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Abstract: The contribution of this paper is the formulation of the wind farm power maximiza-
tion problem as a multi-stage dynamic programming problem. This formulation is made possible
by introducing a state-space model to describe the evolution of the wind velocity profile as a
function of the free-stream wind velocity and the wind turbine control variables. This state-space
model is coupled with a multi-stage utility function that quantifies the power to be maximized.
The benefits of this approach include: a simple algorithm to determine the turbine optimal
controls, as a feedback function of the wind farm state, and a rigorous, yet simple, method to
calculate the limit of performance for wind farm power maximization. A one-dimensional cascade
of wind turbines is used to illustrate the approach. Also given is an analytical expression for the
maximum power that can be extracted from the one-dimensional cascade, which parallels the
well-known Betz limit for a single turbine.

Keywords: Wind farm control, dynamic programming, performance limits.

1. INTRODUCTION

Wind farms are arrays of wind turbines that are electri-
cally and aerodynamically coupled. These arrays reduce
costs via economies of scale. The wakes that trail behind
upstream turbines can diminish the energy production
of downstream turbines and increase loading from tur-
bulence, Barthelmie and Khun (2009). U.S. wind farms
operating on land have generated 10% to 15% less energy
than anticipated, Barthelmie et al. (2009a,b), and have
operated less reliably than expected, van Bussel (2001,
2002). Advanced control algorithms have the potential to
increase annual energy production (AEP) and decrease the
cost of energy.

For high wind speed (Region 3) operation, the wind farm
operator distributes power demand to each turbine typ-
ically based on load reduction considerations, while for
medium to low wind speed (Region 2) operation, maximiz-
ing the total power produced by a wind farm is essential
for increasing the AEP. Maximizing the individual power
output for each turbine in an array does not imply maxi-
mization of the entire wind farm power output, Steinbuch
et al. (1988). This is primarily due to the wake interactions
among the upstream and downstream turbines, as well
as the impact of velocity deficit of individual turbines on
the efficiency of energy capture. With the ever increasing
penetration of wind energy, every percent increase in AEP
will lead to more and more benefit for utility sectors. It
is thus imperative to develop practical wind farm control
strategies that can maximize the wind farm power output
under various conditions.

Modeling and control strategies for wind farm power
optimization are active areas of research. Pao and Johnson
(2009) have provided a tutorial on the dynamics and
control of wind turbines and wind farms. In the literature

one may find both model-based and model-free strategies
for the control of wind farms.

Model-based solutions are found in the works of Schepers
and van der Pijl (2007), Johnson and Thomas (2009),
Knudsen et al. (2009), Spudic (2010), Madjidian et al.
(2011), Soleimanzadeh and Wisniewski (2011), Kristalny
and Madjidian (2011), Horvat et al. (2012), Biegel et al.
(2013), and Bitar and Seiler (2013). Most of this work
assumes that that the available wind power is greater than
the demand, and thus the control objective is to minimize
the cumulative load for all turbines while satisfying the
total power demand. Power maximization as the single
control objective is considered in Johnson and Thomas
(2009) and Bitar and Seiler (2013).

The actual wind field and turbine characteristics may
deviate from the nominal models in practice. This fact may
limit the effectiveness of model-based wind farm control.
There has been some recent work in model-free control
strategies for power optimization. Marden et al. (2013)
presented a game theory based cooperative control scheme
for maximizing the whole-farm power output. Park et
al. (2013) proposed different game theoretic approaches,
based on both non-cooperative and cooperative games.
More recently, Yang et al. (2013) proposed a nested-loop
extremum seeking control scheme for wind farm power
optimization.

We formulate the wind farm power maximization problem
as a dynamic program, Bellman (2003). This approach fa-
cilitates the reduction of a complex maximization problem
into a sequence of simpler optimization problems. Specif-
ically, for a problem with N turbines and m controls per
turbine, the maximization problem is reduced from a single
problem with Nm optimization variables to a sequence of
N problems with m variables each.
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Central to the dynamic programming (DP) framework for
wind farm optimization is a control-oriented physics-based
state-space model for the wind farm. In this model, the
wind velocity is taken to be the state, and the turbines
are viewed as actuators that shape the wind profile and
extract energy from it.

