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Abstract: A constraint tightened linear-time-varying MPC framework is proposed with
applications in power tracking for variable and fixed speed generators. Current constraint
tightening approaches are extended to allow for practical applications where future system
representations are unknown. The resulting control structure is shown to be robustly feasible
under given conditions. Knowledge about the geometry of system constraints is exploited to
obtain a computationally efficient method of computing tightened sets online. A simulation
study is presented demonstrating the ability of the controller to handle modelling error and
demonstrate tracking of a commanded power profile.
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1. INTRODUCTION

In applications such as diesel series hybrid electric vehicles,
a high level energy management controller will typically
pass down power profiles for a lower level diesel generator
controller to track (Cairano et al., 2011). In addition to
tracking the requested power, the controller must minimise
fuel consumption whenever the target power is achievable,
and at all times the generator must operate within equip-
ment safety limits, actuator limitations and in many cases,
legislative emission constraints.

For diesel generator applications, Model Predictive Con-
trol (MPC) appears an ideal candidate architecture, due
to its ability to track references whilst taking into account
system dynamics and explicitly handling constraints.

In many diesel engine control schemes, engine speed and
fuel rate are treated as measured disturbances to the
controller (Stefanopoulou et al., 2000; Wahlström and
Eriksson, 2013). Where a fixed generator speed is not
required, allowing speed to be a free state allows for more
efficient operating points to be selected, though in some
applications such as conventional diesel submarines, fixed
speed generators are required. A single control formulation
can serve both purposes by appropriate selection of engine
speed constraints. Inclusion of both fuel rate and generator
load as control inputs gives an additional degree of freedom
and the option to temporarily deviate from the requested
power if required to satisfy all constraints, tolerable for
short periods in applications where a secondary power
source can offset the error.

It is known that diesel engines exhibit strong nonlineari-
ties (Wahlström and Eriksson, 2011), and a drawback of
using MPC with nonlinear prediction models is increased
computational burden. Many implementations take advan-
tage of computationally efficient linear MPC theory by

switching between a finite number of linear models which
are selected based on the current operating point (Ortner
and Del Re, 2007). Alternatively, a linearised form of a
nonlinear model can be found at each time-step, resulting
in a Linear-Time-Varying Model Predictive Control (LTV-
MPC) scheme (Sharma et al., 2013). Both the switched
and LTV MPC schemes suffer from model mismatch how-
ever, which can lead to infeasible solutions.

Many existing robustness techniques that deal with model
mismatch, such as open or closed loop Min-Max MPC, are
overly conservative or computationally intractable (Mayne
et al., 2000). Constraint Tightening (CT) is introduced in
Gossner et al. (1997) and further generalised by Richards
and How (2006), and is a robustness technique where
computational requirements generally do not exceed that
of nominal robustness and robust feasibility can be guar-
anteed. The general principle is that constraints are sys-
tematically tightened along the horizon, effectively reserv-
ing some margin which can be used to correct for errors
resulting from model mismatch at some future time. Ex-
isting formulations of CT for LTV systems assume that
the system representation is known exactly in the future
(Richards, 2005), which allows the tightened constraints
to be calculated offline, however in an online linearisation
scheme, this assumption is invalid.

This paper proposes a practical robust LTV-MPC frame-
work with an application in power tracking for both vari-
able and fixed speed generators subjected to constraints.
Uncertainty of the internal prediction model between op-
timisation problems is considered and a computationally
efficient form of the Pontryagin difference is proposed to
permit online computation. Simulations demonstrate the
capability of the resulting controller under power track-
ing conditions on a validated Mean Value Engine Model
(MVEM).
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2. MEAN VALUE ENGINE MODEL

The MVEM published in (Wahlström and Eriksson, 2011)
has been utilised, with minor variations in the algebraic
expressions and the addition of engine speed dynamics.
The model is calibrated against data captured from a 3.0
litre direct injected diesel engine with Exhaust Gas Recir-
culation (EGR) and a Variable Geometry Turbocharger
(VGT) commissioned at The University of Melbourne’s
ACART test facility. The generator is assumed to have a
constant efficiency and significantly faster dynamics than
the engine.

