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Abstract: In this paper, a relatively new computationally efficient technique, called model
predictive static programming (MPSP), is extended further to incorporate a sequence of
‘impulse’ control inputs, which is subsequently used to propose an effective suboptimal
automatic feedback radiotherapy strategy. A realistic two compartment kinetic model with
oxygen effect is considered for computing the control sequence. Biologically effective dose
constraints on early and late normal tissue are also considered. The proposed strategy essentially
drives the radius of a tumor below the radius of a single cell, thereby driving the number of
cancer cells to ‘zero’. Time interval between impulses is taken as 8 hrs and it is found that
the tumor is driven to zero with approximately 25 impulses. Note that the MPSP algorithm is
computationally quite efficient and it takes only 3-4 min in a regular desktop and MATLAB
environment.
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1. INTRODUCTION

Cancer is one of the main causes of deaths worldwide,
almost 50% of cancer patients receive radiation therapy
during the course of their treatment (Baskar et al. [2012]).
In external radiotherapy, radiations are transferred from
outside the patient’s body. Cell has deoxyribonucleic acid
(DNA), which carries genetic information. When cell is
exposed to radiations, some of the radiations causes DNA
double strand breaks. Cells have got inherent capacity for
damage repair. However, if it fails then it results in cell
death and that is how the radiation therapy works. In
external radiotherapy, normal cells are also exposed to
radiations. Aim of radiotherapy is to maximize damage
on cancerous cells with minimum damage to normal cells.
To achieve this, radiation dosages are given at different
points of time (which is called as fractionated radiation
therapy), so that in between the intervals damaged normal
cells can repair. In radiotherapy, linear quadratic (LQ)
model is widely accepted (O’Rourke et al. [2009]). LQ
model quantifies the fraction of surviving cells, when a
radiation dosage is given in single or multiple fractions.
Basic single dose linear quadratic (LQ) model is given by,

S = e−(αu+ βu2). Here, S is the surviving fraction i.e.,
S = (N2/N1), where N1 and N2 are number of tumor
cells before and after radiation dosage u respectively at
large times. If radiation dosage is delivered in n equal
fractions at different times so that time interval between
fractions are large, then LQ model is given by, S =

e−n(αu+ βu2). Effect, E of radiation dosage on cells is given
by, E = n

(
αu + βu2

)
. Biologically effective dose (BED)

is a concept which is often used to compare effect of dosage
from different regimens, it not equal to physical dose and
it is give by, BED = (E/α) = n

(
u + (β/α)u2

)
. LQ

model is empirical, algebraic and is applicable when time

interval between the fractions is large (Sachs et al. [1997]).
Therefore, different kinetic models were proposed, which
gives the same survival fraction as LQ model when time
is large. In Wein et al. [2000], Hlatky et al. [1994] model
is modified to include reoxygenation effect (hypoxia) and
optimal control problem is proposed to maximize tumor
control probability with BED constraints on early and
late normal tissue. Solution is obtained by using dynamic
programming method. In Bertuzzi et al. [2013], optimal
solutions are obtained. Here, LQ model with two R’s
(repair and repopulation) is used.

In this work, application of model predictive static pro-
gramming (MPSP) is considered for computation of tem-
poral distribution of radiation dosages to drive cancer cells
to zero for external beam radiotherapy. Kinetic model with
oxygen effect using two compartment model is used. BED
constraints on early and late normal tissue are considered.
MPSP with impulse control is extension of MPSP, which
is for continuous system (Padhi and Kothari [2009]). Here,
impulse instants (radiation dosage time) is fixed a priori
and impulse control magnitude (radiation dosages) are
computed. External beam radiotherapy can be regarded
as impulse control problem as DNA damage is caused
in 10−12 sec (Ling et al. [2010]). We used kinetic model
suggested by Bertuzzi et al. [2008](Appendix). Motivated
from the work of Wein et al. [2000], in which dynami-
cal model is modified to include reoxygenation effect, we
included reoxygenation effect in the model as suggested
in Horas et al. [2005]. In Horas et al. [2005], three mod-
els of radiosensitivity parameters are suggested: linear,
quadratic and saturation.These radiosentitivity parame-
ters are function of tumor radius. Overall radiosensitivity
of spherical tumor is calculated by dividing tumor into oxic
and hypoxic (less oxygen) compartments. We used linear
model for control design. Parameters are selected for head
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and neck squamous cell carcinoma (HNSCC). Simulation
results are shown.

