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Abstract: We hypothesize that the GCSFR mutants introduce into those pathways changes that will lead 
to impaired differentiation and enhanced survival based on single cell behaviors as modulated by noise in  
intracellular proximal signaling and distal gene regulatory networks. We will show that GCSFR 
truncation mutants become fixed in the granulocyte progenitor population because of an incremental 
growth advantage. We will also show by modeling and experimentation that these GCSFR mutations alter 
the signaling pathways to further perturb growth, impair differentiation, and enhance survival. 
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1. INTRODUCTION 

How a blood stem cell develops into a highly specialized cell 
over several cell divisions is a profound question involving 
determinism and stochasticity and broadly applicable to 
human diseases and therapeutics (Glaubach and Corey 2012). 
Hematopoiesis provides the best-characterized system for cell 
fate decision-making in both health and disease. Yet, the 
precise roles of external cues, intracellular signaling, gene 
regulatory networks, and homeostatic mechanisms have been 
elusive because of their complexity and inobservability. The 
most common white blood cell in humans, the granulocyte is 
absolutely essential for host defense and survival. Its 
pathophysiological importance is apparent in severe 
congenital neutropenia (SCN). Life-threatening infections in 
children with SCN can be avoided through the use of 
recombinant granulocyte colony-stimulating factor (GCSF). 
However, SCN often transforms into secondary 
myelodysplastic syndrome (sMDS) or acute myeloid 
leukemia (sAML).  A great unresolved clinical question is 
whether chronic, pharmacologic doses of GCSF contribute to 
this transformation.  Human clinical and experimental data 
strongly suggest that linkage, whereas none had been 
predicted in mouse models. Firstly, a number of 
epidemiological clinical trials have demonstrated a strong 
association between exposure to GCSF and sMDS/sAML.  
Secondly, mutations in the distal domain of the GCSF 
Receptor (GCSFR, gene name CSF3R) have been isolated 
from SCN patients who developed sMDS/sAML or patients 
with de novo MDS. Recently, clonal evolution over ~20 
years was documented in an SCN patient who developed 

sMDS/sAML (Beekman et al., 2012).  What is particularly 
striking is that out of five different mutations in the GCSFR 
gene, some persisted into the leukemic clone but others were 
lost.  

Multiple lines of evidence have demonstrated clonal 
evolution in cancer. Two thorny questions have emerged: 
how to account for the large number of mutations isolated in 
each tumor and how to identify which ones as “drivers” or 
“passengers”. Studying the SCN�sMDS/sAML model will 
simplify resolving the complexity of clonal evolution. This 
model is simpler because i) there is one known founding 
genetic mutation (e.g. ELANE), ii) fewer mutations have 
been isolated, and iii) biological and clinical evidence 
strongly supports driver mutations in GCSFR.  An important 
and interesting question is whether mutations exist that 
promote instability and contribute to the malignant phenotype 
but are lost beforehand. Existence of these “lost driver 
mutations” can be inferred using drift and selection 
mathematical models of population genetics, augmented to 
include genome rearrangements. Another important question 
is which of the variants identified by genome sequencing are 
truly deleterious. We developed an original algorithm based 
on capture-recapture paradigm, which may help establishing 
the likelihood of deleteriousness in absence of gold standard 
(Hicks et al., 2011). 

The role of stochastic events in hematopoiesis has been 
discussed for the past 60 years since the beginnings of 
experimental hematology by Till and McCulloch (Whichard 
et al, 2010). The two opposing paradigms, deterministic 
hematopoiesis based on the firm regulation of peripheral 
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blood cell populations, and stochastic hematopoiesis based on 
variability observed in seeded bone marrow cells, are still 
awaiting a grand synthesis. This is in spite of the existence of 
substantial experimental findings, particularly those in the 
recent decade, using techniques of single-cell measurements. 
Disease-accompanying dynamics have been over the years 
variously modeled as deterministic or stochastic. Examples of 
stochastic phenomena observed in hematopoiesis include, but 
are not limited to: 

• Stochastic fluctuations in the number of HSC 
making self-renewal versus commitment decisions result in 
high variability in the magnitude of the response to infection. 