To illustrate the DP framework, we derive an analytical
solution of the wind farm optimization problem when the
power extraction of each turbine is modeled with the so-
called actuator disk model. The illustration is restricted to
a one-dimensional array as shown in Fig. 2. The solution
to this particular case has the following features:

• The optimal control for each turbine is a linear
feedback of the state, and the optimal wind farm
power is cubic in the free-stream wind speed.
• The optimal state-feedback gains and power output

are computed from a recursion reminiscent of the
Riccati difference equation of optimal control.
• The optimal efficiency of the wind farm increases

monotonically from the Betz limit for a single turbine
to an asymptotic efficiency of 66.66%.

Bitar and Seiler (2013) seem to be the first suggesting
dynamic programming for wind farm power maximiza-
tion. Our results have been developed independently of
the work in Bitar and Seiler (2013). We stress the role
played by the state (wind velocity) in the formulation of
the wind farm power maximization problem as a multi-
stage dynamic program. The DP algorithm is provided
without assumptions on the turbine’s power curves or
wake models. Our results, and those in Bitar and Seiler
(2013), provide theoretical justification for the nested-loop
extremum seeking control scheme in Yang et al. (2013).

2. STATE SPACE MODEL

Motivation for the choice of state variables comes from the
actuator disk model (ADM); Manwell et al. (2010) and
Burton et al. (2008). Figure 1 depicts a schematic for this
one-dimensional model for energy extraction. The ADM
can be used to estimate the power P extracted by an ideal
turbine rotor, the force F done by the wind on the ideal
rotor, and the effect of the rotor operation on the local
wind field. This latter effect is characterized by the air
velocity V at the disk and the velocity V1 in the far wake
of the rotor. The ADM is given by:

P = FV (1a)

F = ρA(V0 − V1)V (1b)

V = V0 − u (1c)

V1 = V0 − 2u (1d)

where V0 is the free-stream velocity upwind of the rotor,
and u ≥ 0 is the reduction in air velocity between the
free stream and the rotor plane. The air density and rotor
swept area are denoted by ρ and A, respectively. We may
think of u as the velocity deficit induced at the disk by the
rotor operation. This simple model is valid as long as u ≤
V0/2; otherwise V1 < 0, which is a contradiction. The wind
energy connoisseur may easily recognize these equations by
introducing the axial induction factor a defined by

a =
V0 − V
V0

. (2)

Fig. 1. Actuator disk model and stream-tube model for
energy extraction.

If the free-stream velocity V0 is given, the induced velocity
deficit u is the mechanism to adjust the velocities V and
V1, the force F , and hence the power P . Thus, it is natural
to think of u as the control input or variable. From (1c)
and (2) it follows that

u = aV0 (3)

which shows that the axial induction factor is the feedback
gain from the free-stream air velocity V0 to the control
input u.

The ADM may be written in state-space form by defining
the state variable xk as x0 = V0 for k = 0 and x1 = V1 for
k = 1. The result is

x1 = x0 − 2u (4a)

y = x0 − u (4b)

Equation (4a) is the state equation, which gives the evolu-
tion of the air velocity from the upstream location to the
down stream location. Equation (4b) is an output equation
to estimate the air velocity y = V at the rotor plane from
the initial state x0 and the control input u. Note that
this elementary state-space model is linear. The power
P = FV , where the force F and the velocity V are defined
in (1), is estimated from the control input u and the output
y using the formula

P = 2ρAy2u (5)

The state-space model (4) is valid if the constraint 0 ≤
u ≤ x0/2 holds.

Let us consider the cascade of wind turbines shown in
Fig. 2. The scalar variables xk and xk+1 are the air
velocity upstream and downstream of the k-th turbine,
respectively. The scalar control input for turbine k is
denoted by uk, and yk is an output used to estimate the
power of turbine k such as y = V for the ADM. We assume
that these variables satisfy the equations

xk+1 = f(xk, uk) (6a)

yk = h(xk, uk) (6b)

for k = 0, 1, . . . , N − 1, where x0 is given. The power Pk

extracted by turbine k is estimated according to

Pk = p(yk, uk). (7)

No restrictive assumptions are made on the functions f(·),
h(·), and p(·).
To illustrate this state-space formulation assume that, for
k = 0, . . . , N − 2, turbine k + 1 is in the far wake of the
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Fig. 2. Cascade of N turbines; k = 0 is the index of the
most upstream location.

upstream turbine k, and estimate power extraction using
the ADM model (1). Then, it follows that

f(xk, uk) = xk − 2uk (8a)

h(xk, uk) = xk − uk (8b)

p(yk, uk) = 2ρAy2kuk. (8c)

To simplify notation, rather than seeking to maximize
actual power, we will consider the maximization of a
function that does not include any of the constants in the
power formula (such as 2ρA in (8c)). We shall denote this
constant-free power function by g(xk, uk), and assume that
all turbines in the array produce power according to g(·).
For example, for the actuator disk model we define

g(xk, uk)
.
= y2kuk = (xk − uk)2uk. (9)

which results in the following expression for the actual
power Pk = 2ρAg(xk, uk).

