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Abstract: The clinical significance of glycemic variability in Type 1 Diabetes is asymmetric:
a 40 mg/dl deviation below a nominal 110 mg/dl would represent a significant risk of
hypoglycemia, while the same deviation above would not cause major concern. The Blood
Glucose (BG) risk function of Kovatchev et al. [1997], which is widely used in retrospective
analysis of BG data, reflects this asymmetry as a disutility function that is quadratic in the
logarithm of BG. Interestingly, the prospective use of the same risk function in model-predictive
control can be complicated by the requirement for on-line numerical methods in computing
insulin doses that minimize risk over a given prediction horizon. In this work we propose an
empirical linear model that expresses the dynamic relationship between plasma glucose and
remote-compartment insulin in logarithmic coordinates, a model that (i) provides a natural
representation of the multiplicative effect of insulin action on glucose clearance and (ii) is such
that linear-quadratic methods applied to the model naturally reflect the BG risk function with
closed-form solutions. We demonstrate the potential of this approach through the design of
a Semi-Automated Insulin Advisor that uses continuous glucose monitoring to continuously
estimate the patient’s metabolic state, informing both episodic correction advice prompted
by the patient (for the treatment of hyperglycemia) and automated basal insulin attenuation
(for prevention of hypoglycemia). In silico pre-clinical trials show favorable performance with
respect to idealized “optimal” open-loop treatment, even in scenarios involving miscalibrated
carbohydrate ratios and misestimated carbohydrate content in meals.
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1. INTRODUCTION

Type 1 Diabetes (T1D) is a lifelong condition character-
ized by the auto-immune destruction of pancreatic beta
cells, destroying the body’s ability to produce insulin
which is necessary for glucose homeostasis. Insulin re-
placement therapy is the only proven treatment of T1D,
addressing both short- and long-term complications of the
disease. Unfortunately, insulin self-treatment represents a
significant cognitive burden for the patient, even with the
use of an insulin pump. This, along with the opportunity
for significantly improved control of Blood Glucose (BG),
has given rise to the current wave of interest in Artificial
Pancreas (AP) technology. Encouraging results have been
reported recently for proportional-integral-derivative con-
trol (cf. Weinzimer et al. [2012]), Model Predictive Control
(MPC) (cf. Hovorka et al. [2010], Cobelli et al. [2012],
Breton et al. [2012], Russell et al. [2012], Dassau et al.
[2013]), and fuzzy logic-based strategies (cf. Phillip et al.
[2013], Mauseth et al. [2013]).

One of the persistent challenges of designing closed-loop
algorithms for the control of T1D is the inherent asym-
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(NIH/NIDDK, RO1 DK 08562). This content is solely the responsi-
bility of the authors and does not necessarily represent the official
views of the NSF or the NIH.

metry of risk associated with Blood Glucose excursions
away from euglycemia. For example, a 40 mg/dl excur-
sion below a euglycemic target of 110 mg/dl presents a
significant risk of dangerous hypoglycemia, while a 40
mg/dl excursion above 110 mg/dl lies well within the
ADA recommended range of 70-180 mg/dl and is not
particularly alarming. Acknowledging this, Parker et al.
[2000] and Dua et al. [2009] have proposed the use of
an objective function for model-predictive control that
penalizes BG deviations asymmetrically so as to emphasize
the importance of avoiding hypoglycemia, and Hernjak
and Doyle III [2005], et al. [2013] have demonstrated the
benefits of also including an asymmetric control penalty
term. While these methods have proven to be effective
in avoiding hypoglycemia in MPC settings, they have the
significant drawback of requiring on-line numerical solvers
for computing insulin doses at each stage, even when the
underlying plant model is linear.

The BG risk function of Kovatchev et al. [1997] reflects
the asymmetry of risk by (i) equating the risks of severe
hypoglycemia (20 mg/dl) and severe hyperglycemia (600
mg/dl) and (ii) similarly equating the risks associated with
endpoints of the clinically recommended [70, 180] mg/dl
target range. The BG risk function is central to the “risk
space” computational framework for retrospective analysis
of BG data (cf. Kovatchev et al. [2001]), encompassing the
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Low and High Blood Glucose Indices (LBGI and HBGI)
and the Average Daily Risk Range (ADRR), which have
proven to be predictive of future significant hypoglycemia,
hyperglycemia, and extreme glycemic variability, respec-
tively (see Cobelli et al. [2009] for a review). However,
the prospective use of the existing risk symmetrization
function as a criterion for model-based control presents
a challenge since online numerical methods are generally
required to compute optimal actions, cf. Magni et al.
[2009].

