
A structure-based approach for optimizing
distributed reconstruction in Motion

Capture systems

Andrea Masiero ∗ Angelo Cenedese ∗∗

∗ CIRGEO, Università di Padova, Viale dell’Università 16, 35020
Legnaro (PD), Italy (e-mail: masiero@dei.unipd.it).

∗∗ Dipartimento di Ingegneria dell’Informazione, Università di Padova,
via Gradenigo 6/B, 35131 Padova, Italy (e-mail:

angelo.cenedese@unipd.it)

Abstract:
The diffusion of visual sensor networks, and in particular of smart camera networks, is motivating
an increasing interest on the research of distributed solutions for several vision problems.
Specifically, in this paper we propose a distributed solution to the problem of reconstructing
target positions in large Motion Capture (MoCap) systems. Real time reconstruction by means of
centralized procedures is practically unfeasible for very large systems, while the use of distributed
computation allows to significantly reduce the computational time required for reconstruction,
thus allowing the development of real time solutions.
Then the proposed distributed reconstruction procedure is optimized by exploiting information
about the structure of the system: the visibility matrix states which objects in the scene are
somehow measurable by a sensor (sensor-object matrix). Often, the typical localization of data
from real application scenarios induces an underlying structure on the visibility matrix, that
can be exploited to improve the performance of the system in understanding the surrounding
environment. Unfortunately, usually these data are not properly organized in the visibility
matrix: for instance, listing the sensors in a pseudo-random order can hide the underlying
structure of the matrix. This paper considers the problem of recovering such underlying structure
directly from the visibility matrix and designs an algorithm to perform this task.
Our simulations show that the distributed reconstruction algorithm optimized by means of the
estimation of the structure of the visibility matrix achieves an important computational time
reduction with respect to the standard (centralized) reconstruction algorithm.

1. INTRODUCTION

Recent advancement of mobile electronic devices and in
particular of cheap mobile sensors are motivating an in-
creasing interest on sensor networks for both research and
industrial applications. In particular, several applications
based on Visual Sensor Networks can be listed in the last
decade (Rinner and Wolf [2008], Soro and Heinzelman
[2009], Cucchiara et al. [2007]).

Among the possible types of Visual Sensor Networks,
this paper considers a motion capture (MoCap) system
(Wieber et al. [2006]) composed by a large number of
cameras m (e.g. tens to hundreds) and of targets n (e.g.
hundreds to thousands). The goal of the MoCap system is
that of reconstructing the 3D positions of the targets in
real time. This task is practically unfeasible when m and
n are large and by using a centralized management of the
information, where computations are performed by means
of a single computational unit. Instead, as commonly done
in recent works based on smart cameras (Rinner and Wolf
[2008], Jovanovic et al. [2006], Liu et al. [2009], Klausner
et al. [2008], Aghajan et al. [2008]), here each camera is
assumed to be provided with computational and memory
resources: the first goal of the paper is that of proposing

an efficient strategy to distribute the computation among
the available computational resources.

Several works in the literature have been proposed to
merge information from different sensors and to parallelize
such computation on a Visual Sensor Network (Falcou
et al. [In ParCo, 2005], Tron et al. [2008], Franco et al.
[2004], Goesele et al. [2007], Furukawa et al. [2010]). In
Section 2, a slightly modified version of the classical 3D re-
construction procedure is considered (Hartley and Zisser-
man [2003], Hartley and Sturm [1997], Triggs et al. [1999]),
and adapted to obtain fast reconstruction distributed on
the network.

Furthermore, Section 3 aims at optimizing the reconstruc-
tion procedure by taking advantage of the system structure
and sparseness: a wide range of applications involve large
sparse (spatially distributed) systems (Chiuso et al. [2010],
Narayanaswamy [2011]), ranging from sensor networks,
automation (Bullo et al. [2009]), computer vision (Aghajan
and Cavallaro [2009], Masiero and Cenedese [2012]), and
so on. The very large size of such systems makes the
use of full models practically unfeasible. Possible methods
to manage such complexity typically exploit distributed
strategies and the system sparsity. The mathematical rep-

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10914

resentation of large systems is usually given through sparse
matrices (Tewarson [1973]) and graphical models that aim
at capturing the structure underlying the system, since
in these large sparse systems data are typically localized
(i.e. position of sensors and the measured objects are
correlated). A good knowledge of such structure can be
exploited to improve the system performance (Section 4
and Chiuso et al. [2010]), but, unfortunately, most of the
times data are not organized is such a way to make such
structure evident.