• The same stochastic fluctuations may lead to 
depletion of the HSC compartment when facing massive 
infection such as in neonatal sepsis. 

• Presence of variant proteins in molecular switches 
responding to hematopoietic growth factors such as G-CSF 
leads to aberrant proliferation and leukemia, again with an 
important chance component. 

• Molecular switches under stochastic fluctuations in 
molecular pathways and receptor noise may become 
reversible, which results in reversibility and plasticity at the 
level of the hematopoetic stem cell (HSC) and early 
committed cell level. 

Recently, a third approach is emerging, which may be termed 
the molecular determinism (term coined based on ideas in 
Snijder and Pelkmans 2001 and Pelkmans 2012). According 
to molecular determinism, stochastic variability of the 
proliferating bone marrow cells can be reduced to 
complicated series of deterministic events including 
molecular switches, which are multistable by nature and 
which trigger proliferation and/or maturation decisions. This 
is distinct from older proposals involving chaotic dynamics 
(Raue et al. 2010, Laurent et al. 2010). 

Mathematical, and in particular stochastic, principles have 
been used to explain the balance of factors contributing to 
behavior of a cell population as a whole. However, new 
techniques for gathering data and probing biological 
processes at a molecule and cell level continuously provide 
unprecedented amounts of new information, which leads to 
re-examination of these models. This has led to a renewed 
skepticism concerning stochastic modeling as a paradigm. As 
argued by Snijder and Pelkmans (2011), deterministic 
approach (or, what was called “molecular determinism” 
earlier on in the current paper) can resolve apparently 
stochastic phenomena with deterministic variability. They 
argue that cell-state parameters, such as cell size, growth rate, 
and cell cycle state, can be used to explain cell-to-cell 
variability, similarly as spatial cell population context 
parameters such as local cell density and location on cell 
colony edges. Tracing back cell-to-cell variability in time 
over multiple cell cycles may identify inherited, 
predetermining factors in cells of the same lineage. Snijder 
and Pelkmans (2011) also advocate repeated stimulation of 
the same cells to help identify the presence of deterministic 
factors in seemingly stochastic cell-to-cell variability. 

Complicated dynamics leading to chaotic (and sometimes 
indistinguishable from stochastic) behavior has been 
appreciated for some time. For example, existing 
mathematical models of cell cycle regulation (cf. e.g., 
Kimmel et al. 1984 and references therein) relies on 
nonlinear regulatory functions to control cell population 
distribution. However, these models also include a very real 
phenomenon of uneven allocation of constituents to progeny 
cells, which arguably is either truly stochastic or is 
indistinguishable from stochastic. Moreover, the idea of 
“backtracking” complicated (chaotic) trajectories seems to be 
doubtful from mathematical viewpoint. Schroeder (2011) 
discussed the need for long-term continuous follow-up on 
individual cells in order to understand the specific rules of 
proliferation and differentiation. This paper also touches 
upon issues such as influence of imaging techniques on cell 
behavior and difficulty with cell-tracking using existing 
software. 

Returning to molecular determinism, a very good example of 
this approach seems to be the paper by Takizawa et al. 
(2012), concerning a purely deterministic and demand-driven 
integrated model of regulation of early hematopoiesis. This 
models is very complex and it involves “view of how 
cytokines, chemokines, as well as conserved pathogen 
structures, are sensed, leading to divisional activation, 
proliferation, differentiation, and migration of hematopoietic 
stem and progenitor cells, all aimed at efficient contribution 
to immune responses and rapid reestablishment of 
hematopoietic homeostasis”. Takizava et al. (2012) paper is 
too involved physiologically to be discussed at length here. 
Let us notice that it contrasts with the simpler (and 
stochastic) models of Ogawa (1999) and Abkowitz et al. 
(1996). In these latter, the branching process paradigm is 
used at its simplest, with cells depicted as independent 
individuals, splitting at random and possibly interacting with 
a limited number of smaller entities.  

