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Abstract: Hybrid systems with memory are dynamical systems exhibiting both hybrid and
delay phenomena. We present a general modelling framework for such systems using hybrid
functional inclusions, whose generalized solutions are defined on hybrid time domains and
evolve in the phase space of hybrid memory arcs equipped with the graphical convergence
topology. We prove a general existence result based on some basic conditions on the data of
hybrid systems. We further establish sufficient conditions for the stability analysis of hybrid
systems with memory using Lyapunov-Razumikhin (L-R) functions. We demonstrate the
stability results on a general nonlinear system with switching dynamics and state jumps.

1. INTRODUCTION

Hybrid systems with memory refer to dynamical sys-
tems exhibiting both hybrid and delay phenomena. Con-
trol systems with delayed hybrid feedback and intercon-
nected hybrid systems with network delays are partic-
ular examples of such systems. In fact, delays are of-
ten inevitable in many control applications (Sipahi et al.,
2011) and often cause instability and/or loss of robust-
ness (Cloosterman et al., 2009).

Motivated by considerations of robust stability in hybrid
control systems, generalized solutions of hybrid inclu-
sions defined on hybrid time domains have been pro-
posed to study hybrid systems (Goebel et al., 2004, 2012;
Sanfelice et al., 2008). These generalized solutions have
led to the successful extensions of many stability analysis
results and tools known for classical nonlinear systems,
including converse Lyapunov theorems, to a hybrid set-
ting (see Goebel et al. (2012); Sanfelice et al. (2007) and
references therein).

As a first step to studying hybrid systems with delays via
generalized solutions, Liu and Teel (2012) defined such
solutions using hybrid functional inclusions and estab-
lished some basic existence and nominal well-posedness
results. The case considered in Liu and Teel (2012), how-
ever, assumes that the flow and jump sets are subsets of
the Euclidean space. This leaves open the general (and
more challenging) case, where the flow and jump sets are
subsets of the space of hybrid memory arcs. The main
purpose of this paper is to establish this general case.

Another contribution of this paper is a set of sufficient
conditions for the stability analysis of generalized solu-
tions for hybrid systems. These conditions are formulated
using Lyapunov-Razumikhin (L-R) functions rather than
Lyapunov-Krasovskii (L-K) functionals, partially because

L-R functions are easier to construct than L-K functionals,
which is even more so in the hybrid setting. We demon-
strate the stability results on a general nonlinear system
with switching dynamics and state jumps.

We note that asymptotic stability for hybrid systems with
delays have been studied extensively in the past in var-
ious settings (see, e.g., Liu and Ballinger (2001); Liu and
Shen (2006); Liu et al. (2011a,b); Yan and Özbay (2008);
Yuan et al. (2003)). General results on robust asymptotic
stability along the lines of Goebel et al. (2012), however,
are still not available for hybrid systems with delays.
Most current results and tools for such systems rely on
standard concepts such as uniform convergence and dis-
tance (for piecewise continuous functions), whereas we
believe that graphical convergence/topology should play
a more prominent role in handling the discontinuities in
hybrid systems with delays, especially where robustness
properties of the solutions are concerned (such as robust
stability against perturbations in the hybrid system data).

2. PRELIMINARIES

Notation: Let Rn denote the n-dimensional Euclidean
space with its norm denoted by |·|; Z the set of all inte-
gers; R≥0 = [0, ∞), R≤0 = (−∞, 0], Z≥0 = {0, 1, 2, · · · },
and Z≤0 = {0, −1, −2, · · · }; C([a, b], Rn) the set of all
continuous functions from [a, b] to Rn.

2.1 Hybrid systems with memory

The definitions of hybrid time domains and hybrid arcs
(Goebel et al., 2012; Goebel and Teel, 2006) (extended to
hybrid systems with memory in (Liu and Teel, 2012)) are
introduced below.
Definition 1. A subset E ⊆ R×Z is called a compact hybrid
time domain with memory if E = E≥0 ∪ E≤0, where
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E≥0 =
J−1⋃
j=0