2. SYSTEM DYNAMICS

Radiotherapy tumor dynamics model is adopted from
Bertuzzi et al. [2008]. The Model is described as

dNt

dt
= zt − 1

2
qA2

tNt, at t ̸= tk (1)

dAt

dt
= −wAt − 2qA2

t , at t ̸= tk (2)

N
(
t+k
)
= N

(
t−k
)
exp

(
−α

(
N
(
t−k
))

u (tk)
)
,

at t = tk
(3)

where, k = 1, 2, . . . , nk

A
(
t+k
)

= A
(
t−k
)

+ δ
(
N
(
t−k
))

u (tk) , at t = tk (4)

N
(
0−
)

= N0 (5)

A
(
0−
)

= 0 (6)

From (1), Nt is the number of tumor cells at time t, zt is
repopulation rate of tumor cells at time t in cells hr−1,
it can be constant (exponential growth) or function of Nt

(e.g. logistic or gompretz), also it can include both death
and birth rate of tumor cells. q is constant parameter in
hr−1 . From (2), At is the number of DNA double strand
breaks at time t. w is the repair rate of DNA double
strand breaks in hr−1 . From (3), nk is total number of
impulses, N

(
t−k
)
and N

(
t+k
)
are number of tumor cells

just before and after impulse at tk respectively. α
(
N
(
t−k
))

is radiosensitivity parameter in Gy−1 (1Gy = 1J/Kg ),
it can be function of N

(
t−k
)
or constant. u (tk) is the

impulse control input (radiation dosage) at time tk in
Gy. From (4), A

(
t−k
)
and A

(
t+k
)

are number of DNA
double strand breaks just before and after impulse at tk
respectively. δ is parmater in Gy−1, it can be a function
of N

(
t−k
)
or constant. N0 is the initial value of tumor

cells. Note that α is due to the damage caused by single
radiation track and δ is due to the damage caused by

two different tracks
(
δ =

√
(4βw)/q

)
. Both α and δ and

are dependent on type of cell, type of radiation and
oxygen status of cells (Hlatky et al. [1994]). From (2),
−wAt represents repair involving one DNA double strand
break and −2qA2

t represents misrepair involving two DNA
double strand breaks . One fourth of this misrepaired DNA
results in cell death, it is represented by (1/2) qA2

tNt in
(1). More details about the model can be obtained from
Hlatky et al. [1994].

In this work, for oxygen effect, two compartmental linear
model from Horas et al. [2005] is considered. Consider a
spherical tumor of radius R, as shown in Fig.1. Oxygen
will diffuse from outer cells to inner cells, let r0 be the
oxygen diffusion distance. Outer region of width r0 is
called as oxic zone and inner region of width R − r0 is
called as hypoxic (less oxygen) zone. Let r be any point
in oxic or hypoxic region, α ox

0 and αh
0 are values of α at

radius R and R − r0 respectively, similarly, β ox
0 and βh

0
are values of β at radius R and R − r0 respectively. Let
α (r, R) and β (r, R)are values of α and β at any point
r . Here, αox

0 , αh
0 , β

ox
0 and βh

0 are assumed to be known

and α (r, R) and β (r, R) are derived from these values.
In linear model it is assumed that α and β will decrease
linearly from outer to inner cells. α (r, R) and β (r, R)
are radiosensitivities at a particular radius, therefore for
whole tumor radiosensitivities are calculated by using
α (r, R) and β (r, R) by taking volumetric average. Equa-
tions (1) - (6) is dynamical system where, tumor cells N
will change continuously, therefore tumor radius R will
also change continuously. Therefore, there will be two cases
for calculating overall radiosensitivities: i) R > r0 : it
will contain both oxic and hypoxic region. ii) R ≤ r0 : it
will contain only oxic region. Overall radiosensitivities are
represented by αox

eff and βox
eff (Table 1).