3. MULTI-STAGE OPTIMAL CONTROL PROBLEM

Consider the state-space model (6) and denote the
(constant-free) power of the k-th turbine with g(xk, uk).
The goal is to determine the optimal controls u∗0, . . . , u

∗
N−1

to maximize the cascade’s aggregate power

G(x0;u0, . . . , uN−1) =

N−1∑
k=0

g(xk, uk). (10)

subject to the state equation (6), and the constraints
uk ∈ U(xk), for k = 0, . . . , N − 1. This problem is
an optimal control problem that can be solved with the
dynamic programming algorithm, Bellman (2003).

Consider the cascade in Fig. 2, and assume that the state
xk (air velocity upstream of turbine k) is known. The
maximum powerG∗k(xk) attained by theN−k downstream
turbines k, k + 1, . . . , N − 1 is calculated from

G∗k(xk) = max

N−1∑
i=k

g(xi, ui) (11)

where the maximization is performed over the controls
uk ∈ U(xk), uk+1 ∈ U(xk+1), . . . , uN−1 ∈ U(xN−1)
subject to the state-space equation (6). The optimal value

function G∗k depends on xk but it does not depend on
the controls of the turbines upstream of turbine k. The
same is true for optimal controls u∗k, . . . , u

∗
N−1 attaining

the maximum power G∗k(xk). Note that G∗k(xk) is the
optimal power of the sub-array composed by turbines
k, k + 1, . . . N − 1, for a given state xk.

The dynamic programming (DP) algorithm is a recursion
to calculate the optimal sub-array power at stage k given
the optimal sub-array power at stage k+ 1. This recursion
runs backwards from k = N − 1 to k = 0 according to

G∗k(xk) = max
{
g(xk, uk) +G∗k+1(f(xk, uk))

}
(12)

where the maximization is performed over the control uk
constrained according to uk ∈ U(xk). When k = N − 1,
the function G∗N (·) is needed to initialize the algorithm.
Note that G∗N represents the optimal wind power at stage
N ; since there is no turbine with index k > N − 1, we
initialize the algorithm withG∗N = 0. From Bellman (2003)
it follows that, under mild assumptions, the maximum
wind farm power satisfies

max
u0,...,uN−1

G(x0, u0, . . . , uN−1) = G∗0(x0) (13)

where G(·) is defined in (10), G∗0(·) in (12), and the
maximization is constrained according to the state-space
equation (6) and u0 ∈ U(x0), . . . , uN−1 ∈ U(xN−1).
Moreover, an optimal control strategy u∗k = µk(xk) is
obtained from the solution to (12) for k = 0, . . . , N − 1.

Thew following benefits derive from the DP framework:

• Equations (12) and (13) show that the N -dimensional
wind farm power maximization problem, over the N
scalar controls u0, . . . , uk, . . . , uN−1, is equivalent to
solving N scalar maximization problems recursively.
• The optimization problem at each stage of the recur-

sion is similar to optimizing the power g(xk, uk) of
a single turbine plus an additional term that comes
from the optimal value function G∗k+1(f(xk, uk)).
• An optimal control u∗k attaining the cost G∗k(xk)

in (12) is obtained in feedback form u∗k = µk(xk)
(function of the state xk), which is an appropriate
functional form to cope with modeling uncertainty.

4. DP WITH ACTUATOR DISK MODEL

We assume that the turbines are modeled using the ac-
tuator disk model (ADM) described in section 2. The
constraint set for the control input is given by the interval

U(x) = [0,
1

2
x]. (14)

4.1 Initial step of the DP algorithm.

The optimization problem we must solve is (12) with
k = N − 1 and the initial value function set at G∗N (x) = 0
for all x. That is, we seek to solve

G∗N−1(xN−1) = max g(xN−1, uN−1) (15a)

= max(xN−1 − uN−1)2uN−1 (15b)

where the maximization is performed over the control
uN−1 constrained to the interval U(xN−1) = [0, 12xN−1].
As shown in the appendix, this maximization problem has
a unique solution given by

u∗N−1 =
1

3
xN−1. (16)
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This result corresponds to the so-called Betz limit, with
optimal induction factor aN−1 and maximum power G∗N−1
given by

aN−1 =
1

3
(17a)

G∗N−1 =
4

27
x3N−1 (17b)

P ∗N−1 = 2ρAG∗N−1 =
8

27
ρAx3N−1. (17c)

The solution has the following salient features:

(1) The optimal control (16) is a linear feedback of the
state variable xN−1.