([tj, tj+1], j)

and

E≤0 =
K⋃

k=1

([sk, sk−1],−k + 1)

for some finite sequence of times sK ≤ · · · ≤ s1 ≤ s0 =
0 = t0 ≤ t1 ≤ · · · ≤ tJ . The set E is called a hybrid
time domain with memory if, for all (T, J) ∈ E≥0 and all
(S, K) ∈ R≥0 × Z≥0, (E≥0 ∩ ([0, T] × {0, 1, · · · , J})) ∪
(E≤0 ∩ ([−S, 0] × {−K, −K + 1, · · · , 0})) is a compact
hybrid time domain with memory. The set E≤0 is called
a hybrid memory domain.
Remark 2. It is easy to see that, for a hybrid time domain
E = E≤0 ∪ E≥0, E≥0 is a union of a finite or infinite
sequence of sets of the form [tj, tj+1]× {j} ⊆ R≥0 ×Z≥0,
with the last interval (if existent) possibly of the form
[tj, T) with T finite or T = ∞, while E≤0 is a union of a
finite or infinite sequence of sets of the form [sk, sk−1] ×
{−k + 1} ⊆ R≤0×Z≤0, with the last interval (if existent)
possibly of the form (S, tj−1] only if S = −∞.

Definition 3. A hybrid arc with memory is a pair consist-
ing of a domain dom x, which is a hybrid time do-
main with memory, and a function x : dom x → Rn

such that x(·, j) is locally absolutely continuous on Ij =
{t : (t, j) ∈ dom x} for each j ∈ Z such that Ij has
nonempty interior. In particular, a hybrid arc x with mem-
ory is called a hybrid memory arc if dom x ⊆ R≤0 ×Z≤0.
We shall simply use the term hybrid arc if we do not have
to distinguish between the above two hybrid arcs.

The collection of all hybrid memory arcs is denoted by
M.
Definition 4. Given a hybrid arc and any (t, j) ∈ dom x,
we define an operator A[t,j] that maps x to A[t,j]x ∈ M
given by

A[t,j]x(s, k) = x(t + s, j + k),

for all (s, k) ∈ domA[t,j]x, where domA[t,j]x is defined by
(s, k) ∈ domA[t,j]x if and only if (t + s, j + k) ∈ dom x.

Definition 5. Data of a hybrid system with memory in M
consists of four elements:

• a set C ⊆ M, called the flow set;
• a set-valued functional F :M⇒ Rn, called the flow

map;
• a set D ⊆M, called the jump set;
• a set-valued functional G :M⇒ Rn, called the jump

map.

The system is denoted byHM = (C,F ,D,G).
Definition 6. A hybrid arc x is a solution to the hybrid system
HM if A[0,0]x ∈ C ∪D and:

(S1) for all j ∈ Z≥0 and almost all t ∈ Ij,

A[t,j]x ∈ C, ẋ(t, j) ∈ F (A[t,j]x), (1)

(S2) for all j ∈ Z≥0 and (t, j) ∈ dom x such that (t, j +
1) ∈ dom x,

A[t,j]x ∈ D, x(t, j + 1) ∈ G(A[t,j]x). (2)

The solution x is called nontrivial if its positive domain
dom≥0(x) = dom x ∩ (R≥0 × Z≥0) has at least two
points. It is called complete if dom≥0(x) is unbounded. It
is called maximal if there does not exist another solution
y to HM such that dom x is a proper subset of dom y
and x(t, j) = y(t, j) for all (t, j) ∈ dom x. The set of all
maximal solutions toHM is denoted by SHM .

2.2 Preliminaries on set-valued analysis

We need a few regularity conditions on the hybrid data
to establish certain results on basic existence and well-
posedness for HM. To formulate these regularity condi-
tions, we need to recall a few definitions from set-valued
analysis. The set-valued analysis concepts recalled here
for mappings from Rm to Rn can be found in Chapter 5 of
Rockafellar and Wets (1998) (see also Chapter 5 of Goebel
et al. (2012) for set-valued analysis in the hybrid systems
setting).
Definition 7. (Set convergence). Consider a sequence of
sets {Hi}∞

i=1 in Rn. The outer limit of the sequence, de-
noted by lim supi→∞ Hi is the set of all x ∈ Rn for
which there exists a subsequence xik ∈ Sik , k = 1, 2, · · · ,
such that xik → x. The inner limit of {Hi}∞

i=1, denoted
by lim infi→∞ Hi, is the set of all x ∈ Rn for which
there exists some i0 and a sequence xi ∈ Si (∀i ≥
i0) such that xi → x. The limit of {Hi}∞