Fig. 1. Schematic diagram of spherical tumor with two
(oxic and hypoxic) compartments.

Two compartment oxygen model is considered for control
design. Growth rate zt , α and β will be different in these
compartments, hence, (1)-(4) will be different in these
compartments. However, kinetic model is of differential
equations which needs initial conditions and we do not
have separate initial conditions for these compartments.
Therefore kinetics of both the compartments are combined
with the total kinetic of system as follows.

Case – 1: R > r0 (presence of both oxic and hypoxic
compartments) : Let Nox is number of cells in oxic region
and Nh is the number of cells in hypoxic region at any time
instant. Nox and Nh will add upto total number of cells N
at that time instant. Hence, assuming total derivative of
cells will be sum of derivatives of cells in oxic and hypoxic
compartment, one can write

N = Nox + Nh (7)

Ṅ = Ṅox + Ṅh (8)

Similarly , if Aox and Ah are number of DNA double strand
breaks in oxic and hypoxic region at any time instant
respectively. Then, total number of DNA double strand
breaks at that time instant, A is given by,

A = Aox + Ah (9)

therefore,

Ȧ = Ȧox + Ȧh (10)

from (7) at impulse instants,

N
(
t+k
)

= Nox

(
t+k
)

+ Nh

(
t+k
)

(11)

from (9) at impulse instants,

A
(
t+k
)

= Aox

(
t+k
)

+ Ah

(
t+k
)

(12)
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α and β are functions of R (Table 1), R is introduced
as N = (4/3)πθR3, Nox = (4/3)πθ(R3 − (R − r0)

3),

Nh = (4/3)πθ (R − r0)
3
, Aox =

(R3 − (R− r0 )3)
R3 A and

Ah = (R− r0 )3

R3 A. Here, θ is cell density in cells µm−3.
Therefore, after carrying out necessary algebra we get
following set of equations in R ,

Ṙ =

(
zox −

(
1
2

)
qA2

ox

) (
3R2r0 − 3Rr20 + r30

)
3R2

+
(R − r0)

3 (
zh −

(
1
2

)
qA2

h

)
3R2

(13)

Ȧ = −wA − 2qA2

 2

(
(R − r0)

3

R3

)2

− 2
(R − r0)

3

R3
+ 1

 (14)

R
(
t+k
)

=



[
R
(
t−k
)3 −

(
R
(
t−k
)

− r0
)3]

×e−αox
eff(R(t

−
k )) u(tk)

+
(
R
(
t−k
)

− r0
)3

×e−αh
eff(R(t

−
k )) uh(tk)



1/3

(15)

A
(
t+k
)

= A
(
t−k
)

+ δ
(
βox
eff

(
t−k
))

u (tk)

+ δ
(
βh
eff

(
t−k
))

uh (tk)
(16)

In (15) and (16), uh is used but uox is not used because,
hypoxic region will receive part of radiation and oxic zone
will receive all the radiations as hypoxic zone is inside

of spherical tumor, uh (tk) =
(R(t−k ) − r0)

3

R(t−k )
3 u (tk). Here,

zox = zb and zh = zb − zd, where zb is birth rate of cells
and zd is death rate of cells.

