-
tion that has a concentration around the nominal values,
e.g a normal distribution, will increase the performance
gain obtained by using feedforward.

7.5 Adding Constraints

The results shown above have not considered the effect
of constraints. It is sensible to expect certain degradation
in the control performance depending on the tightness of
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Upper Bound 106 2 · 105 5 · 104 4 · 104
No Control 16811.9 16811.9 16811.9 16811.9

MPC 14903.3 14903.3 14906.7 15908.4
FFMPC 974.0 3087.3 14079.6 15843.6

Table 3. MSE Performance with Constraints
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Fig. 5. Insulin delivery with constraints 0 < u(t) < 4 · 104

the constraints. We will examine the nominal case as an
illustration. Table 3 presents the achieved mean squared
errors as the upper bound on the input is lowered. Fig. 5
shows the input for the case 0 < u(t) < 4 · 104. It is
clear that the ability of the feedforward component to
improve on the regulation of blood glucose decreases as
tighter constraints are imposed.

8. CONCLUSIONS

This paper has presented a preliminary study of the fun-
damental limitations that arise in the feedback control
of blood glucose. The key conclusion is that, for realistic
variations in the model parameters of the actuator, plant
and sensor, then the achievable closed loop bandwidth is
severely restricted. On the other hand, feedforward control
does not suffer from this limitation. Thus feedforward
provides the potential for major performance improve-
ments. These ideas can also be used in a practical scenario,
with realistic constraints, by using newly developed ideas
of FFMPC, which combines high bandwidth feedforward
with the safety net of a robust feedback MPC controller.
Our core conclusion from this study is that a blood glucose
regulation system based on MPC, or indeed any control
algorithm, would be greatly enhanced by supplementing
other tools such as online parameter estimation and/or
feedforward. Of course, the key caveat in the case of
feedforward is that measurements of the disturbances, e.g.
food intake and exercise, need to be available. However,
we believe that the results presented in the current paper
provide a strong incentive to develop tools to make such
measurements available.
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