i=1 exists if
lim supi→∞ Hi = lim infi→∞ Hi and it is then given by
limi→∞ Hi = lim supi→∞ Hi = lim infi→∞ Hi.
Definition 8. (Set-valued mappings). Let S : Rm ⇒ Rn be
a set-valued mapping from Rm to Rn. Its domain, range,
and graph are defined by

dom S : = {x : S(x) 6= ∅} ,
rge S : = {y : ∃ x s.t. y ∈ S(x)} ,

gph S : = {(x, y) : y ∈ S(x)} ,
respectively. The mapping S is called outer semicontinuous
at x ∈ Rm if for every sequences of points xi → x and
yi → y with yi ∈ S(xi), we have y ∈ S(x). It is locally
bounded at x ∈ Rm if there exists a neighborhood Ux
of x such that the set S(Ux) :=

⋃
x′∈Ux S(x′) ⊆ Rn is

bounded. It is said to be outer semicontinuous (respectively,
locally bounded) relative to a set H ⊆ Rm, if the mapping
defined by S(x) for x ∈ H and by ∅ for x 6∈ H is outer
semicontinuous (respectively, locally bounded) at each
x ∈ H.

By convention, a mapping S is said to be outer semicon-
tinuous or locally bounded if it is so relative to its domain.
Definition 9. (Graphical convergence). A sequence Si :
Rm ⇒ Rn of mappings is said to converge graphically
to some S : Rm ⇒ Rn if limi→∞ gph Si = gph S. In
particular, a sequence of hybrid arcs ϕi : dom ϕi →
Rn converges graphically to some ϕ : R2 ⇒ Rn if

limi→∞ gph ϕi = gph ϕ. We use
gph−→ to denote graphical

convergence.

2.3 The space (M, d)

The space of all hybrid memory arcs is not a vector space,
since different hybrid arcs can have different domains. In
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this section, we recall from Rockafellar and Wets (1998) a
quantity that characterizes the set convergence of closed
nonempty sets (and hence graphical convergence of outer
semicontinuous mappings) and use this distance to de-
fine a metric onM. Let cl-sets 6≡∅(R

n) denote the collec-
tion of all nonempty, closed subsets of Rn. Given ρ ≥ 0,
for each pair A, B ∈ cl-sets 6≡∅(R

n), define

dρ(A, B) := max
|z|≤ρ

∣∣d(z, A)− d(z, B)
∣∣.

where d(z, H) for z ∈ Rn and H ⊆ Rn is defined by
infw∈H |w− z|. Furthermore, define

d(A, B) :=
∫ ∞

0
dρ(A, B)e−ρdρ,

which is called the (integrated) set distance between A and
B. This distance indeed characterizes set convergence of
sets in cl-sets 6≡∅(R

n) as recalled below.
Theorem 10. (Rockafellar and Wets (1998), Theorem 4.42).
A sequence Si ∈ cl-sets 6≡∅(R

n) converges to S if and only
d(Si, S) → 0. Moreover, the space (cl-sets 6≡∅(R

n), d) is a
separable, locally compact, and complete metric space.

Since outer semicontinuity of a set-valued map is char-
acterized by the closedness of its graph, the set distance
defined above can be naturally applied to characterize the
graphical convergence of set-valued maps (and hence hy-
brid arcs). Let osc-maps 6≡∅(R

2; Rn) denote the collection
of all outer semicontinuous set-valued functions from R2

to Rn that have nonempty domains. Given ρ ≥ 0, for each
pair S, T ∈ osc-maps 6≡∅(R

2; Rn), define

dρ(S, T) := dρ(gph S, gph T)
and

d(S, T) := d(gph S, gph T),
which is called the graphical distance for mappings in
osc-maps 6≡∅(R

2; Rn).

While hybrid memory arcs are single-valued, they can be
seen as set-valued maps from R2 to Rn, which are outer
semicontinuous, since their graphs are always closed by
definition. Therefore, as a corollary of Theorem 10 above,
the graphical distance, restricted to M×M, defines a
metric space (M, d).
Corollary 11. The space (M, d) is a separable metric
space.

Note that (M, d) is not complete, since the limit of a
sequence of graphically convergent hybrid memory arcs
may not be a hybrid memory arc. If such compactness is
needed, the following subspace of (M, d) can be used.