In this paper we propose an alternative “risk space” ap-
proach to control that starts with the adoption of an
empirical model, which we refer to as a “risk space con-
trol model,” that describes the relationship between the
logarithm of plasma glucose and the logarithm of remote-
compartment insulin. This representation of the model
has two major benefits: (i) it expresses the multiplica-
tive dependence on remote-compartment insulin in glucose
clearance in a linear fashion and (ii) it enables a close
approximation of the risk symmetrization as a quadratic
function of the state vector in the new coordinate system.
Using this framework we have designed a Semi-Automated
Insulin Advisor (SAIA) that uses CGM to frequently
estimate the patient’s metabolic state, informing both
episodic correction advice prompted by the patient (for the
treatment of hyperglycemia) and automated basal insulin
attenuation (for prevention of hypoglycemia). In silico pre-
clinical trials show favorable performance with respect to
idealized “optimal” open-loop treatment, even in challeng-
ing scenarios involving miscalibrated carbohydrate ratios
and misestimated carbohydrate content in meals.

2. RISK SPACE CONTROL MODEL

We capture the dynamic interaction of plasma glucose and
remote insulin in a logarithmic coordinate system through
the following model, whose parameters are fitted (below)
from transient responses to glucose challenges.

λ̇G(t) =−p1λG(t)− p2λX(t) + p3Q2(t)/BW (1)

λ̇X(t) =−p4λX(t) + p4[IP (t)/(VIBW )− Ib] (2)

where

λG(t) = ln(G(t)/Gb) and λX(t) = ln(X(t)), (3)

with G(t) [mg/dl] representing plasma glucose and X(t)
[mU/l] representing insulin acting in the remote compart-
ment. Plasma insulin IP (t) [mU] is modeled as:

İSC1(t) =−kdISC1 (t) + J (t) (4)

İSC2(t) =−kdISC2 (t) + kdISC1 (t) (5)

İP (t) =−kclIP (t) + kdISC2 (t) (6)

where J(t) [mU/min] is injected insulin. Gut glucose Q2(t)
[mg] is modeled as follows:

Q̇0(t) =−k1 (Q0 (t)−m(t)) (7)

Q̇1(t) =−k2 (Q1 (t)−Q0 (t)) (8)

Q̇2(t) =−k3 (Q2 (t)−Q1 (t)) (9)

where m(t) [mg/min] is ingested carbohydrates. The pa-
rameters p1, p2, p3, p4, VI , and BW , some of which are

patient-specific, have interpretations similar to those in the
standard minimal model of glucose kinetics, cf. Bergman
et al. [1979]. The gut and insulin transport parameters
k1, k2, k3, kd, kcl are also patient-specific. Basal glucose
concentration Gb is set to 112.5 [mg/dl] as a fixed ref-
erence. Ib is calculated from the steady state value of
IP (t)/(VIBW ) with J(t) fixed at the patient’s average
basal rate.

The method for estimating the parameters of the risk
space control model is described in Jiang et al. [2013]
(paper forthcoming). A subset of the parameters of the
model (p2, p3, kd, and the gut transport model parameters)
are adjusted to represent the specific characteristics of an
individual patient, and the rest are held fixed as “popula-
tion” values. Generally, the parameters of the model are
chosen to maximize four-hour prediction accuracy. As a
first step, using the Virginia/Padova Type 1 Simulator as
a reference, we have tuned all of the parameters of a “pop-
ulation average” model designed to maximize average pre-
diction accuracy across all of the adult in silico subjects.
Next, after fixing the population-average parameters, we
computed optimal multiplier values for the individualized
parameters. The tuning process uses 2x2 design, with (i)
two meal scenarios (first, a meal with a mealtime bolus,
and second, the same meal/bolus followed by a correction
bolus one hour later) and (ii) two prediction windows
(first, between 1 and 5 hours following a meal, and second,
between 4 and 8 hours following a meal). The optimization
criterion that we used for individualization (i) rewards
prediction accuracy within each setting of the 2x2 design
but (ii) also heavily penalizes mismatch in accuracy across
settings. After computing the optimal multiplier values for
each in silico subject, we fitted the optimized multipliers
to a nonlinear functions of CHO:I and ISF values.