In this paper a visibility matrix representation of the
system is considered: such a matrix summarizes what are
the objects measurable by each sensor (e.g.: in a camera
network, the actual visibility relation between cameras and
objects in the scene). The algorithm proposed in Section 3
aims at efficiently recovering the underlying structure from
the visibility matrix U . Equivalently, this can be formu-
lated as the problem of finding proper row and column
permutation matrices PR and PC such that PRUPC is a
structured matrix. In this sense, the proposed approach
is similar to the Cuthill-McKee algorithm (Cuthill and
McKee [1969], George and Liu [1981], Golub and Loan
[1989]) for reducing the bandwidth of a matrix. However,
the proposed algorithm is more flexible and based on a
robust similarity measure.

Our results, in Section 4, show that applying the recon-
struction procedure to the system obtained by exploit-
ing the structure information significantly reduces the
required computational time.

2. CENTRALIZED AND DISTRIBUTED
RECONSTRUCTION OF THE 3D POSITION OF

TARGETS

Let a target i be placed at position ϕi in the 3D space and
assume that camera j1 has a local measurement of i on its
image plane at position qij1 . Then, using this measurement
it is possible to say that i is (approximately) on a point
along the line rij1 passing through qij1 and the optical
center of camera j. Let also rij2 be the ray associated to
another camera j2 ̸= j1 and the same target i, then the
rationale is that the target position ϕ̄i can be estimated
by intersecting rij1 and rij2 (geometric triangulation). The
described procedure allows to pose the problem of the
reconstruction of target positions as a geometric problem.
It can also be adapted to deal with the multi-camera
case and to take into account of the geometric errors on
camera image planes (Hartley and Sturm [1997], Hartley
and Zisserman [2003], Triggs et al. [1999]): in practical
cases, to reduce the effect of noise one has to check the
measurements with the best match.

In a classical reconstruction scheme, the matching of
measurements is concurrently checked on all the cameras
(Hartley and Sturm [1997], Hartley and Zisserman [2003]).
However, here some modifications are introduced to make
the problem manageable when dealing with a large number
of cameras and targets. Similarly to (Goesele et al. [2007],
Furukawa et al. [2010]) only small groups of cameras are
used at the beginning (here we exploit pairs of cameras to
compute candidate targets), while the obtained results are
assessed and refined using all the available data. Given m

cameras and n targets, the strategy can be summarized as
follows:

• matching : For each pair of cameras (j1, j2), with j1 =
1, . . . ,m and j2 = j1 + 1, . . . ,m, the available 2D mea-
surements from j1 are compared with 2D measurements
from j2, searching for possible 3D real points through a
geometric triangulation procedure;

• back-projection: When a pair of measurements from
(j1, j2) is compatible, then the reconstructed point ϕi

(potentially a real target position) is back-projected onto
the other cameras image planes;

• reconstruction: Let k be the number of measurements
from different cameras that are compatible with ϕi. If k
is larger than a chosen threshold k̄, ϕi is recomputed by
using all the k measurements to produce the estimate of

the real target position ϕ̂i ≈ ϕ̄i. The used measurements
are deleted from the list of measurements available for new
target search.

This algorithm, considered as a centralized approach (i.e.
executed on a single machine), shows a computational
complexity increasing approximatively linearly withm and
n, thus making this procedure not suitable for large scale
scenarios. Conversely, if adapted to work in a distributed
fashion on the computational grid formed by the camera
network, a huge speed up of the whole reconstruction can
be achieved.