Given b, λ ∈ R≥0, define

Mb : =
{

ϕ ∈ M : sup
(s,k)∈dom ϕ

|ϕ(s, k)| ≤ b
}

,

Mb,λ : =
{

ϕ ∈ Mb : ϕ is λ-Lipschitz
}

,

where ϕ ∈ M is said to be λ-Lipschitz if∣∣ϕ(s′, k)− ψ(s′′, k)
∣∣ ≤ λ

∣∣s− s′
∣∣

holds for all (s, k), (s′, k) ∈ dom ϕ.
Theorem 12. The space (Mb,λ, d) is a separable, locally
compact, and complete metric space.

Proof. It suffices to show thatMb,λ is a closed subspace
of (M, d). Consider a sequence ϕi ∈ Mb,λ such that
d(ϕi, ϕ) → 0 as i → ∞ for some ϕ ∈ M. We need to
prove that ϕ ∈ Mb,λ. Note that the sequence {ϕi}∞

i=1
is a bounded sequence and hence by definition locally
eventually bounded. It follows from the argument in
(Goebel et al., 2012, Examples 5.3 and 5.19) that dom ϕ =
limi→∞ dom ϕi is a hybrid memory domain. Moreover,
since for each (s, k) ∈ dom ϕ, there exist (si, ki) ∈ dom ϕi
such that (si, ki) → (s, k) as i → ∞. It follows that
(s, k) ∈ [−r, 0]× [−m, 0] since (si, ki) ∈ [−r, 0]× [−m, 0]
for all i. This shows dom ϕ ⊆ [−r, 0]× [−m, 0].

For each k ∈ Z≤0, let Ik = {s ∈ R≤0 : (s, k) ∈ dom ϕ}.
Let Ik

i be similarly defined for ϕi. It follows from the
very definition of set convergence that ϕi(·, k) con-
verges graphically to ϕ(·, k). Now note that the sequence
{ϕi(·, k)}∞

i=1 is λ-Lipschitz. Suppose Ik is a nonempty set.
Following the same argument as in the proof of (Goebel
et al., 2012, Lemma 5.28), one can show that ϕ(·, k) is
single-valued and λ-Lipschitz on Ik. In addition, ϕi(·, k)
converges uniformly to ϕ(·, k) on every compact subset
of int(Ik

i ). This concludes that ϕ ∈ Mb,λ. �

The following lemma shows that given a hybrid arc x ∈
X , its memory A[t,j]x at (t, j) can be regarded as a contin-
uous function from I j to (M, d), for each j ∈ Z such that
I j has nonempty interior.
Lemma 13. Let x ∈ X be a hybrid arc with memory.
For each j ∈ Z such that I j has nonempty interior,
the function a : I j → M defined by a(t) := A[t,j]x
is uniformly continuous on each compact subinterval U
of I j. Moreover, if x(·, j) is λ-Lipschitz on U, then a is
max(λ, 1)-Lipschitz.

This lemma shows that by considering the graphical con-
vergence topology onM, we can establish the above con-
tinuity property of A[t,j]x, which is a fundamental prop-
erty that is needed for studying functional differential
equations (Hale and Lunel, 1993).

2.4 Regularity assumptions on hybrid data ofHM

We now introduce a few regularity conditions on the
hybrid data, especially onF and G, which are regarded as
set-valued mappings from the space (M, d) to Rn. These
regularity conditions will allow us to establish certain
basic existence results in the next section. Given a subset
M′ ⊆ M and a functional F : M ⇒ Rn, we use the
notation F|M′ to denote the mapping defined by F (ϕ)
for ϕ ∈ M′ and by ∅ for ϕ 6∈ M.
Definition 14. A set-valued functional F : M ⇒ Rn is
said to be outer semicontinuous at ϕ ∈ M, if for every

sequences of hybrid memory arcs ϕi
gph−→ ϕ and yi → y

with yi ∈ F (ϕi), we have y ∈ F (ϕ).
Definition 15. A set-valued functional F : M ⇒ Rn

is said to be locally bounded at ϕ ∈ M if there exists
a neighborhood Uϕ of ϕ such that the set F (Uϕ) :=⋃

ψ∈Uϕ
F (ψ) ⊆ Rn is bounded.
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In the above definitions, F is said to be outer semicon-
tinuous (respectively, locally bounded) relative to a set
M′ ⊆ M, if the mapping F|M′ is outer semicontinuous
(respectively, locally bounded) at each ϕ ∈ M′. Finally,
the mapping F is said to be outer semicontinuous (re-
spectively, locally bounded) if it is so relative to its do-
main.
Assumption 16. The following is a list of basic conditions
on the data of the hybrid systemHM = (C,F ,D,G).