Fig. 1 illustrates that with a cost function that is quadratic
in the state vector (λG(t), λX(t))∗) (specifically, 4405.6 ·
[ln(G(t)/Gb)]

2), cf. red trace, we can closely approximate
the BG risk function of Kovatchev et al. [1997], cf. blue
trace. (The green trace in the figure illustrates the dif-
ficulty of approximating the BG risk function with a
quadratic function ofG(t), in this case [G(t)−Gb]]2.) Thus,
the risk space control model provides a linear-quadratic
framework that retains the benefits of the risk space frame-
work, with a computationally tractable model. While we
believe that this framework has broad applicability in both
advisory and closed-loop algorithms for the treatment of
diabetes, we illustrate the use of the framework in the
design and in silico evaluation of the Semi-Automated
Insulin Advisor in which the risk space control model
informs model-predictive bolus advice on demand.

3. SEMI-AUTOMATED INSULIN ADVISOR

As an illustrative use of the risk space control model,
we present a Semi-Automated Insulin Advisor (SAIA),
which as shown in Fig. 2 consists in two main modules:
an On-Demand Bolus Advisor and Meal-Informed Power
Brakes, both of which continuously process insulin his-
tory, CGM data, and meal information. The On-Demand
Bolus Advisor is invoked episodically by the patient and
provides correction bolus advice using a model-predictive
approach (using the risk space control model). The Meal-
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Fig. 1. Comparison of Risk Coordinates
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Fig. 2. System Algorithm Schematic Diagram

Informed Power Brakes function by continuously con-
straining basal insulin delivery based on the predicted
risk of hypoglycemia. Since the Power Brakes method has
been described elsewhere (cf. Hughes et al. [2010], Patek
et al. [2012]), the following sections serve to describe state
estimation and model-predictive insulin advice functions
of the On-Demand Bolus Advisor.

4. STATE ESTIMATION

State estimation within the On-Demand Bolus Advisor
is accomplished through a combination of feedforward
estimation and Kalman filtering, as in Grosman et al.
[2010]. Here, insulin transport and gut states, expressed
by Eqs. (4)-(9), are “estimated” in an open loop fashion,
the results of which are fed into a Kalman filter, which
uses CGM data to estimate the “core” states of the risk
space control model.

To set the stage for this discussion, we define q(t) =
(Q0(t), Q1(t), Q2(t))′. Then, discretizing Eqs. (7)-(9), we
may express the gut model as a discrete-time LTI system:

q(k + 1) = AQq(k) +BQm(k), (10)

where q(k) refers to the k-th sample of the state vector,
m(k) is carbohydrate ingestion held constant for the entire
sampling interval, and

Q2(k) = CQ2q(k) +DQ2m(k). (11)

Similarly, defining i(t) = (ISC1(t), ISC2(t), IP (t))′ and dis-
cretizing Eqs. (4)-(6), we may express the insulin transport
model as a discrete-time LTI system:

i(k + 1) = AI i(k) +BIJ(k), (12)

where i(k) refers to the k-th sample of the state vector,
J(k) is insulin delivery held constant for the entire sam-
pling interval, and
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Fig. 3. State Estimation Module

IP (k) = CIP i(k) +DIPJ(k). (13)

Finally, defining η(t) = (λG(t), λX(t))′ and discretizing
Eqs. (1)-(2), we may describe the “core” states of the risk
space control model as a discrete time LTI system:

η(k+1) = ALη(k)+BL,1IP (k)+BL,2Ib+GLQ2(k), (14)

where η(k) refers to the k-th sample of the core state
vector. For convenience later, we introduce a notation for
the two rows of the state spaces matrices:

AL =

[
AλG
AλX

]
, BL,1 =

[
BλG,1
BλX,1

]
,

BL,2 =

[
BλG,2
BλX,2

]
, GL =

[
GλG
GλX

]
.

(15)

4.1 Feedforward “Estimation” of i(k), q(k), and λX(k)

Estimates of i(k) and q(k) are computed in an open loop
fashion from knowledge of the inputs: insulin injections
J(k) and meals m(k), as depicted in Fig. (3). Also, as a
point of reference, we maintain an open loop estimate of
remote insulin state using the open loop estimate of IP (k)
and the equation λX(k+ 1) = AλXλX(k) +BλX,1IP (k) +
BλX,2Ib(k).

