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Abstract: This work proposes a frequency domain interpretation of the Algebraic Differ-
entiators introduced in “M. Mboup, C. Join and M. Fliess, Numerical Differentiation with
annihilators in noisy environment, Numerical Algorithms, vol. 50, pp. 439-457, 2009”. This
interpretation complements the least squares interpretation in the above reference. In particular,
it allows one to explain 1) the behaviour of different types of algebraic differentiators and 2)
why it can be preferable to apply e.g. two successive first order differentiations in place of one
second order differentiation. The frequency domain interpretation also enables the use of the
Fourier theory (continuous and discrete transforms) in order to tune and discretize the Algebraic
Differentiators.
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1. INTRODUCTION

This paper revisits the algebraic differentiation method
developed in Mboup et al. [2009] (see Liu et al. [2012] for
an extension to the fractional order case). The method
uses the framework of algebraic estimation which was
introduced in the automatic control literature by Fliess
and Sira-Ramı́rez [2003, 2008], Fliess and Join [2013] (see
also Fliess et al. [2008, 2003], Trapero et al. [2007] and
Fliess et al. [2011] for applications in signal processing
and finance respectively). For estimating the nth order,
n ∈ N, derivative of a noisy signal x(t), the algebraic
differentiation method considers a pointwise estimation of

the parameter dnx(t)
dtn

∣∣∣
t=τ

for τ > 0. For each such given

point τ , the signal is represented locally by its Taylor
series expansion of order, say N ≥ n. The method then
uses differential elimination in the operational domain to
annihilate all terms of the truncated Taylor expansion

except the desired parameter dnx(t)
dtn

∣∣∣
t=τ

. The process is

repeated for each τ > 0 and the derivative estimation
follows when the obtained parameters are expressed back
in the time domain.

Note that conceptually, the problem of derivative estima-
tion admits a simple solution which derives from the fol-
lowing observation: in an appropriate reproducing kernel
Hilbert space, the nth order derivative of a given x(t) takes
the form

x(n)(τ) = 〈x(t),
dn

dτn
K(τ, t)〉

where K(·, ·) is the reproducing kernel. As mentioned in
Mboup et al. [2009], this general observation leaves the
problem totally unsolve until an adequate model space is
selected. The least squares interpretation in Mboup et al.

[2009] (see Mboup [2009] for the most general setting) has
shown 1) that the algebraic manipulations above can be
cast within this general observation and 2) how adequate is
the associated model space. Interesting characterizations
of the differentiators then arise, regarding the estimation
precision in a noise free context as well as the robustness
against additive noises.

Note also that the operational domain analogue of time
differentiation is just multiplication by the Laplace vari-
able s. This leads to another conceptually simple solution
to derivative estimation: Given an order n ∈ N, and for any
appropriate smoothing filter Hn(s), snHn(s) represents
the transfer function of a differentiation filter. But once
again, this general principle is more elusive than useful
until an adequate associated smoothing filter is devised.

In this paper, we propose a frequency domain interpre-
tation of the algebraic differentiation, in complementary
to the least squares interpretation. It turns out that the
algebraic manipulations join the frequency domain stand-
point of differentiation, outlined above. The corresponding
smoothing filters are clearly identified. This permits, on
the one hand, to reveal additional interesting properties of
the algebraic differentiators and, on the other hand, the
use of the classical Fourier theory in order to tune the
parameters of the algebraic differentiators. Let us mention
that a different frequency analysis was proposed in de A.
Garćıa Collado et al. [2009] in discrete time. Some inter-
esting features concerning the noise rejection capability of
the algebraic differentiators have also been pointed out in
the recent and nice frequency domain analysis of Kiltz and
Rudolph [2013].
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The paper is organized as follows. Section 2 summarizes
the design of the Algebraic Differentiators from Mboup
et al. [2009] as well as the associated least squares interpre-
tation. In section 3, the frequency domain interpretation
is developed. Sections 4 and 5 specialize the analysis to
particular Algebraic Differentiators and the cascade of dif-
ferentiators respectively. The paper ends with a conclusion
in section 6.

2. AN OVERVIEW OF THE ALGEBRAIC
DIFFERENTIATORS

Let us start with a brief overview of the algebraic differen-
tiation method of Mboup et al. [2009]. Consider a signal
x(t) measured through an additive noise corruption $(t):

y(t) = x(t) +$(t). (1)

The goal is to estimate the nth order derivative of x, n ∈ N,
based on the noisy observation y. A Taylor expansion
truncated to the N th order, N ≥ n is used to represent
x(t) on a “small” segment of time around each given point
τ . With xN (t) to denote this truncation, we can set

x(τ − t) ≈ xN (t) =

N∑
i=0

x(i)(τ)
(−t)i
i!