Case – 2: R ≤ r0 (presence of only oxic compartment) :
Necessary algebra is carried out by using N = (4/3)πθR3

in (1)-(4), therefore we get,

Ṙ =

(
zox −

(
1

2

)
qA2

)
R

3
(17)

Ȧ = −wA − 2qA2 (18)

R
(
t+k
)

= R
(
t−k
)
e− αox

eff(R(t
−
k ))u(tk)/3 (19)

A
(
t+k
)

= A
(
t−k
)

+ δ
(
βox
eff

(
t−k
))

u (tk) (20)

Thus, kinetic equations (13)-(16) is used in control design
when R > r0 and equations (17)-(20) is used in control
design when R ≤ r0 . Parameters of model (13)-(20) is
given in Table 2.

3. MODEL PREDICTIVE STATIC PROGRAMMING
WITH IMPULSE CONTROL

The relatively recent model predictive static programming
(MPSP) algorithm (Padhi and Kothari [2009]) is extended
in this paper to cater for a distinctly separated sequence
of impulsive control inputs. MPSP is suboptimal control
design technique applicable to finite horizon nonlinear
control problems with terminal constraints. MPSP is for-
mulated as static optimization problem. MPSP is iterative
algorithm which gives quick solution for control history

update, MPSP is computationally efficient. Here the fol-
lowing impulsive system dynamics is considered

Ẋ = f (X) , for t ̸= tk (21)

X+
k = g

(
X−

k , Uk

)
, for t = tk (22)

Y = h (X) (23)

X (0) = X0 (24)

where, k = 1, 2, 3, . . . , nk, X ϵ ℜn are the states, Y ϵ ℜp

are outputs which need to be controlled, Uk ϵ ℜm are
control at time tk , f : ℜn → ℜn , h : ℜn → ℜP and
g :ℜn ×ℜm → ℜn .X−

k and X+
k are states just before and

after impulse control at time tk respectively. Let t0 and tf
be initial and final time. System (21) and (23) is discretized
in time steps from t0 to tf . For (21), Euler discretization
is used, such that

Xk+1 = Xk + ∆ t f (Xk) (25)

Discretized system has following form,

Xk+1 = F (Xk) (26)

Yk = h (Xk) (27)

X+
k = g

(
X−

k , Uk

)
(28)

Total time t0 to tf is divided intoN distinct time steps. Let
tk for k = 1, 2, . . . , nk, be the distinct time when impulse
control is applied. Let nk be the number of impulses for
each control at time of impulses. If there are more than
one controls, then all the control elements will operate si-
multaneously at time of impulse. Application of impulsive
control will divide state trajectory into different segments,
let nseg be the number of segments, hence, nseg = nk + 1
( as all the controller will operate simultaneously). Each
segment is divided into equal number of nodes, let nd be
the number of nodes per segment for each state. Let Y d

be the desired value of Y which needs to be achieved at tf
i.e., YN → Y d. Let ∆YN = Y d − YN , assuming ∆YN is
small so that, ∆YN ≃ dYN . Using (27) and Taylor series
first order approximation, dYN can be written as,

dYN =

[
∂YN

∂XN

]
dXN (29)

from (26), considering, first order Taylor series approxima-
tion,

dXk+1 =

[
∂F (Xk)

∂Xk

]
dXk (30)

From (30), dXk+1 is function of dXk , similarly dXN will
be function of dXN−1 , dXN−1 will be function of dXN−2

and so on upto nth
k impulse, i.e.,

dYN =

[
∂YN

∂XN

] [
∂F

∂XN−1

] [
∂F

∂XN−2

]
· · ·

· · ·

[
∂F

∂X+
N−(nd−1)

]
dX+

N−(nd−1)

(31)

Note that, we have started from last node and moving
towards first node, and nth

k impulse is located at N −
(nd − 1)

th
node. At the impulsive points, (28) will be

followed, from (28),

dX+
k =

[
∂g
(
X−

k , Uk

)
∂X−

k

]
dX−

k +

[
∂g
(
X−

k , Uk

)
∂Uk

]
dUk(32)
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Thus, using (30) at different non impulsive grid points and
(32) at different impulsive grid points, finally (31) will be
expressed as:

dYN = B1dU1 + B2dU2 + · · ·+BkdUk (33)