4.2 Kalman Estimation of η(k)

CGM-driven estimates (λ̂G(k), λ̂X(k)) of the risk model
states are computed using a Kalman filter for the dynamic
system of Eq. (14) with an additive disturbance process
ω(k):

η(k + 1) = ALη(k) +BLUL(k) + ω(k) (16)

where BL = [BL,1 BL,2 GL] and UL = [I ′P (k) I ′b Q
′
2(k)]

′
is

treated as a known input (from the open loop estimates
above). The innovation process is computed from CGM
measurements y(k) = ln(CGM(k)/Gb) and is modeled as
having additive measurement noise ν(k):

y(k) = CLη(k) +DLUL(k) + ν(k), (17)

where CL and DL come from the discretization of the risk
space control model. For the Kalman filter used in the in
silico experiments of Section 6, we assume that

E (w(k)w(k)′) =

[
1 1
1 1

]
and E (ν(k)ν(k)′) = 0.05. (18)
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(We assume that ω(k) and η(k) are uncorrelated.) In
Section 5, we use the difference between the Kalman filter

estimate λ̂X(k) and the feedforward estimate λX(k)

∆(k) = λ̂X(k)− λX(k). (19)

as a representation of model error.

5. CORRECTION BOLUS ADVICE ON DEMAND

Here, we describe how correction bolus advice is computed
using the estimated state of the risk space control model.
As discussed in Section 3, the system is designed to
produce correction bolus advice any time that the patient
asks for it. While the effect of previous meals is accounted
for in the computation (through the estimate of the gut
states q), if the bolus advice is being requested at the
time of a meal, then the content of the meal is ignored
in the computation. Meal-related insulin is computed at
meal times using the patient’s carbohydrate ratio.

To set the stage for this discussion, let us assume that
the patient asks for advice at stage k. Section 5.1 below
shows how the effect of a proposed bolus is predicted using
the individualized risk space control model. Section 5.2
presents the optimization model used to compute the
optimal correction.

5.1 Predicting the Effect of a Bolus at Stage k

The model-based advice of this section is informed by the
predicted trajectory that results from the correction bolus
at stage k. Predictions are initialized by the feedforward
and CGM-driven estimates of Section 4. The error variable
∆(k) = λ̂X(k) − λX(k) of Eq. (19) is what links the
open-loop and feedback elements of the state estimate. In
particular, for the purposes of predicting the impact of an
insulin bolus ubolus (mU/min) at stage k, we predict future
log-glucose states as

λ̆G(k + τ + 1) =AλG

(
λ̆G(k + τ)

λ̆X(k + τ) + ∆̆(k + τ)

)
+BλG,1ĬP (k + τ) +BλG,2Ib

+GλGQ̆2(k + τ) (20)

for τ = 0, 1, . . . , N (the prediction-horizon of the bolus

advisor optimization model), where λ̆G(k) = λ̂G(k) (the
estimate from the Kalman filter at stage k) and where

ĬP (k) = CIP ĭ(k) + DIP J̆(k), and Q̆2 = CQ2q̆(k) +
DQ2m̆(k) are computed from

λ̆X(k + τ + 1) =AλX

(
λ̆G(k + τ)

λ̆X(k + τ)

)
+BλX,1ĬP (k + τ) +BλX,2Ib

+GλXQ̆2(k + τ) (21)

∆̆(k + τ + 1) = α∆̆(k + τ) (22)

ĭ(k + τ + 1) =AI ĭ(k + τ) +BI J̆(k + τ) (23)

q̆(k + τ + 1) =AQq̆(k + τ) +BQm̆(k + τ) (24)

where λ̆X(k) = λ̂X(k), ∆̆(k) = ∆(k), ĭ(k) = i(k), and

q̆(k) = q(k) (all from the state estimation module), J̆(k+

τ) reflects the effect of the insulin bolus ubolus at stage

k (specifically, J̆(k) = J(k) + ubolus and is otherwise just
J(k)), and m̆(k + τ) = m(k + τ) reflects the filtered carb
input from prior meals (but not including the meal that
might be arriving at stage k). Note that per Eq. (24)
the carbs that may be ingested at stage k are ignored in
the prediction, since the goal is to compute an optimal
correction bolus. (If there happens to be a meal at stage
k, then meal related insulin will be computed by the usual
method using the patient’s carbohydrate ratio.) Finally,
note that the parameter α = exp(−5/720) causes the
initial error ∆(k) to be “forgotten” over the prediction
horizon of optimal bolus computation.