(A1) C and D are closed subsets ofM;
(A2) F is outer semicontinuous and locally bounded rel-

ative to the set C and F (ϕ) is nonempty and convex
for each ϕ ∈ C;

(A3) G is outer semicontinuous and locally bounded rela-
tive to D, and G(ϕ) is nonempty for each ϕ ∈ D.

(A3’) G is nonempty for each ϕ ∈ D.
Definition 17. For any ϕ ∈ K ⊆ M, we define TK(ϕ) ⊆
Rn by v ∈ TK(ϕ) if and only if, for any ε > 0, there exist
h ∈ (0, ε] and xh ∈ C([0, h], Rn) such that
(1) xh(0) = ϕ(0, 0) and

xh(h)− xh(0)
h

∈ v + εB;

(2) the hybrid memory arc ψxh defined by

ψxh(s, k) =
{

xh(h + s), ∀s ∈ [−h, 0], k = 0,
ϕ(h + s, k), ∀(h + s, k) ∈ dom ϕ, (3)

lies in K.

3. EXISTENCE OF SOLUTIONS

Theorem 18. LetHM = (C,F ,D,G) satisfy the conditions
(A1), (A2), and (A3’) in Assumption 16. Let ϕ ∈ C ∪D. If,
for every ξ ∈ C\D,

F (ξ) ∩ TC(ξ) 6= ∅, (4)
then there exists a nontrivial solution to HM from every
initial condition ϕ ∈ C ∪D such that ϕ ∈ Mb,λ for some
b, λ. Moreover, every such maximal solution x satisfies
exactly one of the following conditions:

(a) x is complete;
(b) dom≥0(x) is bounded, the interval IJ has nonempty

interior, and lim supt→T− |x(t, J)| = ∞, where J =
supj dom x and T = supt dom x;

(c) ϕ(T, J) 6∈ C ∪ D, where (T, J) = sup dom x.

Furthermore, if G(ϕ) ⊆ C ∪ D for all ϕ ∈ D, then (c)
above does not occur.

Due to space limit, we will only present a sketch of the
proof for Theorem 18 here and leave the full detailed
proof to forthcoming publications.

Sketch of Proof. Local existence: If ϕ ∈ D, then the
hybrid arc x with A[0,0]x = ϕ and x(0, 1) = z with
any z ∈ G(ϕ) provides a desired solution. Otherwise,
ϕ ∈ C\D and the viability condition (4) is satisfied at a.
Given any a > 0, define

MS :=
{

ψ ∈ C ∩Mb,λ : |ψ(0, 0)− ϕ(0, 0)| ≤ a
}

,

where b := ‖ϕ‖+ a and λ > 1 is such that F (ψ) ⊆ (λ−
1)B for all ‖ψ‖ ≤ b and ϕ is λ-Lipschitz. Clearly,MS is a
closed set in (M, d).

The idea main is to construct a series of approximate
solutions that converge, withinMS, a true flow solution
to the hybrid system HM. We rely on the following
claim to construct a series of approximate solutions. The
viability condition (4) is essential for its proof.
Claim: For each ε ∈ (0, 1), there exists positive numbers
{hk}

p
k=1, real vectors {vk}

p
k=1, and hybrid arcs {yk}

p
k=1

such that ∑
p−1
k=1 hk ≤ a

λ+(1+λ)ε
< ∑

p
k=1 hk and

A[0,0]yk ∈ MS, A[hk ,0]yk ∈ C, vk ∈ F (A[0,0]yk),

yk(hk, 0)− yk(0, 0)
hk

∈ vk + εB,

A[hk−1,0]yk−1 and A[0,0]yk are (1/ε, hkε)-close,

(5)

holds for all k = 1, · · · , p, where y0 = ϕ, h0 = 0, and the
domain of each yk, k = 1, · · · , p, contains [0, hk]× {0}.
Construction of Approximated Solutions: Define a hy-
brid arc yε by A[0,0]yε = y0 = ϕ and

yε(s, 0) = yi+1(s−
i

∑
k=0

hk, 0) +
i

∑
k=0

[yk(hk, 0)− yk+1(0, 0)],

if

s ∈ [
i

∑
k=0

hk,
i+1

∑
k=0

hk], i ∈ {0, · · · , p− 1} .