Bk =

[
∂YN

∂XN

] [
∂F

∂XN−1

]
· · ·

[
∂F

∂X+
N−(nd−1)

]
×[

∂g

∂X−
N−(nd−1)

] [
∂F

∂XN−(nd−1)−1

]
· · ·

· · ·

[
∂F

∂X+
N−[nk−(k−1)](nd − 1)

][
∂g

∂Uk

] (34)

for k = 1, 2 . . . , nk. B′
ks are called as sensitivity ma-

trices (note that sensitivity matrices can be computed
recursively, therefore MPSP algorithm becomes fast). If
number of output variables are less than number of control,
i.e., p < mnk , then following optimization problem is
proposed.

J =

(
1

2

) nk∑
k=1

(Uk + dUk)
T
Rk (Uk + dUk) (35)

subject to constraint (33). Here, Uk is the guess value
of control, Uk + dUk is updated value of control and
Rk is positive definite matrix. Equations (35) and (33)
contain an optimization problem, which can be solved
using principle of Lagrange multiplier (Rao [1996]). Thus,
we get

Uk + dUk = R−1
k BT

k

(
nk∑

k=1

BkR
−1
k BT

k

)−1

×

(
dYN +

nk∑
k=1

BkUk

) (36)

Control objective is to minimize (35) subject to (33). This
will ensure that tumor is driven to zero with minimum
control (radiation), which in turn will ensure that mini-
mum radiation is passed through normal cells. Note that,
algorithm is iterative in nature, initially, control values are
guesses at nk values, then, dYN is checked so that dYN

should be zero or close to zero, if dYN does not satisfy the
error criteria then optimization problem (35) and (33) is
solved to get updated control. Then again if dYN does not
satisfy error criteria, optimization problem is solved with
previous updated control value as the guess value. This
process is repeated till the convergence. Also, if control
is constrained then Matlab Fmincon toolbox is used to
solve (35) and (33). Note that recursive computation of
sensitivity matrices and more details of MPSP for impulse
control is given in Sakode and Padhi [2014].

4. CONTROL DESIGN FOR EXTERNAL BEAM
RADIOTHERAPY

Objective of control design is to drive tumor cells to zero
at final time with BED constraints on early and late tissue.
Control design is based on MPSP algorithm with impulse
control ((35) and (33) ). Tumor kinetics ((13)-(20)) with
two compartment model for oxygen is used in algorithm.
To start with, algorithm needs desired value of states
which is to be achieved at final time tf . There are two

states, tumor radius R and number of DNA double strand
breaks, A. R → 0 will ensure tumor cells to go to zero(
N = (4/3)πθR3

)
irrespective of value of A. Therefore,

control design is carried out by using one output variable,
i.e, R. Error criteria for convergence is dR ≈ 0 , note that
dR is not set as exactly zero because δ =

√
(4βw)/q and

β is function of R . As this is iterative algorithm, therefore,
there is a chance of getting negative R in some iteration
which will make δ as complex value. Control design is
carried out with following constraints,

uk ≥ 0 , for k = 1, 2, . . . , nk (37)

where, uk are control values at time tk, it can also be
represented by u (tk). (37) will ensures control solution
with positive value of radiation, as radiation will enter
into the system, it can also be verified from control law
((15),(16) ,(19),(20)). As kinetics (13)-(20) will resemble
LQ model at large time and LQ model is applicable only
for low and intermediate radiation dosages (Sachs et al.
[1997]), therefore, there is upper limit, H on uk,

uk ≤ H, for k = 1, 2, . . . , nk (38)

Radiation limit is considered by using BED limit, BED is
computed by using equation from Yang and Xing [2005],
Wein et al. [2000], described below(

2

mE

) nk−1∑
i=1

nk∑
j=i+1

uiuje
−ωE(tj − ti) +

nk∑
k=1

uk

+

(
1

mE

) nk∑
k=1

u2
k − γE

αE
t ≤ BEDE

(39)