Another current concept is that of non-genetic variability as a 
substrate for natural section, as espoused by Huang’s group 
(Brock et al. 2009). For example, slow fluctuations in 
mammalian cells are the expression of heritability (memory) 
of protein abundance in successive generations of normal or 
cancer cells (Cohen et al. 2008, Sigal et al. 2006). One 
example is the non-inherited form of drug resistance in 
cancer.  Theoreticians have been suggesting this for several 
decades, because of similar experimental evidence. The 
memory of protein abundance and dynamic homeostasis, 
which implied slow fluctuations in individual cells, were 
important constituents of many of the cell cycle regulation 
and unequal division models (Webb 1987, Arino and Kimmel 
1987, Tyson and Hannsgen 1986). Development of resistance 
to chemotherapy by gene amplification (genetic, but non-
mutation driven) have been pondered by theorists equally 
long ago (Harnevo and Agur 1991, Kimmel and Axelrod 
1990). 

Questions about the dynamics of hematopoiesis are 
resurfacing due to new experimental studies concerning 
lineage-specific growth factors, morphogens, the 
microenvironment, and the plasticity of stem cells. These 
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new findings allow a re-examination of two long-standing 
questions whether hematopoiesis is stochastic or 
deterministic and whether it is discrete or continuous. These 
issues exist for other non-hematopoietic stem cell systems; 
however, hematopoiesis serves as the most informative and 
accessible mammalian tissue system to look for answers 
(Whichard et al. 2010). Since quantitative systems analysis 
based on multi-scale modeling is needed to understand the 
complexity and dynamics of hematopoiesis, therefore 
determining the correct approach to this modeling is of more 
than academic interest. 

2. MORAN MODEL OF GENETIC EVOLUTION UNDER 
DRIFT AND SELECTION 

We will use the Moran model with selection (Durret, 2008). 
In this model, the population of granulocyte precursors is 
considered to be constant, with variable in time proportion of 
mutants and time runs in discrete units (e.g. days). We 
consider a population of N biological cells, which at time 0 
contains i mutant cells. The mutant has selective advantage 
expressed by the relative fitness r, equal to the ratio of 
average progeny count of the mutant to that of the WT. For 
an advantageous mutant, r > 1. Under Moran Model, the 
probability of fixation of the mutant is equal to P[T0 > TN] = 
(1 – 1/ri)/(1 – 1/rN), where T0  and TN are times to extinction 
fixation of the mutant. For large N, the expected time to 
fixation, given fixation occurs, is equal to E[T0 | T0 > TN] ~ 
2log(N)/(1-1/r) (Durrett, 2008). To obtain the exact 
expression for the expected time to fixation we can use the 
general expression for the probability that in a Markov chain, 
the first instance of hitting state j at step n starting from state i 

equals to 
i
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. Application of these expressions 

requires inversion of very large matrices, but this is 
accomplished efficiently because of the matrices’ band 
structure. 

3. FIXATION OF THE TRUNCATION MUTANT GCSFR 
D715. 

Recognizing that ~70% of SCN patients who developed 
sMDS will express a truncation mutant GCSFR, we wish to 
compute the probability of fixation and the expected time to 
fixation of the D715 mutant, which has a growth rate 
advantage over the wild-type (WT) type I GCSFR. In 
proliferating cells, we assume that fitness advantage is 
conferred by difference of cell generation times of WT cells 
and that of mutant cells. If we denote by τw and τm the 
respective generation times, then r = exp[∆t (1/ τm – 1/ τw)] ≈ 
1 + (∆t/τw)(1 – α)/α where α = τm/τw (Fig. 1). In other words, 
α measures the selective advantage of the mutant. 

Table 1 Probabilities of fixation and expected times to 
fixation of the D715 variant of the GCSFR gene, under the 
Moran Model 

 

 

N α i P[T0>TN] E[TN | T0>TN] (yr) 

    Asympt.

time 

cont. 

Moran 

Model 

Exact 

time 

discr. 