We further define a hybrid arc xε by A[0,0]xε = A[0,0]yε =
y0 = ϕ and

xε(s, 0) =
s−∑i

k=0 hk

hi+1

[
yε(

i+1

∑
k=0

hk, 0)− yε(
i

∑
k=0

hk, 0)
]

+ yε(
i

∑
k=0

hk, 0),

if

s ∈ [
i

∑
k=0

hk,
i+1

∑
k=0

hk], i ∈ {0, · · · , p− 1} .

Convergence to a True Solution: Given any T0 < a
λ ,

choose a strictly decreasing sequence {εn}∞
n=1 such that

T0 < a
λ+(1+λ)ε1

and εn → 0 as n → ∞. The sequence
of hybrid arcs Xn := xεn , n = 1, 2, · · · , are defined on
dom ϕ ∪ [0, T0] × {0} and satisfy A[0,0]Xn = ϕ for all
n. Moreover, each Xn(·, 0) is λ-Lipschitz on [0, T0]. By
Ascoli’s theorem, there exists a subsequence of Xn(·, 0)
(still denoted by Xn) converges uniformly to a function
Y on [0, T0]. We can define a hybrid arc X with domain
dom ϕ ∪ [0, T0]× {0} and A[0,0]X = ϕ. Moreover, X(·, 0)
is also λ-Lipschitz on [0, T0] and hence Ẋ(·, 0) exists al-
most everywhere on [0, T0] and Ẋ(·, 0) ∈ L∞([0, T0], Rn).

The goal is to prove that

Ẋ(t, 0) ∈ F (A[t,0]X), for almost all t ∈ (0, T0). (6)

and A[t,0]X ∈ C for all [0, T0].

Verifying (a)–(c): These can be verified by standard ar-
gument on continuation of solutions, adapted for hybrid
systems: by flowing based on local boundedness ofF and
by jumps on conditions of G. �
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4. STABILITY ANALYSIS USING
LYAPUNOV-RAZUMIKHIN FUNCTIONS

In this section, we establish Lyapunov sufficient condi-
tions for the asymptotic stability analysis of hybrid sys-
tems with delays.
Definition 19. LetHM be a hybrid system inM andW ⊆
Rn be a closed set. The set W is said to be uniformly
globally KL pre-asymptotically stable for HM if there exists
KL function β such that any solution ϕ toHM satisfies

|ϕ(t, j)|W ≤ β(‖A[0,0]ϕ‖∆
W , t + j), (7)

where ∆ > 0 is a given constant and |x|W := infy∈W |y− x|
for x ∈ Rn and

‖ϕ‖∆
W = sup

(t,j)∈dom ϕ
−∆≤t+j≤0

inf
y∈W
|y− ϕ(t, j)|

for ϕ ∈ M.
Theorem 20. Let HM = (C,F ,D,G) be a hybrid system
with memory and let W ⊆ Rn be a closed set. If there
exists a continuously differentiable function V : Rn →
R+, K∞ functions αi (i = 1, 2), and positive constants
µ > q and ρ < 1 such that the following hold:

(i) α1(|ϕ(0, 0)|W ) ≤ V(ϕ(0, 0)) ≤ α2(|ϕ(0, 0)|W) for all
ϕ ∈ C ∪D ∪ G(D);

(ii) ∇V(ϕ(0, 0)) · f ≤ −µV(ϕ(0, 0)) + qV[0,0](ϕ) for all
ϕ ∈ C and f ∈ F (ϕ);

(iii) V(g) ≤ ρV[0,0](ϕ) for all ϕ ∈ D and g ∈ G(ϕ),

where V[0,0](ϕ) = max−∆≤s+k≤0 V(ϕ(s, k)), then W is
uniformly globally pre-asymptotically stable forHM.