(
2

mL

) nk−1∑
i=1

nk∑
j=i+1

uiuje
−ωL(tj − ti) +

nk∑
k=1

uk

+

(
1

m
L

) nk∑
k=1

u2
k ≤ BEDL

(40)

Here, uk, ui, uj are control values at time tk, ti, tj respec-
tively, i.e., u (tk) , u (ti) , u (tj). mE = αE/βE , αE and
βE are radiosensitivity parameters for early tissue, wE

is repair rate of early tissue, γE is death rate of early
tissue. BEDE is maximum BED limit of early tissue.
mL = αL/βL , αL and βL are radiosensitivity parameters
for late tissue, wL is repair rate of late tissue, BEDL is
maximum BED limit of late tissue. αE , βE , αL andβL are
taken as constant values. (39) is followed for each time step
i.e., for u1, u1 u2, u1u2u3, · · · and so on. (40) is followed
only once by considering all u′

ks . Table 2 gives the values
of different parameters.

5. SIMULATION RESULTS

Model ((13) - (20)) and parameters of head and neck
squamous call carcinoma (HNSCC) is used (Table 2).
Equations (13)-(16) is used when R > r0 and equations
(17) - (20) is used when R ≤ r0 in control design
with MPSP with impulse control. Initial conditions are
R = 5000µm , r0 = 250µm and A = 0. tf is taken as 10
days, i.e., 240 hrs (Yang and Xing [2005]). Error criteria for
algorithm is, desired value of R i.e., Rd = 3µm , dRN >
0.1µm and RN > 0µm . Note that Rd is set as close to
zero not exactly zero. Also Rd is less than radius of single
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cell ( radius of single cell is 6.2µm as cell density chosen(
θ = 10−3 cells µm−3

)
, thus when R < 6µm, tumor is

eliminated. Time interval between the control impulses (u)
is taken as 8 hrs (Yang and Xing [2005]). Total number
of impulses is calculated as nk = tf (in hrs)/∆I, ∆I is
interval between impulses. Number of nodes per segment
is calculates as, nd = (tk − t0) /dt + 1 (by converting
in nearest integer), dt is time step of integration.

Fig. 2 shows the variation of tumor radius R after ap-
plication of impulse control, here r0 = 250µm. Initially,
R > r0 , therefore system will have both oxic and hypoxic
region, at around 150hrs , R ≈ r0 and after that R < r0 ,
here system will have only oxic region. Oxic region growth
rate is given by birth rate of cells and in hypoxic region
growth rate is given by combination birth and death rate
of cells. Inbetween the impulses, tumor radius increases as
overall tumor growth rate is positive ((13) and (17) ). At
the point of impulses there is sudden decrease in tumor
radius ((15) and (19)). Fig. 2 also shows a subplot, it can
be seen that radius decreases for small time after impulse,
this change in nature of plot is represented by small rect-
angle. This seems to be contrary as tumor growth rate is
positive. However, this is happening because impulses will
decrease R at the same time it will increase A ((16) and
(20)) and positive A will decrease R if it counters positive
tumor growth rate. Two data points are shown, left shows
time when tumor is eliminated i.e., R < 6µm and other
data point shows the tumor radius at final time, tf (240
hrs).

Fig. 3 shows the variation of A and u. At the time of im-
pulses, A will show sudden rise ((16) and (20)). Inbetween
the impulses, A will decrease because of repair of DNA
double strand breaks ((14) and (18)). u is continuously
increasing upto 150 hrs. This is because tumor has both
oxic and hypoxic region upto 150 hrs. Hypoxic region will
decrease and oxic zone will increase in proportion after
control impulse, as oxic zone has positive growth rate more
control will be required. Note that α is function of R,
hypoxic region has lesser value of α and β than oxic region,
and hypoxic region contains both death and birth terms
whereas in oxic region only birth terms are present. After
150 hrs, only oxic region is present, also there is not much
variation in value of u, generally, as tumor decreases u
should also decrease. This is not happening because of con-

trol law, from (19), R
(
t+k
)