(2) The optimal power (17b) for a single turbine is a
cubic function of the state variable (xN−1 for the most
down-wind turbine).

The algebraic structure of the solution to the initial
step is preserved in the subsequent steps of the dynamic
programming algorithm. The specific result –Theorem 1–
is proven in the appendix.

4.2 Core step of the DP algorithm.

For k = N − 1, N − 2, . . . , 0, define the scalar variables ak
and Qk via the following recursions:

ak =
1

2 + (1− 6Qk+1)−1/2
(18a)

Qk = ak(1− ak)2 + (1− 2ak)3Qk+1 (18b)

with boundary condition QN = 0.

Theorem 1. Consider the wind farm power maximization
problem for a cascade with N identical turbines modeled
with the ADM (6), (8), and (9). Let x0 denote the free
stream velocity entering the cascade. The optimal control
sequence u∗0, u

∗
1, . . . , u

∗
N−2, u

∗
N−1 is given by

u∗k = akxk (19)

where, for k = N − 1, . . . , 0, the state-feedback gain ak
is computed from (18). Moreover, the maximum power
produced by the wind farm is given by

P ∗0 = 2ρAQ0x
3
0. (20)

The backward recursions (18) are reminiscent of the re-
cursions in discrete optimal control problems; see, for
example, Kwakernaak and Sivan (1972).

Corollary 2. Under the assumptions of Theorem 1, and
given any fixed ` ∈ {0, . . . , N − 1}, the optimal power
produced by the N − ` most down-wind turbines is

P ∗` = 2ρAQ`x
3
` (21)

and the maximum power P ∗` is achieved with the optimal
control sequence u∗` , . . . , u

∗
N−1 calculated from Theorem 1.

From Corollary 2, and noting that x` is the free stream
velocity entering the subarray of N − ` turbines `, . . . , N −
1, we may define the efficiency η` of the `-th subarray
according to

η`
.
=

P`
1
2ρAx

3
`

. (22)

From Corollary 2 it follows that the optimal efficiency is

η∗` = 4Q`. (23)
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4.3 Numerical example.

Figure 3 depicts the optimal induction factors calculated
from (18) when N = 50 turbines. Note that the horizontal
axis runs from the most down-wind turbine (k = 49) to
the most up-wind turbine (k = 0). Table 1 shows the
numerical values of the optimal induction factors ak. Note
that a49 = 1/3, which is the optimal value for a cascade of
length one (e.g., a single isolated turbine). The optimal
induction factors decrease monotonically as one moves
upwind in the cascade. These results are intuitive; e.g.,
only the most down-wind turbine should operate at its
own optimal induction factor a49 = 1/3.

Table 1. Parameters of optimal cascade

index (k) ak/0.3333 η∗k (%) cascade length

49 1.00 59.26 1
48 0.60 64.00 2
47 0.43 65.31 3
46 0.33 65.84 4
45 0.27 66.12 5
...

...
...

...
0 0.03 66.66 50

Also shown in Table 1 is the optimal efficiency, calculated
from (23), as function of the length of the cascade (number
of turbines in the cascade). For a cascade of length one,
the efficiency is the Betz limit

η∗49 =
16

27
≈ 0.5926. (24)

Intuitively, the larger the number of turbines the higher
the optimal efficiency. Fig. 4 shows the optimal efficiency
as a function of the cascade length. The asymptotic
behavior of the graph and Table 1 suggest that

lim
N→∞

η∗0 =
2

3
≈ 0.6666. (25)

This result is easy to verify from the recursion (18). From
Table 1 it follows that four turbines suffice to be within
1% of the highest possible efficiency 66.66%.

Fig. 4 also shows the efficiency ηg when the induction
factors are all set at
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This case corresponds to setting each turbine induction
factor at the value that maximizes the power coefficient
of that particular turbine. As in Marden et al. (2013), we
refer to this control strategy as the greedy control strategy
since each turbine is seeking to maximize its own power
without consideration of the other turbines in the array.
Fig. 5 shows the optimal efficiency increment with respect
to the greedy strategy. The increment is 5%, or greater,
with ten or more turbines.