5.2 Optimization Model

The correction bolus advice is computed to minimize the
sum of quadratic costs:

min
ubolus∈<

[
N∑
τ=1

ω(k − km, τ)
(
λ̆G(k + τ)

)2
]
, (25)

where km is the stage number of the most recent meal
(prior to a meal that might be arriving at stage k), N
corresponds to a four-hour prediction horizon (N = 48),
and ω(k−km, τ) is a nonnegative weight determined by the
elapsed time since the most recent meal. The time-varying
weights ω are used to ensure that the optimization model
itself is well-adapted to the tactical situation at stage k.
In particular, if it has been only a short time since the
most recent meal the weights are set to zero for several
hours after the meal to prevent the correction advice from
targeting the post-prandial excursion. The weights are set
to non-zero values sooner if it has already been a long
time since the most recent meal. The exact mathematical
expression for ω(k − km, τ) is too complex to relate here,
but we provide some details as follows. The weights can be
nonzero for τ as small as 18 (corresponding to 90 minutes),
and this is in the case where the most recent meal is more
than 200 minutes in the past. The weights can remain zero
for as long as τ = 42 (corresponding to 210 minutes), and
this is in the case where the most recent meal was within
25 minutes of the time of the bolus request. The numerical
values of the weights vary between zero and one, Finally,
note that weighting function itself is not specific to the
characteristics of the patient being treated.

Applying the Lagrange formula to Eqs. (20)-(24), we can
compute the predicted trajectory of λG as a linear function
of the current state estimate and ubolus:

λ̃G(k + 1) =AλGλ̂G(k) +AλX λ̂X(k) +A∆∆(k)

+AI i(k) +AIbIb +AQq(k) + Bubolus(26)

where λ̃G(k + 1) = (λ̆G(k + 1), . . . , λ̆G(k +N))′, with the
matrices AλG,AλX ,A∆,AI ,AIb,AQ, and BQ all derived
from the state space equations of Section 5.1. The opti-
mization model of Eq. (25) can be expressed as

min
ubolus∈<

λ̃G(k + 1)′Ω(k, km)λ̃G(k + 1), (27)

where Ω(k, km) = Diag(ω(k − km, 1), . . . , ω(k − km, N)).

The optimal correction bolus can now be expressed in
closed-form as u∗bolus =
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−Φ−1ΘλGλ̂G(k)− Φ−1ΘλX λ̂X(k)− Φ−1Θ∆∆(k)

−Φ−1ΘI i(k)− Φ−1ΘIbIb

−Φ−1ΘQq(k) (28)

where Φ = B′Ω(k, km)B and ΘλG
= B′Ω(k, km)AλG,

ΘλX
= B′Ω(k, km)AλX , and similar expressions hold for

Θ∆,ΘI ,ΘIb, and ΘQ.

6. IN SILICO PRECLINICAL TRIALS

To evaluate the semi-automated insulin advisor devel-
oped in Sections 3-5 relative to conventional CSII therapy
(mealtime boluses only without low-glucose insulin atten-
uation) we have conducted in silico preclinical trials using
the 100 adult subjects that accompany the U. Virginia
/ U. Padova FDA-accepted Type 1 Simulator. For each
experimental setting, we present summary results in terms
of (i) percentage time in the range of [70 mg/dl 180 mg/dl]
and (ii) percentage time under 70 mg/dl (hypoglycemia).

Miscalibrated Carb Ratio- Three Meals a Day: In
this experiment we study the case where the patient’s
simulated carbohydrate ratio is miscalibrated (within a
range of values), so that the meal is underinsulinized
to varying degrees, and the On-Demand Bolus Advisor
is triggered one hour after the meal to compensate for
the inadequate bolus. Each of the in silico subjects is
challenged with three meals in a 24 hour period, with a
breakfast of 0.7 g/kg at 08:00, lunch of 1 g/kg at 13:00, and
a dinner of 1 g/kg at 20:00. Mealtime corrections are also
computed by the bolus advisor, but this is done without
knowledge of the meal amount. The Meal-Informed Power
Brakes are enabled for the duration of the experiment.
As can be seen in the Fig. 4, the risk-space correction
advice serves to reduce the time in the hyperglycemia,
especially in the case of heavily underinsulinized meals.
The incidence of hypoglycemia in either case is negligible:
0.01 percent time on average below 70 for the entire in
silico population, with and without the optimal correction.