= R
(
t−k
)
e−αox

eff(R(t
−
k ))u(tk)/3

in terms of N it will become N
(
t+k
)
= N

(
t−k
)
e− αox

effu.
It is nothing but the LQ model with only α term. αox is
constant when only oxic zone is present Table 1. Total u
(u1 + u2 + · · ·+ unk

) is 47.83 Gy . In Jeong et al. [2013],
it is seen that for tumor of 0.5 cm (5000µm) radius, 54Gy
is needed for 50% tumor control. All control values are
between 1-2 Gy , in clinical practice standard value is 2
Gy per fraction (Yang and Xing [2005]). Thus, we claim
that MPSP algorithm with impulse control gives clinically
relevant results.

6. CONCLUSION

Generally, radiotherapy is given in open loop , hence not
very effective. In this paper, a relatively new computa-
tionally efficient technique, called model predictive static
programming (MPSP), is extended further to incorporate

a sequence of ‘impulse’ control inputs, which is subse-
quently used to propose an effective suboptimal automatic
feedback radiotherapy strategy. A realistic two compart-
ment kinetic model with oxygen effect is considered for
computing the control sequence. Biologically effective dose
constraints on early and late normal tissue are also consid-
ered. The proposed strategy essentially drives the radius
of a tumor below the radius of a single cell, thereby driving
the number of cancer cells to ‘zero’. As per the knowledge
of the authors, this is the first algorithm for external beam
radiotherapy (impulse control) with the kinetic model.
Note that the proposed MPSP algorithm takes only 3-4
min in a regular desktop and MATLAB environment.

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

X: 200.1
Y: 5.95

time (hrs)

T
um

or
 r

ad
iu

s,
 R

 (
µm

)

X: 240
Y: 0.4345

12 14 16 18 20 22

3800

4000

4200

4400

time (hrs)

T
um

or
 r

ad
iu

s,
 R

 (
µm

)

Fig. 2. Tumor radius R after application of impulse control
for r0 = 250 µm
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impulse control for r0 = 250 µm . Bottom: Impulse
control with interval of 8 hrs for r0 = 250 µm
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Table 1. Overall radiosensitivity as a function
of R, Horas et al. [2005]

case i) R > r0: Oxic Zone (R − r0 ≤ r ≤ R)

Model Linear
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−
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case i) R > r0: Hypoxic Zone (0 ≤ r < R − r0)
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case ii) R ≤ r0: oxic zone

Model Constant
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0
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Table 2. Parameter values

Para-
-meter

Value Unit Reference

αox
0 0.0421 Gy−1 derived from

Jeong et al. [2013]

βox
0 0.5208 Gy−2 derived from

Jeong et al. [2013]

αh
0 0.3913 Gy−1 derived from

Jeong et al. [2013]

βh
0 0.0467 Gy−2 derived from

Jeong et al. [2013]

zb

(
0.5

24

)
×(

ln (2)

2

) hr−1 Jeong et al. [2013]

zd

(
ln(2)

28.2

)
×(

1

24

) hr−1 Chvetsov et al. [2008]

θ 10−3 cells µm−3 Jeong et al. [2013]

w 2 hr−1 Yang and Xing [2005]

q
w×

4× 10−4 hr−1 Hlatky et al. [1994]

H 9 Gy Sheu et al. [2013]

mE 10 Gy Yang and Xing [2005]

wE 2 hr−1 Yang and Xing [2005]

γE/αE 0.08 Gy hr−1 Wein et al. [2000]

BEDE 60 Gy Fowler [2010]

mL 3 Gy Yang and Xing [2005]

wL 0.25 hr−1 Yang and Xing [2005]

BEDL 115 Gy Fowler [2010]
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