2.1 Model Description

The engine model has 7 states, x = [ωe, pim, pem, ωt, xvgt,

Oim, Oem]
T ∈ <7, representing engine speed, intake and

exhaust manifold pressure, turbocharger speed, VGT po-
sition as well as intake and exhaust manifold oxygen frac-
tions. The model inputs, u = [ṁf , Pload, uvgt, uegr]

T ∈ <4,
are fuel rate (g/s), generator power (kW ), VGT position
demand (%) and EGR position (%). The system distur-
bances, d = [pamb, Tamb, Oamb, pex] ∈ <4 are the intake
pressure, temperature and oxygen content and exhaust
back pressure. The dynamics are governed by

ω̇e = (Peng(x, u)− Pload)/(ωeJe) (1a)

ṗim = (ṁc + ṁegr − ṁei)RaTim/Vim (1b)

ṗem = (ṁeo − ṁegr − ṁt)ReTcyl/Vem (1c)

ω̇t = (Pt − Pc)/(ωtJt) (1d)

ẋvgt = (uvgt − xvgt)/τvgt (1e)

Ȯim = [(Oem −Oim)ṁegr (1f)

+(Oamb −Oim)ṁc]RaTim/(pimVim)

Ȯem = (Ocyl −Oem)ṁtReTcyl/(pemVem) (1g)

where Je, Vim, Vem, Jt, τvgt are tuning parameters and
Ra, Re represent the specific gas constants for intake and
exhaust gases respectively. The remaining undefined terms
are summarised in Table 1. Variations from the model pre-
sented in Wahlström and Eriksson (2011) are summarised
as follows:

• The compressor efficiency utilises a correction for non
atmospheric or time-varying inlet conditions.

• Intercoolers are assumed imperfect, with their effi-
ciencies as functions of mass flow.

• Intake manifold temperature is a function of inter-
cooler temperatures.

• NO rate has been included as a model output.
• Physics based models for cylinder-related sub-models

are impractical for control studies. The approach
taken in this work is to find correlations for these val-
ues ((2b), (5a), (5c) and (5d)) with engine states and
inputs using stationary measurements, as described
in Broomhead et al. (2013).

The model outputs, y = [λ,NO]T ∈ <2, include in-
stantaneous lambda and instantaneous NO rate (g/kWh),
described as

λ = (ṁeiOim)/(AFRsOambṁf ) (2a)

NO% = [ṁf , ṁf/ωe,
√
O2im, 1]c̄NO (2b)

NO = ṁtNO%/Pload (2c)

where AFRs is the stoichiometric air-to-fuel ratio.

Table 1. Summary of Algebraic Expressions

Compressor

Πc = pim/pamb (3a)

Ψc = 2cpinTamb(Πc
(1−1/γamb) − 1)/(R2

cω
2
t ) (3b)

Ψ1 = [ω2
t , ωt, 1]c̄Ψ1, Φ1 = [ω2

t , ωt, 1]c̄Φ1 (3c)

Φc = cΦ2 +
√

(max[0, (1−Ψ1(Ψc − cΨ2)2)/Φ1] (3d)

ṁc = pambπR
3
cωtΦc/(RaTamb) (3e)

φc = ṁc

√
TambRa/pamb (3f)

πc = (Πc − 1)cπ (3g)

ηc = (φc − cφ,opt)2cc1 + (πc − cπ,opt)2cc2 (3h)

+ (φc − cφ,opt)(πc − cπ,opt)cc3
Pc = ṁccpinTamb(Π

(1−1/γamb)
c − 1)/ηc (3i)

Tc = Tamb + Tamb(Π
1−1/γamb
c − 1)/ηc (3j)