. (2)

The algebraic differentiation method is based on anni-
hilating from (2) the parameters x(i)(τ) for all i except
i = n. To simplify the notations, we henceforth redefine
the parameters x(i)(τ) as (−1)ix(i)(τ). The annihilation
will be achieved by differential elimination which is easier
to express in the operational domain. For this, the Laplace
transform is applied to (2):

x̂N (s) =

N∑
i=0

x(i)(τ)

si+1
. (3)

On (3), the application of the annihilator:

ΠN,n
κ,µ =

1

sN+µ+1

dn+κ

dsn+κ
1

s

dN−n

dsN−n
sN+1, κ, µ ∈ N (4)

permits to isolate x(n)(τ) as follows:

(−1)n+κ(n+ κ)!(N − n)!

sµ+κ+N+n+2
x(n)(τ) = ΠN,n

κ,µ x̂N (s). (5)

After isolating x(n)(τ), equation (5) can be transformed
back into the time domain. This can be done by applying
the usual rules of operational calculus. Recall that if û(s)
is the operational analogue of u(t) then, according to
the usual rules of operational calculus, the time domain
analogue of v̂ = 1

sα
d
dsβ

û will reads as:

v(t) =
1

(α− 1)!

∫ t

0

(t− λ)α−1(−λ)βu(λ)dλ. (6)

Let us consider in (5) the simplest case by putting N = n.
Then, applying (6), the time domain equivalent of (5) takes
the form

x(n)(τ ; t, κ, µ) =

∫ t

0

K(λ; t, κ, µ)xn(λ)dλ (7)

for some K(·; t, κ, µ, n) with parameters t, κ, µ and n.
Henceforth we fix the integration time in (7) to t = T ,
a positive constant. Recalling (2) and (1), a derivative
estimator is then obtained in terms of convolution product,

by substituting xn(t) by the corresponding actual mea-
surement y(τ − t):

x̃(n)(τ ;κ, µ) =

∫ ∞
0

h(λ;T, κ, µ, n)y(τ −λ)dλ = {h ? y}(τ),

(8)
with h( · ;T, κ, µ, n) = −K( · ;T, κ, µ, n).

Equation (8), called a minimal estimator since it is de-
signed from a minimal Taylor expansion N = n, is central
in Mboup et al. [2009]. It constitutes in fact the building
block to construct more general estimators from (5).

Set q = N −n and consider the set of minimal estimators:

Sκ,µ,q =
{
x̃(n)(τ ;κ+ q, µ), · · · , x̃(n)(τ ;κ+ q − l, µ+ l),

· · · , x̃(n)(τ ;κ, µ+ q)
}
, q ≤ n+ κ, l ∈ [0, q].

(9)

It was shown in Mboup et al. [2009] that any affine
combination of elements of (9) defines a derivative esti-
mator. In particular [Mboup et al., 2009, Equation (30)]
establishes that any derivative estimator x̃(n)(τ ;κ, µ,N)
obtained from (5) with a Taylor series expansion of order
N > n is of the form

x̃(n)(τ ;κ, µ,N) =

N−n∑
l=0

λlx̃
(n)(τ ;κl, µl), (10)

where κl = κ + q − l and µl = µ + l and for some set

of coefficients λl ∈ Q, satisfying
∑N−n
l=0 λl = 1 such that

λ` < 0 for at least one ` ∈ [0, N − n].

3. FREQUENCY DOMAIN INTERPRETATION

The exact expression of h( · ;T, κ, µ, n) is given in Mboup
et al. [2009] by:

h(t;T, κ, µ, n) = γκ,µ,n,T
dn

dtn
w{κ,µ,n,T}(t), (11)

where

w{κ,µ,n,T}(t) =

{
tκ+n(T − t)µ+n, 0 < t < T

0 else
(12)

and

γκ,µ,n,T =
(−1)n

Tκ+µ+2n+1

(κ+ µ+ 2n+ 1)!

(κ+ n)!(µ+ n)!
. (13)

Denote by X̃(n)(ω) and Y (ω) the Fourier transforms of
x̃(n)(τ ;κ, µ) and y(t) respectively. Using (11), equation (8)
then translates in the frequency domain as:

X̃(n)(ω) = (iω)nHκ,µ,n(ω)Y (ω), (14)

with

Hκ,µ,n(ω) = γκ,µ,n,T

∫ T

0

tκ+n(T − t)µ+ne−iωtdt. (15)

Equation (14) shows that the Algebraic Differentiator cor-
responds to a smoothing filter followed by an nth order
frequency domain differentiation. As mentioned in Kiltz
and Rudolph [2013], the integral in (15) can be expressed
in terms of the confluent hypergeometric Kummer func-
tions. Instead, we use the following relation:

Lemma 3.1. The smoothing filter in (15) satisfies the
recurrence relation on the differentiation order:
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Hκ,µ,n+1(ω) = %κ,µ,n

(
Ti

d

dω
Hκ,µ,n(ω)

+
d2

dω2
Hκ,µ,n(ω)

)
,

(16)

with

%κ,µ,n = − (κ+ µ+ 2n+ 2)(κ+ µ+ 2n+ 3)

(κ+ n+ 1)(µ+ n+ 1)T 2
.

Proof 3.2. The recurrence γκ,µ,n+1,T = %κ,µ,nγκ,µ,n,T
is easy to obtain from (13). Also, we deduce directly
from (12) that w{κ,µ,n+1,T}(t) is obtained by multiplying

w{κ,µ,n,T}(t) by Tt− t2. Now this translates in the Fourier

domain into the differential operator Ti ddω + d2

dω2 .