Without'Op*mal'Correc*on' With'Op*mal'Correc*on'

Ra
ng
e'

Frac%on(of(meal(bolus( Frac%on(of(meal(bolus(

Fig. 4. Graphical summary of the simulation results across
the adult subjects ran under a three-meal scenario.
The X-axis of each plot shows the fraction of the
nominal meal boluses being delivered, ranging from
1 to .1. Average percentage time in range is shown
with thick solid lines, accompanied by 50, 75, and 90%
envelopes.

Misestimated Carb Content Here, we study the more
challenging scenario where the actual carbohydrate con-
tent of a meal ranges from -50% to +50% of the true value.
(With the incorrect estimate of the size of the meal, the
estimate of the patient’s state will be thrown off for the

timeframe after the meal.) Each in silico subject experi-
ences a 0.8 g/kg meal, and the meal-related insulin dose
is computed using the patient’s carbohydrate ratio. The
On-Demand Bolus Advisor is called one hour after each
meal. Mealtime corrections are also computed by the bolus
advisor, but this is done without knowledge of the meal
amount. The Meal-Informed Power Brakes are enabled for
the duration of the experiment. As can be seen in Fig. 5
the bolus advisor manages to improve upon conventional
therapy with up to 50% under- and over-estimation of
carbohydrates in meals. It is worth noting that the im-
provement in the case of 50% underestimation is relatively
small, due probably to the fact that the Kalman filter has
to “catch up” to the truth that a large meal was taken. The
improvement in the case of overestimation is due mostly to
hypo-mitigating effect of the meal-informed power brakes,
which indeed manage to prevent hypoglycemia.

4/7/14% %Paul%Vereshche0n% Slide%5%

Without'Op*mal'Correc*on' With'Op*mal'Correc*on'

Ra
ng
e'
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w
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Meal%Mises0ma0on% Meal%Mises0ma0on%

Fig. 5. Graphical summary of the simulation results across
the adult subjects ran under a one-meal scenario
where the carb content is misestimated from -50% to
+50% (X axis).

Advice Timing Relative to Meals Here, we explore
the ability of the system to provide correction bolus
advice at different times after meals. Returning to a 24-
hour simulation scenario, each subject experiences three
meals: breakfast of 0.7 g/kg at 8:00, lunch of 1 g/kg
at 13:00, and dinner of 1 g/kg at 20:00. In each case
the patient receives 50% of his/her meal bolus due to
miscalibrated carbohydrate ratio. In separate runs we
provide advice at different times after the underbolused
meal, ranging from 15 to 240 minutes. Again, the advisor is
also invoked at meal times, and the Meal-Informed Power
Brakes are continuously enabled. From Fig. 6 we see that
the On-Demand Bolus Advisor manages to represent an
improvement over the no-advice condition, even when the
advisor is invoked 15 minutes after the underbolused meal.
Again, the incidence of hypoglycemia in either case is
negligible: 0.04 percent time on average below 70 for the
entire in silico population, with and without the optimal
correction.

7. CONCLUSIONS

In this paper we have introduced a framework for control
in risk space, where, with the use of an empirical model
(the risk space control model) expressed in a logarithmic
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Fig. 6. Graphical summary of the simulation results across
the adult subjects ran under one-meal scenarios where
the advice is requested at different times relative to
the meal.

coordinate system, we obtain the effect of an asymmetric
penalty function for model-predictive control but with
very simple linear-quadratic computations. Control in risk
space provides a natural mechanism for encouraging safe
controller action by heavily penalizing BG deviations be-
low 112.5 mg/dl, more so than with comparable devi-
ations above. As demonstrated by our Semi-Automated
Insulin Advisor, which involves a combination of (i) an
On-Demand (risk-based) Bolus Advisor and (ii) Meal-
Informed Power Brakes, the risk-space approach tremen-
dously simplifies the design of model-predictive control
systems for type 1 diabetes. Specifically, the risk space
control model (individualized with the patient’s open-loop
treatment parameters) facilitated the design of a model-
predictive correction bolus advisor that provides safe and
effective correction bolus advise for under-bolused meals.
Our in silico preclinical trial results show that the system
is highly robust to misestimated carb content in meals, and
this is achieved without requiring patient-specific objective
function weights. In addition, we have found that the risk-
space control model admits accurate predictions of the
effect of post-meal corrections Jiang et al. [2013] (paper
forthcoming). In future work we plan to quantify the
safety and performance improvements afforded by the risk
space approach relative to other methods of representing
asymmetric BG risk. In addition, we plan to explore the
role and use of the risk space approach in other automated
insulin dosing configurations including fully closed-loop
artificial pancreas systems.
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