The rationale is as follows: if all the cameras are provided
with computational power, then (most of) the computa-
tions can be parallelized and distributed on the cameras.
Furthermore, cameras that allow to reconstruct more tar-
gets has to be matched first, in such a way that most of
the 2D measurements are deleted quickly (in the first step
of the reconstruction procedure): this camera matching
optimization, based on the estimation of the structure of
the visibility matrix, will be considered in Section 3.

The method adopted in this work to distribute the compu-
tational load, namely the proposed distributed reconstruc-
tion algorithm, is formed bym/2 steps. At the sth step (for
s = 1, . . .m/2) the j1th camera (for each j1) execute the
3 reconstruction steps of the centralized procedure with
camera j2 = j1 + s. The matching and the reconstruction
step can be executed in parallel by all the couples of
cameras. Instead, during the back-projection step couples
of cameras have to be considered in sequential order.

3. ESTIMATION OF THE STRUCTURE OF THE
VISIBILITY MATRIX

This section considers the problem of optimizing the cam-
era matching order in the distributed reconstruction algo-
rithm. The rationale is that the optimal camera matching
order should depend on the visibility of targets from cam-
eras and of the quality of reconstruction (i.e. let target
i be visible by cameras j1 and j2, rij1 and rij2 be the
rays associated by such two cameras to target i and let
the distance between the target and cameras be fixed,
then the maximal information about the target position
is provided when the two cameras are such that rij1 and
rij2 are orthogonal).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10915

Let the visibility matrix U at a specific time t be defined
as follows: U(i, j) = uij , i = 1, . . . , n, m = 1, . . . ,m, and
uij = 1 if target i is visible by sensor j, while uij = 0
otherwise.

Since the visibility matrix usually changes slowly with
respect to the sampling rates of the systems, here the
problem is considered from a static point of view, i.e. the
visibility matrix U is considered at a fixed time instant,
and assumed invariant during the process of interest 1 .

In real applications, involving large distributed systems,
data are typically localized, i.e. there is a correlation be-
tween sensor displacement and the measured data. How-
ever, since rows and columns in U typically appears in
random (or non-optimized) order, such correlation cannot
be see in the matrix U . Then the aim of this section is
that of estimating proper permutation matrices PR and PC

such that Û = PRUPC is matrix as structured as possible,
i.e. it “estimates” the underlying structure in the visibility
matrix.

In particular, cameras that allows to reconstruct the posi-
tion of a large number of targets will be close to each other
in Û . Thus, applying the distributed reconstruction algo-
rithm presented in Section 2 by considering the cameras
ordered as in Û aims at matching cameras that allows to
reconstruct more targets first.

3.1 The algorithm

Algorithm 3.1 presents a procedure for estimating ÛC

(equivalently the algorithm can be slightly modified to

compute the permutation matrix PC , such that ÛC =
UPC), such that its columns are properly sorted to make
evidence of structure in U . Then, applying the same
algorithm to the rows of UC it is possible to obtain the
(typically quite structured) matrix Û .

Since the Algorithm 3.1 is applied in sequence to rows
and columns of U , in the following we present it referring
simply to nodes in U .

Let A be the set of available nodes, that is the set of nodes
not already inserted in Û .

Algorithm 3.1 starts randomly picking a node j1 in U and
initializing Û = U(:, j1). Furthermore, it computes the set
S containing the nodes candidate to be inserted at the
next step. A node j is in S if it is available, j ∈ A, and j
is the most similar to a node in S, or a node in S is the
most similar to j.

Then, the algorithm iteratively inserts nodes in Û . At each
step, the node to be inserted is chosen using the following
criteria:

• If the candidate set S is not empty, then the node j
in S with maximum similarity to the nodes at the left
or at the right of Û is inserted.

1 In real applications the estimated visibility matrix should be
periodically updated, however the results of our simulations show
that the estimated visibility matrix can be considered as constant for
several sampling periods without significantly affecting the system
performance.