EGR

Ψegr = 1− ((1− (pim/pem))/(1− cegr1)− 1)2 (4a)

Aegr =
[
uegr, u

2
egr

]
c̄egr2 (4b)

ṁegr = AegrpemΨegr/
√
TcylRe (4c)

Cylinders

Meng = [ṁfω
−1
e , ωe, ω

2
e , pem, pim, Oim, 1]c̄torque (5a)

Peng = ωeMeng (5b)

Tcyl = [ṁfω
−1
e , p

1/2
im , pem, ω

1/2
e , Oim, 1]c̄T (5c)

ηvol = [p−1
im, ωe, ω

2
e , p
−1
imω

−1
e , 1]c̄vol (5d)

ṁei = (ηvolpimωeVdncyl)/(4πRaTim) (5e)

ṁeo = ṁei + ṁf (5f)

Ocyl = (ṁeiOim − ṁfAFRsOamb)/ṁeo (5g)

Intake Temperature

Tic = Tc + (Tamb − Tc)[ṁ2
c , ṁc, 1]c̄εic (6a)

Tegr = Tcyl + (Tamb − Tcyl)[ṁegr, 1]c̄εegrc (6b)

Tim = (ṁcTic + ṁegrTegr)/(ṁc + ṁegr) (6c)

Turbine

Πt = pex/pem (7a)

fΠ =
√

1−Πct
t (7b)

fvgt = [x2
vgt, xvgt, 1]c̄vgt (7c)

ṁt = pemfΠfvgt/
√
TcylRe (7d)

BSR = Rtωt/

√
2cpeTcyl(1−Π

1−1/γe
t ) (7e)

φm = cm1(max[0, ωt/
√
Tcyl − cm2])cm3 (7f)

ηt = cηt − φm(BSR− cBSR)2 (7g)

Pt = ṁtcpeTcyl(1−Π
1−1/γe
t )ηt (7h)

Nomenclature

cx Scalar tuning parameter
c̄x Vector of tuning parameters
cpin, cpe Isobaric specific heat of intake and exhaust gas
Ra, Re Specific gas constants of intake and exhaust gas
γamb, γe Ratio of specific heats for intake and exhaust gas
Rc, Rt Compressor and turbine wheel radii
AFRs Stoichiometric air-to-fuel ratio
ncyl Number of cylinders
Vd Displaced volume per cylinder
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3. ROBUST MPC OF AN LTV SYSTEM

3.1 Definitions

The ∼ operator is used to indicate the Pontryagin differ-
ence, defined as A ∼ B = {a | a + b ∈ A ∀b ∈ B} for
which the property

c ∈ A ∼ B ⇒ c+ b ∈ A ∀b ∈ B (8)

holds. The ⊕ operator describes the Minkowski sum de-
fined as A⊕B = {a+b | a ∈ A b ∈ B} while the operation⊕j

i=1 Xi = X1⊕X2⊕ . . .Xj denotes the Minkowski sum of
multiple sets. The symbol Ia:b denotes a vector of integers
from a to b.

3.2 Internal Prediction Model

The system to be controlled is described as

ẋ = f(x(t),u(t),d(t)) (9a)

y = g(x(t),u(t),d(t)) (9b)

A Linear-Time-Varying (LTV) approximation of (9) can
be made where at each time-step, the nonlinear model
is discretised and linearised about the current state and
previous control input. At time k, and assuming a constant
disturbance d, this prediction model describes the system
(9) as

xk+1 = Akxk + Bkuk + wk (10a)

yk = Ckxk + Dkuk + zk (10b)

where wk and zk accounts for modelling, discretisation
and linearisation errors.

3.3 Control Development

Assumption 1. The modelling errors captured in wk be-
long to a compact convex polytope W satisfying 0 ∈ W.

Assumption 2. The system (10) satisfies Ak ∈ A,Bk ∈
B,Ck ∈ C,Dk ∈ D ∀k where sets A,B, C,D are convex
bounded polytopes.