Moran 

Model 

300,000 .60 7 .72 0.41 1.35 

300,000 .80 19 .71 1.10 3.42 

300,000 .95 91 .70 5.25 14.17 

300,000 .98 235 .70 13.53 32.59 

300,000 .99 476 .70 27.35 59.87 

30,000 .99 476 .70 22.35 39.80 

3,000,000 .99 476 .70 34.34 NA 

 

Figure 1 Summary of the dynamics of cell cycle distribution 
of BaF3 GR1 or D715 cells, following release from starvation 
block. Dose and receptor-type dependence of the %G1 cells. 
%G1 in D715 mutants is lower by about 5%, which 
considering the noise translates into 1-5% growth rate 
advantage (α =  0.95 – 0.99; see Table 1).  
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Table 1 depicts outcomes of computations with several 
variants of parameter values. We estimate that the number of 
granulocyte progenitors in a large-volume aspirate (50 ml) is 
approximately 300,000. This is about 1/10 of the human bone 
marrow volume. We accept an upper bound value of 
3,000,000, and for comparison a lower bound value of 
30,000.  We accept a cell cycle time of 96 hours in WT cells 
and 96α in mutants. We adjust the “initial” number i of 
mutant cells needed to obtain mutant fixation with about 70% 
probability, and then calculate the corresponding expected 
(mean) time to fixation. Let us note that at the arguably 
realistic range of α (0.95-0.99, see Figure 1) we obtain the 
“initial” counts of mutant cells in the range 91 – 476, and 
time to fixation range is 5.25 – 27.35 years. Altering the cell 
cycle time results in proportional change of time to fixation. 
Similarly, multiplying the total number N of cells results in 
change of the time to fixation. 

4. INTERPRETATION OF RESULTS AND DISCUSSION 

The expected times to fixation of the GCSFR D715 mutant in 
the range of (5-27) years are consistent with the timing of the 
sMDS onset. (From European SCN Registry data, age at 
diagnosis of SCN with sMDS and GCSFR mutation is 13 ± 9 
years.) The 70% fixation probability requires 91 – 476 
“initial” cells harboring the mutation. This might be resulting 
from the recurrent nature of the mutation; if this is the case, 
the “initial” time represents the initial period of SCN after 
administration of GCSF. To experimentally validate our 
model, we will measure the growth advantage of the D715 
cells as supported by gene expression analysis. 

A characteristic feature of human cancers is their very wide 
heterogeneity with respect to extent of involvement, genotype 
and rate of progression and spread (Hanahan and Weinberg, 
2011). This is in contrast to induced animal tumors, which 
are relatively uniform. Secondary AML, resulting from a 
transition from severe congenital neutropenia via 
myelodysplastic syndrome, is not an exception, with onset 
varying from 1 to 38 years of age and with wide variability of 
mutational background. It is interesting, and we consider it a 
major result, that such spread of the age of onset is not due 
solely to stochastic nature of clone transitions, but it requires 
a large variability in proliferative potential from one disease 
case to another. Also, this distribution of coefficient A, which 
parameterizes the proliferative potential, is right-skewed, 
with slowly evolving (low-A) clones prevailing. This 
provides a testable hypothesis about distribution of 
proliferating rates in leukemic stem cell clones. 

Here, we concentrated on a single aspect of the disease, 
mutation leading to the MDS stage. We previously presented 
a paper (Kimmel and Corey, 2013) which addressed some 
aspects of the SNC � sMDS � sAML transition. Among 
other, although the framework we used allowed deriving an 
expression relating the number of driver (selective) mutations 
to the corresponding count of accumulated passenger 
(neutral) mutations (similarly as it was done in Bozic et al., 
(2010)), we did not have at our disposal sequencing data to 
validate such an expression. Also, we did not attempt to fit 
the distribution of the age at diagnosis of the sMDS, since we 

were missing data on individual life histories, which would 
involve somatic mutation as well as sequencing data. These 
and other questions were postponed to a future study. From 
the mathematical point of view, the model of Kimmel and 
Corey (2013) was extremely simplified. It considered each 
new mutation to provide more selective advantage to the 
arising clone. Therefore, it was incapable of explaining the 
observation of Beekman et al. (2012), of mutation which 
appeared at the sMDS stage and disappeared at the sAML 
stage. This linear structure of mutation confered desirable 
simplicity to modeling but was not necessarily realistic. In 
the framework of multitype branching processes and special 
processes such as Griffiths and Pakes branching infinite allele 
model (Griffiths and Pakes, 1988, Kimmel and Mathaes, 
2010), more complicated scenarios might be gauged.  
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