Alg. 3.1 Estimation of the structure in U

Initialize the set of available nodes: A = {1, 2, . . . ,m}.
Randomly pick a column j1 and set ÛC(:, 1) = U(:, j1).
Update A: A = A \ j1.
Compute Sj1 = {j|j is available and j1 = jmax(j)}.
Initialize the set of candidate nodes: S = jmax(j1) ∪ Sj1 .
for j = 2 : m
if S ̸= ∅
Pick j1 that maximizes the similarity
max(wL(j1), wR(j1)) among the candidate nodes in S.

else
Pick j1 that maximizes the similarity
max(wL(j1), wR(j1)) among the available nodes A.

end
if wL(j1) ≥ wR(j1)

Insert the column j1 to the left of ÛC .
else
Insert the column j1 to the right of ÛC .

end
end
Update A: A = A \ j1.
Compute Sj1 = {j|j is available and j1 = jmax(j)}.
Update S: S = (S ∪ jmax(j1) ∪ Sj1) ∩A.

• If the candidate set S is empty, then the node j in A
with maximum similarity to the nodes at the left or
at the right of Û is inserted.

It appears from this description how the similarity notion
between nodes is fundamental for the correct working of
the proposed algorithm. In this context, the similarity
score between the columns j1 and j2 of matrix U is defined
as follows:

w(j1, j2) = −
n∑

i=1

|U(i, j1)− U(i, j2)| , (1)

where the sum in w(j1, j2) counts the dissimilarities be-
tween column j1 and j2: hence this score aims at minimiz-
ing the dissimilarities between adjacent nodes in Û .

Let d̄ be a proper neighborhood size, then we define the
similarity score of an available column j1 with left (and

right, respectively) columns in Û at step t (i.e. Û already
contains t− 1 columns) as:

wL(j1) =

d̄∑
j2=1

w(j1, ϕ(j2)) ,

wR(j1) =
d̄∑

j2=1

w(j1, ϕ(t− j2)) ,

where the function ϕ(j2) is such that Û(:, j2) corresponds
to the column U(:, ϕ(j2)). The net effect of averaging the
similarity score over d̄ columns is that of increasing the
robustness of the algorithm, by reducing the influence of
outliers.

Furthermore, the function jmax(j) indicates the node most
similar to j:

jmax(j) = argmax
j2

(w(j, j2)) .

Algorithm 3.1 uses also the set Sj , that is closely re-
lated to jmax(j): Sj is the (possibly empty) set of

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10916

(a) (b) (c) (d)

Fig. 1. (a) Visibility matrix Ū taken as input by Algo-
rithm 3.1 (columns and rows are randomly permuted).

(b) P̂RÛ , where Û is the output of Algorithm 3.1. (c)
Visibility matrix Ū taken as input by Algorithm 3.1
(columns and rows are randomly permuted). (d) P̂RÛ ,

where Û is the output of Algorithm 3.1.

columns that have j has most similar node: Sj =
{j̄|j̄ is available and j = jmax(j̄)}.
The similarity score (1), and the definitions of wL(·),
wR(·), and jmax(j) can be easily modified to take into
account of the similarities between columns of U .

Notice that Algorithm 3.1 is similar to the Cuthill–McKee
algorithm for matrix bandwidth reduction Cuthill and
McKee [1969], George and Liu [1981]. However, it con-
siders a different similarity measure (1) with respect to
the Cuthill–McKee algorithm. Furthermore, to improve
the ability in reconstructing the proper structure of U , it
allows to insert columns both at the left and at the right
of Û .

Fig. 1 shows the results of the algorithm when applied to
two sample visibility matrices. These matrices are visibility
matrices from large network camera systems, where U(i, j)
is equal to 1 if the object or feature i is visible by
camera j. In the case of Fig. 1(a)-(b) the data are mostly
grouped in 4 clusters, while in Fig. 1(c)-(d) the cameras are
approximately displaced along a circle (so the set of visible
features have relatively few changes when considering close
cameras, and viceversa).

Fig. 1(b) and (d) show the output of Algorithm 3.1 when it
takes as input Fig. 1(a) and (c), respectively. As shown in
Fig. 1(b), the proposed algorithm correctly estimates the
structure of the block clustered matrix, while Fig. 1(d)
shows the ability of approximately reconstructing the
structure of U also when the data are not strictly clustered.