Define the MPC optimisation problem, P (k), as:

P (k) : argmin
u∗,x∗,y∗

N∑
j=0

`(xk+j|k,uk+j|k, k + j) (11a)

subject to ∀j ∈ I0:N

xk|k = xk (11b)

xk+j+1|k = Akxk+j|k + Bkuk+j|k (11c)

yk+j|k = Ckxk+j|k + Dkuk+j|k (11d)

yk+j|k ∈ Yk+j|k (11e)

xk+N+1|k ∈ Xf (11f)

The constraint tightening is performed as

Yk|k = Y (12a)

Yk+j+1|k = Yk+j|k ∼ (12b){
Ej ⊕Fj ⊕ [Ck + DkKj|k]Lj|kW

}
where double indices j|k denote prediction step j at time
step k and Kj|k represents candidate controller matrices
chosen by the practitioner. The state transition matrices
Lj|k are defined as

Lj|k =

{
0 j < 0
I j = 0
(Ak + BkKj−1|k)Lj−1|k j > 0

Assumption 3. There exists a control law κ(x) such that
the terminal set R is a control invariant admissible set
satisfying ∀x ∈ R,∀k

Akx + Bkκ(x) + LN |kw ∈ R,∀w ∈ W (13a)

Ckx + Dkκ(x) ∈ Yk+N |k (13b)

Assumption 4. Sets R ans Y are sufficiently large with
respect to W such that after tightening, the resulting
constraint sets are non-empty.

Remark 2. Output constraint (11e) can capture state, in-
put and input rate constraints by appropriate augmenta-
tion of matrices A,B,C and D and state vector x.

Remark 3. This formulation is distinct from CT-LTV con-
troller detailed in (Richards, 2005), in particular

(1) At each time-step the LTV system (10) is linear-time-
invariant across the prediction horizon.

(2) The system representation A, B, C and D are not
known in advance.

(3) The point terminal constraint is replaced with a set.

Theorem 1. (Robust Feasibility). Under Assumptions 1-4,
sets Fj , Ej and Xf exist such that if P(0) has a feasible
solution then subsequent optimisations P (k) are robustly
feasible ∀k > 0.

Proof. This proof follows from (Richards, 2005; Richards
and How, 2006) and is based on recursion, showing that
feasibility of P (k0) implies feasibility of P (k0 + 1). Fea-
sibility of P (k0 + 1) is proven by showing the existence
of a solution which obeys all constraints (11). Assume a
feasible solution exists for problem P (k0), denoted by u∗

with corresponding output and state trajectories y∗ and
x∗. Variables marked by .̂ denote the respective analogues
for problem P (k0 + 1). Consider the following candidate
control sequence

ûk0+1+j = u∗k0+1+j + Kj|k0+1Lj|k0+1wk0 (14a)

∀j ∈ I0:N−1

ûk0+1+N = κ(x̂k0+1+N ) (14b)

The initial condition, dynamic constraints and output
equality constraints are satisfied by construction. Feasibil-
ity of P (k0) implies x∗k0+1 = Ak0xk0+Bk0uk0 , substitution
into system dynamics (10) gives xk0+1 = x∗k0+1 + wk0 .
Using this initial condition and proposed control sequence
(14), the dynamic constraint (11c) gives the following state
sequence ∀j ∈ {0, . . . , N} at time k0 +1, expressed relative
to the solution at time k0

x̂k0+1+j = x∗k0+1+j + Lj|k0+1wk0 + mj|k0∀j ∈ I0:N (15)

where

m0|k = 0 (16a)

mj|k = Ak+1mj−1|k (16b)

+ (Ak+1 −Ak)x∗k+j + (Bk+1 −Bk)u∗k+j

and similarly (11d) gives output sequence

ŷk0+1+j = (Ck0+1 + Dk0+1Kj|k0+1)Lj|k0+1wk0 (17a)