5. CONCLUSIONS

In this paper we provided a multi-stage dynamic program
(DP) for the wind farm power maximization problem. The
DP framework reduces a complex maximization problem
to a sequence of simpler optimization problems. For a
problem with N turbines and m controls per turbine,

the power maximization problem is reduced from Nm
optimization variables to a sequence of N problems with m
variables each. The solution of each optimization problem
in the sequence is obtained as a feedback function of the
state of the wind farm, which is a functional form known
to be robust to modeling uncertainty.

When the power extraction of each turbine is modeled with
the actuator disk model, the DP framework is used to show
that the optimal control for each turbine is a linear feed-
back of the state. The optimal state-feedback gains and
the optimal wind farm power output are computed using
a recursion reminiscent of the Riccati difference equation
of optimal control; see (18). The optimal efficiency of the
wind farm increases monotonically from the Betz limit
(for a single turbine) to the optimal asymptotic efficiency
66.66%.
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Appendix A. PROOF OF THEOREM 1

We shall first prove the result for the initial step, equa-
tion (16). Calculating g(·) at the boundary values of the
constraint set U(xN−1) = [0, 12xN−1] we obtain

g(xN−1, 0) = 0 (A.1a)

g(xN−1,
1

2
xN−1) =

1

8
x3N−1 (A.1b)

The values of uN−1 ∈ (0, 12xN−1) with vanishing derivative
are obtained from the solutions u to the equation

∂g(xN−1, u)

∂u
= (xN−1 − u)(xN−1 − 3u) = 0 (A.2)

The only feasible solution is u∗ = 1
3xN−1. Calculating

g(xN−1, u
∗) we obtain

g(xN−1, u
∗) =

4

27
x3N−1. (A.3)

Comparing with (A.3) with (A.1) we conclude that (16)
gives the solution to the initial step, and the maximum
power of the most down-wind turbine is given by

G∗N−1(xN−1) = g(xN−1, u
∗) =

4

27
x3N−1. (A.4)

Defining the coefficient QN−1
.
= 4/27, it follows that the

optimal power is a cubic function of the state; i.e,

G∗N−1(xN−1) = QN−1x
3
N−1. (A.5)

To complete the proof of Theorem 1 we proceed by
induction. That is, we assume that the result for the index
k = N − 1 (initial step) also holds true for the index
k + 1 and prove the result for the index k. Under this
assumption, the optimal power G∗k+1 for the sub-array of
turbines k + 1, k + 2, . . . , N − 1 is of the form

G∗k+1(xN−1) = Qk+1x
3
k+1 (A.6)

where Qk+1 is a nonnegative constant. Following the
dynamic programming algorithm (12), we compute the
optimal control u∗k from

u∗k = arg max
{

(xk − uk)2uk +Qk+1(xk − 2uk)3
}

(A.7)

where the maximization is performed over the interval
uk ∈ [0, 12xk]. Define the function Gk(xk, uk) by

Gk(xk, uk)
.
= (xk − uk)2uk +Qk+1(xk − 2uk)3 (A.8)

We now seek the values of uk ∈ (0, 12xk) that null the
partial derivative of Gk with respect to uk. A simple
calculation yields

∂Gk

∂uk
= (1− 6Qk+1)x2k+1 − u2k (A.9)

where xk+1 = xk − 2uk. Thus, ∂Gk

∂uk
vanishes if and only if

(1− 6Qk+1)x2k+1 = u2k (A.10)

which implies that (1− 6Qk+1) ≥ 0 and√
1− 6Qk+1xk+1 = uk (A.11)

for both uk > 0 and xk+1 > 0. Solving for uk we obtain

u∗k = akxk (A.12)

ak =
1

2 + (1− 6Qk+1)−1/2
. (A.13)

It can be shown that the boundary values uk = 0 or
uk = 1

2xk yield lower values of Gk. Thus, the solution to
the dynamic programming equation (12) is given by (19).

To complete the proof we must obtain the equation for the
optimal value function

G∗k(xk) =Gk(xk, u
∗
k) (A.14)

= (xk − u∗k)2u∗k +Qk+1(xk − 2u∗k)3.

Since u∗k is linear in xk it follows from (A.14) that G∗k is
of the form

G∗k(xk) = Qkx
3
k (A.15)

where Qk is a nonnegative constant. Equations (A.14) and
(A.15) hold for any xk ≥ 0 if and only if Qk+1 and Qk

satisfy (18). This completes the proof of the theorem. �
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