3.2 Analysis of the clustered visibility matrix case

In order to take into account of a quite clustered scenario,
in this subsection we consider the case of visibility matrices
that are reducible by means of row and column permuta-

tions to the sum of a block diagonal matrix with a sparse
matrix. Actually, the sparse matrix takes into account of
the off-block diagonal elements, which are assumed to be
much fewer than the block diagonal elements.

Specifically, consider the following model for the U matrix:
U = PRŪPC , where PR, PC are permutation matrices,
while Ū is as follows,

Prob(Ū(i, j) = 1) =

{
α if (i, j) is in a block,
β otherwise,

, (2)

where α ≫ β. Furthermore, let Ū(i, j) be independent 2

on Ū(i2, j2), for (i, j) ̸= (i2, j2).

For simplicity of exposition let all the clusters have size
z× z, and let n ≥ m: Then the worst case (i.e. that where
off block diagonal elements have more influence) for the
algorithm is when elaborating the columns of U .

Let j1 and j2 be two columns in the same block in Ū ,
whereas j3 is in a different block, and let ξ be defined as
follows:

ξ =
∑
j

n∑
i=1

−|U(i, j1)−U(i, j3)|+|U(i, j1)−U(i, j2)| , (3)

where j ranges among the neighborhood of j1, and, for
simplicity, j is assumed to be in the same block of j1.

According with the similarity function (1) and with the
use of wL, wR with neighborhood size d̄, the probability
that j3 is more similar than j2 to j1 can be upper bounded
by means of the one-sided Chebyshev inequality (Cantelli’s
inequality, Papoulis [1965]):

Prob(ξ > 0) = Prob(ξ − ξ̄ > −ξ̄) ≤
σ2
ξ

σ2
ξ + ξ̄2

, (4)

where Prob(ξ > 0) corresponds to the probability that j3
is more similar than j2 to j1.

Since the variables in U are assumed to be independent,
then mean and variance of ξ are:

ξ̄ = d̄n E[wi,j1,j2,j3] , (5)

σ2
ξ = d̄n σ2

wi,j1,j2,j3
, (6)

where

wi,j1,j2,j3 = −|U(i, j1)−U(i, j3)|+|U(i, j1)−U(i, j2)| . (7)

Mean, ξ̄, and variance, σ2
ξ ,, of wi,j1,j2,j3 can be easily com-

puted from the equations above and from the statistical
model of the visibility matrix, (2).

By applying (4) it is possible to determine a numerical
upper bound to the wrong matching of a column j1. For
instance, let n = 1000, z = 60, α = 0.95, and β = 0.01,
then Prob(ξ > 0) ≤ 0.0021 for d̄ = 5.

As a final consideration, the algorithm can also be used as
a stand alone clustering algorithm: The similarity measure
(1) can be computed on consecutive nodes of Û , then the
links that obtain the minimum scores are selected to be
the boundaries between clusters.
2 This assumption is unrealistic for real systems, however it sim-
plifies the statistical analysis of the model. Furthermore, since the
considerations in this subsection are done for a generic unknown
system, it is difficult to introduce a more realistic assumption.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10917

4. RESULTS

This Section compares the computational complexities
of the centralized reconstruction algorithm, of the non-
optimized distributed and of the optimized distributed
algorithm in a case study. In order to make the comparison
independent on the specific used devices, the results are
reported in terms of number of elementary mathematical
and communication operations. For simplicity, the cost of
each elementary mathematical and communication oper-
ation is assumed to be unitary, however, similar results
can be obtained also for different values of such costs. In
all the considered comparisons the sample computational
complexities are computed as the mean of 200 independent
reconstructions.

First, in Fig. 2 we compare the computational complex-
ity of the proposed centralized and (non-optimized) dis-
tributed reconstruction algorithm. The comparison is done
in varying both the number of cameras (m ranges from 8
to 64, Fig. 2(a)) and the number targets (n ranges from
64 to 1024, Fig. 2(b)).

10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

number of cameras

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (

kN
op

s)

centralized
distributed

(a)

200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

number of targets

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (

kN
op

s)

centralized
distributed

(b)

Fig. 2. Comparison of the computational burden for static
reconstruction by means of the centralized (blue–
dashed line) and of the distributed (red line) algo-
rithm varying (a) the number of cameras, and (b) the
number of targets.