+ y∗k0+1+j + ej|k0∀j ∈ I0:N−1

ŷk0+1+N = Ck0+1x̂k0+1+N + Dk0+1κ(x̂k0+1+N ) (17b)
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where

ej|k = (Ck+1 −Ck)x∗k+1+j (18)

+ (Dk+1 −Dk)u∗k+1+j + Ck+1mj|k

If the set Fj is chosen to satisfy ∀k⊕j
i=1([Ck+1 + Dk+1Ki|k+1]Li|k+1 (19)

− [Ck + DkKi|k]Li|k)W ⊆ Fj
then comparison of (12b) for successive time steps gives

Yk0+1+j|k0 ⊆ Yk0+1+j|k0+1 ∼ (20)

(Ej ⊕ [Ck0+1+j + Dk0+1+jKj|k0 ]Lj|k0W)

furthermore, if Ej is chosen to satisfy

ej|k ∈ Ej ∀k (21)

then substitution of and (17a) and (20) into the property
(8) shows that under Assumptions 1,2,4 if y∗k0+j+1 ∈
Yk0 + 1 + j|k0, which is known due to feasibility at time
k0 then ŷk0+j+1 ∈ Yk0+1+j|k0+1, satisfying the constraint
(11e) for j ∈ I0:N−1 at time k0 + 1. Define the terminal
constraint set as

Xf = R ∼ LNW ∼M (22)

where mN |k ∈ M ∀k. Feasibility at time k0 also requires
x∗k0+1+N ∈ Xf and hence (22) and (15) imply x̂k0+1+N ∈
R. Then under Assumption 3 the requirements on R
guarantee that the output (17b) satisfies ŷk0+1+N ∈
YN |k0+1, hence all output constraints are satisfied.

Finally the terminal constraints must be satisfied at time
k0 + 1. The new terminal state is found by substituting
the candidate control (14b) into the dynamics constraint

x̂k0+N+2 = Ak0+1x̂k0+1+N + Bk0+1κ(x̂k0+1+N ) (23)

since it has already been shown that x̂k0+1+N ∈ R
and R is a robustly control invariant set following from
Assumption 3, then the new state satisfies x̂k0+N+2 +
LNwk0 + mN |k0 ∈ R which together with the definition
(22) implies x̂k0+N+2 ∈ Xf , completing satisfaction of all
constraints at k0 + 1. Hence the proposed sets Xf , Ej and
Fj combined with feasibility at k0 guarantees feasibility at
k0 + 1, and through recursion ∀k > k0. �
Remark 4. The choice of sets (19),(21) and (22) show that
recursive feasibility can exist, however they depend on the
choice of (14) and hence are not unique.

Remark 5. Theorem 1 guarantees the optimisation prob-
lem is recursively feasible and hence the predicted out-
puts do not violate the constraints along the horizon. To
ensure that the real system (9) does not violate output
constraints, the output constraint set Y in (12a) should
be replaced with Y ∼ Z where zk ∈ Z ∀k.

3.4 Practical Set Determination

Since Xf , E and F cannot always be calculated explicitly
in advance, a practical approach to finding appropriate
sets is required. Under Assumption 2 an upper bound for
the sets exists. However, for systems which evolve slowly,
this upper bound will be overly conservative and may lead
to violation of Assumption 4. Furthermore, following from
Remark 4, the definitions of the sets used in the proof for
Theorem 1 may already be conservative.

The sets are therefore suggested to be found empirically
through a Monte Carlo approach to find typical values of

A,B,C,D and terms e and m for a given application.
Removing outlier points using confidence bounds on the
empirical data results in reduced conservativeness and may
avoid violation of Assumption 4. This method may result
in absolute guarantees for robustness being lost, however
the simulation study presented in Section 4 demonstrates
sensible selection of confidence bounds resulting in practi-
cal robustness.