Proof. Let λ ∈
(
0,− ln ρ

∆
]

be such that−µ + qe∆λ + λ ≤ 0.
This is always possible since 0 < ρ < 1 and µ > q.
Consider V(x(t, j)) for x ∈ SHM and (t, j) ∈ dom x. Fix
any ε > 0. We claim that

V(x(t, j)) ≤ V[0,0]e
−λ(t+j) + ε, ∀(t, j) ∈ dom x, (8)

where V[0,0] = max−∆≤s+k≤0 V(x(s, k)). Define

(t, j) = inf
{
(s, k) ∈ dom x : V(x(s, k)) > V[0,0]e

−λ(s+k) + ε
}

,

where inf is defined based on the lexicographical order
on pairs (t, j) ∈ dom x. Clearly, (t, j) ∈ dom x. Moreover,
since V(x(s, k)) < V[0,0]e−λ(s+k) + ε for all s + k ≤ 0,
we have t + j > 0. We consider two cases. If (t, j− 1) ∈
dom x, then we have

V(x(t, j)) ≤ ρV[t,j−1] ≤ ρ(e∆λV[0,0]e
−λ(t+j) + ε)

< V[0,0]e
−λ(t+j) + ε,

where we have used ρe∆λ < 1. This contradicts the defi-
nition of (t, j). Since (t, j− 1) 6∈ dom x, it follows from the
continuity of x(·, j) on Ij that V(x(t, j)) ≤ V[0,0]e−λ(t+j) +

ε. If (t, j + 1) ∈ dom x, we can similarly show that
V(x(t, j + 1)) ≤ V[0,0]e−λ(t+j+1) + ε, which again contra-
dicts the definition of (t, j). If (t, j + 1) 6∈ dom x, we have
(t, j) ∈ int(Ij) and V(x(t, j)) = V[0,0]e−λ(t+j) + ε. Now
consider

d[V(x(t, j))−V[0,0]e−λ(t+j)]

dt
= −µV(x(t, j)) + qV[t,j] + λV[0,0]e

−λ(t+j)

≤ −µ(V[0,0]e
−λ(t+j) + ε) + (qe∆λ + λ + qε)V[0,0]e

−λ(t+j)

= (−µ + qe∆λ + λ)V[0,0]e
−λ(t+j) − (µ− q)ε

< (−µ + qe∆λ + λ)V[0,0]e
−λ(t+j) ≤ 0,

which implies that V(x(t, j)) − V[0,0]e−λ(t+j) is strictly
decreasing on [t, t + h] for sufficiently small h. This con-
tradicts the definition of (t, j). Therefore, (8) holds. Since
ε > 0 is arbitrary chosen, we have actually proved

V(x(t, j)) ≤ V[0,0]e
−λ(t+j), ∀(t, j) ∈ dom x. (9)

This, together with condition (i), implies that W is uni-
formly globally pre-asymptotically stable forHM. �

5. AN EXAMPLE

Example 1. Consider a hybrid system:
ż = fp(z, z(t− r f ))

ṗ = 0
τ̇ = 1

 z ∈ Rn, p ∈ P , τ ∈ [0, δ],

(10)
z+ = gp(z, z(t− rg))

p+ ∈ P
τ+ = 0

 z ∈ Rn, p ∈ P , τ ∈ {δ} .

(11)

Let ψ = (ϕ, p, τ) ∈ M. One way of interpreting the
hybrid system above is to use the following data:

F =

⋃(−r f ,k)∈dom ψ fp(ϕ(0, 0), ϕ(−r f , k))
0
1


G =

⋃(−rg ,k)∈dom ψ gp(ϕ(0, 0), ϕ(−rg, k))
P
0


C = {ψ = (ϕ, p, τ) ∈ M : τ(0, 0) ⊆ [0, δ]} .

D = {ψ = (ϕ, p, τ) ∈ M : τ(0, 0) = δ} .

W = {0 ∈ Rn} × P × [0, δ].

Clearly, |ψ(0, 0)|W = |ϕ(0, 0)| and ‖ψ‖∆
W = ‖ϕ‖∆ for all

ψ = (ϕ, p, τ) ∈ M, where ‖ϕ‖∆ = sup (t,j)∈dom ϕ
−∆≤t+j≤0

|ϕ(t, j)|.

Let x = (z, p, τ) ∈ Rn+2 and consider a Lyapunov
function candidate of the form V(x) := Up(z)e−στ , where
σ is a constant to be determined and, for p ∈ P , each
Up : Rn → R+ satisfies

(i) α1(|z|) ≤ Up(z) ≤ α2(|z|) for all z ∈ Rn and p ∈ P ;
(ii) there exist constants q and q̂ > 0 such that ∇Up(z) ·

fp(z, ẑ) ≤ qUp(z) + q̂Up(ẑ) for all (z, ẑ) ∈ R2n and
p ∈ P ;