Then, in Fig. 3 we compare the computational complexity
of the optimized and non-optimized distributed recon-
struction algorithm. The comparison is done in varying
both the number of cameras (m ranges from 8 to 64,

Fig. 3(a)) and the number targets (n ranges from 64 to
1024, Fig. 3(b)).

10 20 30 40 50 60

40

60

80

100

120

140

number of cameras

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (

kN
op

s)

non−optimized order
optimized order

(a)

200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

number of targets

co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 (

kN
op

s)

non−optimized order
optimized order

(b)

Fig. 3. Comparison of the computational burden for static
reconstruction by means of the distributed reconstruc-
tion algorithm with non–optimized (blue–dashed line)
and optimized (red line) visibility matrix structure,
varying (a) the number of cameras, and (b) the num-
ber of targets. Structure of the visibility matrix is
estimated as described in Section 3.

5. DISCUSSION AND CONCLUSIONS

As expected, Fig. 2 shows that the computational com-
plexity of the distributed algorithm results to be much
lower than that of the centralized one for all the considered
values of the number of cameras (Fig. 2(a)) and of targets
(Fig. 2(b)).

Interestingly, Fig. 2(a) and Fig. 3(a) show that the increas-
ing rate of the computational complexity of the distributed
algorithm decreases when considering a large number of
cameras m. Then, the use of the distributed algorithm
allows to obtain a computational time reduction that is
approximately linear with the number of cameras m: the
upper bound to such computational reduction is clearly
m (i.e. when using m computational units, the paral-
lelized computation cannot require less than 1/m times
the computational time of the centralized one), however
the distribution of the computational load among several
units causes an increase in the time required for commu-
nication. Nevertheless, the observed approximately linear
time reduction ensures the effectiveness of the method.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10918

Furthermore, exploiting information about the system
structure it is possible to further reduce the computational
load. Several applications in automation, information tech-
nology, telecommunication consider large distributed sys-
tems. The network defined among the components of such
systems is typically described by a sparse visibility matrix,
where the components of the system are typically consid-
ered in a pseudo-random order. Thanks to the typical spa-
tial localization of the data, the visibility matrix can usu-
ally be reduced by means of row and column permutations
to a quite structured matrix. However, such structure, that
can be exploited to improve the performance of the system,
is hidden by the pseudo-random row and column order.

In Section 3 we have proposed an algorithm for estimating
the structure of the visibility matrix, based on a procedure
similar to the Cuthill-McKee algorithm Cuthill and McKee
[1969], George and Liu [1981]. Such algorithm aims at
grouping similar nodes. For this purpose, a proper simi-
larity measure (1) has been introduced. As shown by the
simulations of Section 3, the proposed algorithm effectively
estimates the underlying structure of the visibility matrix.
The case of a strictly defined structure (clustered matrix)
has been also analyzed by means of a theoretical model in
subsection 3.2. Then, the estimated (structured) visibility
matrix can be used to determine the camera matching
order in the distributed reconstruction procedure of Sec-
tion 2. Since the matrix U can usually be considered as
constant for several system sampling rates, the results of
Algorithm 3.1 can be used in a number of consecutive
reconstructions of target positions. Thus the time required
for the execution of Algorithm 3.1 has low influence on
the overall computational burden. Fig. 3 shows that the
optimized reconstruction order allows to obtain a compu-
tational time reduction of 10% approximately.

To conclude, the combination of the distributed recon-
struction algorithm with the optimized camera matching
order allows to significantly reduce the computational time
required for the reconstruction of target positions by the
centralized algorithm.

REFERENCES

H. Aghajan and A. Cavallaro. Multi-Camera Networks,
Principles and Applications. Academic Press, 2009.

H. Aghajan, R. Kleihorst, B. Rinner, and W. Wolf. Intro-
duction to the issue on distributed processing in vision
networks. IEEE Journal of Selected Topics in Signal
Processing, 2:445–447, 2008.