3.5 Practical Calculation of Pontryagin Difference

Proposition 1. Given that a set A = {a : alb ≤ a ≤
aub}, representing an orthotope, is being tightened by
a set B using the Pontryagin difference, then B can be
approximated by C = {c : min(B) ≤ c ≤ max(B)},
the smallest bounding orthotope to fully contain B and
the resulting set will be unchanged. Note: min and max
represent element-wise operations.

Remark 7. The Pontryagin difference of sets A = {a :
alb ≤ a ≤ aub} and B = {b : blb ≤ b ≤ bub} can be trivially
found, where A ∼ B = {c : alb − blb ≤ c ≤ aub − bub}.

Calculating the Pontryagin difference of sets multiple
times at each timestep, may not be computational
tractable in an online environment. Use of Proposition 1
and Remark 7 in cases where the original constraint sets
can be represented by orthotopes results in the Pontryagin
difference calculation being small in computation time
compared to solving the optimisation problem, as found
in the simulation study presented in Section 4.

4. SIMULATION STUDY

All simulations utilise the full order and validated model
(1) and (2) to represent the engine. Optimisation setup is
performed in an interpreted Matlab (v. 2013a) script while
the optimisation is performed by qpOASES (Ferreau et al.,
2008), on a 4-core 2.7GHz Intel i5 processor.

An explicit form of the linearisation of (1) and (2) was
found with the aid of the Matlab Symbolic Toolbox.
The algebraic expressions (3d) and (7f) contain switches,
therefore a total of 4 linearisations of (1)-(2) are used,
one for each permutation of the cases. The switches
are evaluated online, and the appropriate linearisation
selected at each time-step. The controller’s robustness is
demonstrated with modelling error arising between the
linear-time-varying discrete time model and the simulated
continuous time MVEM.

4.1 Controller Formulation

In order to meet the objectives described in Section 1
the following cost function which penalises power tracking
error and fuel use can be used for (11a)

` = δ(Pload(k + j|k)− Pref (k + j))2 + ṁf (k + j|k)2 (24)

where δ represents the relative weighting between power
tracking and fuel minimisation. This choice of cost func-
tion is atypical in that only input terms are penalised.
However in generator applications the outputs must only
satisfy safe operating conditions, which can be speci-
fied by appropriate constraints. Since these terms are
quadratic, the resulting optimisation can be formulated
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Table 2. Lower and Upper Constraints

Bounds
ωe ṁf uvgt uegr ∆uegr ∆uvgt NO λ

(rpm) (g/s) (%) (%) (%) (%) (g/kWh)

Lower 1500 1 60 0 −5 −4 - 1.3
Upper 2500 5 90 100 5 4 5.5 -

Note: The NO rate limitation is not directly comparable to, for
example, the Euro emissions standards, as these constraint NOx.

as a quadratic program (QP). A time-step of 100 ms has
been chosen. The power request is comprised of a number
of randomly generated step changes between 25kW and
70kW , which spans the range of calibration data for the
engine, representing an aggressive test case.

Representative emission constraints are comprised of a
maximum averaged Nitrogen Monoxide rate (NO) g/kWh
and a minimum instantaneous lambda (normalised air-
fuel ratio) to prevent excessive Particulate Matter (PM)
emissions. These output constraints are represented by
simple bounds, [NO, −λ]T ≤ [N̄O, λ̄]T where N̄O and
λ̄ are chosen by system designers. Engine speed limits
are described by ωe,ub ≤ ωe ≤ ωe,ub. Each of the engine
inputs are constrained by simple bounds, ulb ≤ u ≤
uub, representing actuator limits. In addition, input rate
limitations are enforced for EGR and VGT actuators,
∆ulb ≤ uk − uk−1 ≤ ∆uub, representing actuator slew
rate limits.

Taking into account these constraints, summarised in
Table 2, applying large bounds designed never to be active
on any unbounded values, and following from Remark 2,
the constraints (12a) can be put into sets of the form
Y = {y : ylb ≤ y ≤ yub} which geometrically represent
orthotopes, allowing Proposition 1 to be utilised. The
terminal constraint set (11f) is chosen as Xf = {xf :
xf,lb ≤ xf ≤ xf,ub}, where xf,lb, xf,ub are assumed to be
conservative.