(iii) there exist a constant ρ > 0 such that Up(gp(z, ẑ)) ≤
ρUp(z) + ρ̂Up(ẑ) for all (z, ẑ) ∈ R2n and p, q, q′ ∈ P .
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Now we verify that conditions of Theorem 20 hold. First,
for ψ = (ϕ, p, τ) ∈ C ∪D ∪ G(D),

α1(|ψ(0, 0)|W)e−δ|σ| ≤ V(ψ(0, 0)) = Up(ϕ(0, 0))e−στ

≤ α2(|ψ(0, 0)|W)eδ|σ|.
Hence, condition (i) is verified. Second,
∇V(ψ(0, 0)) · f

= [∇Up(ϕ(0, 0))e−στ , 0,−σUp(ϕ(0, 0))e−στ ] ·
[ fc

0
1

]
= e−στ(∇Up(ϕ(0, 0)) · fc − σUp(ϕ(0, 0))),

where f ∈ F (ϕ) and hence fc = fp(ϕ(0, 0), ϕ(−r f , k))
for some (−r f , k) ∈ dom ψ. It follows from condition (ii)
above on Up that
∇V(ψ(0, 0)) · f
≤ e−στ(qUp(ϕ(0, 0)) + q̂Up(ϕ(−r f , k))− σUp(ϕ(0, 0)))

≤ −σUp(ϕ(0, 0))e−στ + qUp(ϕ(0, 0))e−στ

+ q̂µUp(−r f ,k)(ϕ(−r f , k))e−στ(−r f ,k)e|σ|δ

≤ −σV(ψ(0, 0)) + q̂µe|σ|δUp(−r f ,k))(ϕ(−r f , k))e−στ(−r f ,k))

≤ (−σ + q)V(ψ(0, 0)) + q̄V[0,0](ψ),

where q̄ = q̂µe|σ|δ, µ ≥ 1 is such that Up(z) ≤ µUq(z)
for all z ∈ Rn, and V[0,0](ψ) = max−∆≤s+k≤0 V(ψ(s, k)),
provided that −∆ ≤ −r f + k ≤ 0 whenever (−r f , k) ∈
dom ψ. Hence, condition (ii) of Theorem 20 is verified if
σ − q > q̄. Finally, for g = (gd, p, 0) ∈ G(ψ), V(g) =
Up(gd), where gd ∈

⋃
(−rg ,k)∈dom ψ gp(ϕ(0, 0), ϕ(−rg, k)).

It follows from condition (iii) above on Up that
V(g) = Up(gd) ≤ ρUp(ϕ(0, 0)) + ρ̂Up(ϕ(−rg, k))

≤ ρeσδUp(ϕ(0, 0))e−σδ

+ ρ̂µemax(σ,0)δUp(−rg ,k)(ϕ(−rg, k)))e−στ(−rg ,k)

≤ ρ̂V[0,0](ψ),

for some (−rg, k) ∈ dom ψ, where ρ̄ = ρeσδ + ρ̂µemax(σ,0)δ.
Hence, condition (iii) of Theorem 20 is verified if ρ̄ < 1.
Thus, the setW is uniformly globally pre-asymptotically
stable for the hybrid system defined above, if

σ− q > q̄ = q̂µe|σ|δ and ρ̄ = ρeσδ + ρ̂µemax(σ,0)δ < 1 (12)
hold simultaneously.
Remark 21. In particular, the analysis above applies to
following two cases:

(i) q + q̂ < 0, ρ + ρ̂µ > 1, and ρ̂µ < 1. This may
correspond to the case where the dynamics during
flow are stable, whereas the jump dynamics are not.
The conditions in (12) can always be satisfied by
choosing σ ∈ (q + q̂, 0) and δ sufficiently large;

(ii) q + q̂ > 0 and ρ + ρ̂µ < 1. This may correspond
to the case where the dynamics during flow are
unstable, whereas the jump dynamics are stable.
The conditions in (12) can always be satisfied by
choosing σ > q + q̂µ > 0 and δ sufficiently small.

6. CONCLUSIONS

We have proved in this paper a general existence re-
sult for the generalized solutions of hybrid systems with

memory. Moreover, we have provided a set of sufficient
conditions for the stability analysis of such systems via
generalized solutions. The stability results are illustrated
by a general nonlinear system with switching dynamics
and state jumps. We believe that the proposed framework
can lead to the development of a robust stability theory
for hybrid systems with delays in this direction.
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