F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Con-
trol of Robotic Networks. Applied Mathematics Series.
Princeton University Press, 2009.

A. Chiuso, R. Muradore, and E. Aller-Carpentier. Sparse
calibration of an extreme adaptive optics system. In
Proceedings of the 49th IEEE Conf. on Decision and
Control, CDC 2010, pages 1159–1164, December 2010.

R. Cucchiara, A. Prati, R. Vezzani, L. Benini, E. Farella,
and P. Zappi. Using a wireless sensor network to enhance
video surveillance. Journal of Ubiquitous Computing
and Intelligence, 1(2):187–196, 2007.

E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proc. 24th Nat. Conf.
ACM, pages 157–172, 1969.

J. Falcou, J. Sérot, T. Chateau, and F. Jurie. A parallel
implementation of a 3D reconstruction algorithm for
real-time vision. In Parallel Computing: Current &
Future Issues of High-End Computing, Proc. of the Int.
Conf. ParCo 2005, pages 663–670, In ParCo, 2005.

J.S. Franco, C. Ménier, E. Boyer, and B. Raffin. A
distributed approach for real-time 3d modeling. In
Proceedings of the 2004 Conference on Computer Vision
and Pattern Recognition Workshop (CVPRW), 2004.

Y. Furukawa, B. Curless, S.M. Seitz, and R. Szeliski.
Towards internet-scale multi-view stereo. In Proceedings
of the 23rd IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1434–1441, 2010.

J.A. George and J.W–H. Liu. Computer Solution of Large
Sparse Positive Definite Systems. Prentice-Hall, 1981.

M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S.M.
Seitz. Multi-view stereo for community photo collec-
tions. In Proceedings of the 11th IEEE International
Conference on Computer Vision (ICCV), 2007.

G. Golub and C. Van Loan. Matrix Computations. Johns
Hopkins University Press: Baltimore, MD, 1989.

R.I. Hartley and P. Sturm. Triangulation. Computer
Vision and Image Understanding, 68(2):146–157, 1997.

R.I. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press, 2003.

M. Jovanovic, A. Klausner, M. Quaritsch, B. Rinner,
and A. Tengg. Smart cameras for embedded vision.
Telematik, 12(3):14–19, 2006.

A. Klausner, A. Tengg, and B. Rinner. Distributed multi-
level data fusion for networked embedded systems. J.
on Sel. Topics in Signal Processing, 2(3):538–555, 2008.

S. Liu, K. Kang, J.-P. Tarel, and D.B. Cooper. Dis-
tributed volumetric scene geometry reconstruction with
a network of distributed smart cameras. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’09), pages 2334–2341, 2009.

A. Masiero and A. Cenedese. On triangulation algorithms
in large scale camera network systems. In Proc. of the
American Control Conf. (ACC), pages 4096–4101, 2012.

B. Narayanaswamy. Sparse Measurement Systems: Appli-
cations, Analysis, Algorithms and Design, PhD Thesis.
Carnegie Mellon University, 2011.

A. Papoulis. Probability, Random Variables, and Stochas-
tic Processes. McGraw-Hill, 1965.

B. Rinner and W. Wolf. An introduction to distributed
smart cameras. Proc. of the IEEE, 96(10):1565–1575,
2008.

S. Soro and W. Heinzelman. A survey of visual sensor
networks. Advances in Multimedia, 2009:1–22, 2009.

R.P. Tewarson. Sparse Matrices. Academic Press, 1973.
B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment - a modern synthesis. In Proceedings
of the International Workshop on Vision Algorithms:
Theory and Practice, pages 298–372, 1999.

R. Tron, R. Vidal, and A. Terzis. Distributed pose
averaging in camera networks via consensus on SE(3). In
Distributed Smart Cameras, 2008. ICDSC 2008. Second
ACM/IEEE International Conf. on, pages 1–10, 2008.

P.-B. Wieber, F. Billet, L. Boissieux, and R. Pissard-
Gibollet. The HuMAnS toolbox, a homogenous frame-
work for motion capture, analysis and simulation. In
International Symposium on the 3D Analysis of Human
Movement, Valenciennes, France, 2006.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10919