There is no requirement for tuning the candidate control
function to guarantee robustness of (11) under Assump-
tions 1-4. A nilpotent LQR controller was chosen with
Q = I7, R = I4 and M = 5 (Richards, 2005, Sec. III).

The sets W, Ej , and Fj ∀j ∈ I1:N required by (12) are
calculated according to the method described in Sec-
tion 3.4. The MPC controller is set to track a random
power trajectory for 60s, initiated using manually chosen
tightening sets to generate the appropriate data. The set
W was selected to be the largest orthotope to contain
all calculated w values for the simulation within 1st and
99th percentiles, while the remaining sets are the smallest
orthotopes to contain all respective values within 3rd and
97th percentiles. Setting the tightening sets to be empty
sets resulted in infeasible optimisations during the sim-
ulation, whilst making the confidence bounds too large
resulted in infeasible solutions at k = 0 due to violation of
Assumption 4.

It is particularly important that the instantaneous lambda
constraint is not violated, as this may result in excessive
PM production and undesirable visible smoke. However, it
is the average g/kWh of NO produced over a drive cycle
that is typically critical, and so temporary violation of
the instantaneous NO constraint is acceptable. As such
Remark 5 is taken into consideration for the lambda
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Fig. 2. Simulated diesel engine under LTV MPC schemes

constraint only, where Z is calculated with the same
method as used to find W.

To satisfy the objectives of Section 1, δ in (24) should be
large, so that fuel minimisation only strongly influences
the cost function when power tracking is first satisfied.
Figure 1 shows the tracking error and fuel consumption
of a 30 second simulation of the controller following the
same power trajectory for varying δ where N = 10. As δ
increases, the performance of the controller converges to a
single solution, indicating that δ can be made arbitrarily
large, reducing tuning requirements, though numerical
tolerances of the solver should be considered.

4.2 Controller Performance

Figure 2 illustrates the performance of the controller for
30 seconds of a power request with δ = 100 and N ∈
{7, 10}. For longer horizon lengths, power tracking using
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Fig. 3. Computation time for varying prediction horizons

this formulation is shown to be almost perfect, while fuel
minimisation is apparent from the relatively low VGT
positions and engine speeds. The extra degree of freedom
allowed by including generator load as a control input is
utilised for short periods, particularly for shorter horizon
lengths, where power tracking performance is sacrificed in
order to ensure compliance with constraints.

Figure 1 highlights the trade-off between power tracking
and computational requirements for a 30 second simu-
lation of the controller by varying N where δ = 100.
The median computation time shown includes linearisa-
tion, constraint tightening, and solving the QP. Increasing
the horizon length generally increases the tracking per-
formance, though with diminishing returns and increased
computation requirements.

A breakdown of computational expense is presented in
Figure 3 for the two controllers presented in Figure 2. Due
to the use of Proposition 1, the cost of calculating the
tightened sets online is smaller than both linearisation and
solving the optimisation. The large expense in linearisation
comes due to the integration technique required due to the
system (1),(2) being stiff. For the horizon lengths shown,
the results indicate that computation times are compatible
with online control where a timestep of 100ms is used.
However, this framework’s ability to handle modelling
error lends itself to use of model reduction such as that
presented in Sharma et al. (2011) to further reduce the
computational cost.

5. CONCLUSION / FURTHER WORK

An extension to CT techniques has been presented to
explicitly take into account additional uncertainty in in-
ternal prediction models, facilitating integration of CT
techniques with existing online LTV-MPC schemes. Online
computation of the resulting controller is made feasible by
utilising knowledge about the structure of constraints. The
extensions allow the use of CT in practical applications, as
demonstrated by way of simulation example. Future work
will focus on experimental validation and further reduction
of computational requirements through model reduction.
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