The recurrence (16) permits to iteratively compute the
frequency response of the smoothing filter corresponding
to an nth order minimal Algebraic Differentiator. Then the
frequency response corresponding to non-minimal estima-
tors can be computed using (10).

In addition to (16), the following relation can be verified

Lemma 3.3.

Hκ+1,µ+1,n(ω) = −Hκ,µ,n+1(ω). (17)

Proof 3.4. The proof is by direct inspection and it is left
to the reader.

This relation points out that the same smoothing filter
(15) is involved in different order Algebraic Differentiators.
More interestingly, (17) shows that as the filter order n is
increased its spectrum spreads out. In order to illustrate
this claim let us examine the figure 1 representing the
spectrum of three filters from (15) with n = 1. Remark
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Fig. 1. First order derivative smoothing filter. Influence of
increasing κ and µ.

that as κ and µ are increased the filter frequency response
spreads out. Then according to (17), as n is increased the
spectrum of the smoothing filter Hκ,µ,n(ω) spreads out.
More generally, for higher values of κ and µ, let us notice
that the smoothing filter impulse response (11) contains
terms of the form (T−t)µtκ. Thus, as κ and µ are increased
the “effective” support (see figure 2) of the filter is reduced
and consequently, its spectrum spreads out.

Moreover, an algebraic numerical differentiator can be
obtained by taking discrete values for ω and evaluating
a discrete filter coefficients from (15) for each value of
ω. In addition, the Discrete Fourier transform together
with a spectrum discretization can also be used to design
algebraic numerical differentiators.
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Fig. 2. Increasing κ and µ reduces the “effective” support
of the smoothing filter.

Let us discuss in the sequel two particular cases for the
minimal estimator (8): κ = µ and κ 6= µ.

3.1 Minimal estimators: The case κ = µ

With κ = µ, the polynomial [(T − t)t]κ is symmetric with
respect to t = T

2 , consequently the phase of the smoothing
filter (15) is linear and its spectrum is real.

The least squares interpretation of the estimators given in
Mboup et al. [2009] revealed that the estimator (8) induces
an estimation delay. In particular this delay is equal to T

2
whenever κ = µ. This claim can be demonstrated also
from the frequency analysis since the phase shift of (8)
with κ = µ is given by Arg(Hκ=µ,n(ω)) = −T2 ω.

3.2 Minimal estimators: The case κ 6= µ

If κ 6= µ the smoothing filter (15) do not admit a symmetry
and consequently its phase is nonlinear. Typical gain and
phase diagrams are shown on the figures 3 and 4. One can
notice that the attenuation of high frequencies decreases
as κ increases. Thus, κ should be kept equal to µ. Note
finally that the same conclusion applies if one chooses to
increase µ instead of κ since the following gain relation
from (15) is satisfied:

|Hκ,µ,n(ω)| = |Hµ,κ,n(ω)|.
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Fig. 3. Minimal estimator: Influence of increasing κ and µ
(κ 6= µ). Gain diagram.

3.3 Non-minimal differentiators and filters cascades

Let us now investigate two interesting cases: the non-
minimal estimators and the cascade of several filters.
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Fig. 4. Minimal estimator: Influence of increasing κ and µ
(κ 6= µ). Phase diagram.

The analysis will be carried for first and second order
algebraic differentiators. Generalizations to higher orders
are pointed out.

4. NON-MINIMAL DIFFERENTIATORS

The simplest non-minimal first order Algebraic Differ-
entiator is calculated from (10) by setting q = 1 (i.e
N = n + 1). The corresponding smoothing filter is given
by G(ω) = λ1H1,0,1(ω) + λ2H0,1,1(ω) where λ1 = 3 and
λ2 = −2 (the detailed computation of λ1 and λ2 can be
found in Mboup et al. [2009] or Riachy et al. [2011]).

In addition, notice that the weights of the affine com-
bination in (10) are restricted to Q. Quite effective dif-
ferentiators can be obtained by extending the set of pa-
rameters λl in (10) to R instead of Q. In particular the
differentiator obtained with the smoothing filter given by
F (ω) = −0.618H1,0,1(ω) + 1.618H0,1,1(ω) is studied since
it admits a higher order least squares interpretation (the
detailed explanation of the least squares interpretation can
be found in Mboup et al. [2009], the computation of F (ω)
can be found in Riachy et al. [2011] section 7.2.1).

The spectra of the smoothing filter corresponding to: 1)
the minimal estimator H0,0,1(ω), 2) G(ω) and 3) F (ω) are
plotted in figures 5 and 6. Let us briefly recall the main
features of these differentiators, that was established in
Mboup et al. [2009] using the least squares interpretation:

• The non-minimal differentiator associated with G(ω),
which follows directly from (5), does not undergo a
time delay. However, performance loss compared to
even the minimal case was observed.
• Any point in the R-affine hull of Sκ,µ,q as in (10) cor-

responds to an algrebraic differentiator with a given
delay. The non-minimal differentiator associated with
F (ω) is such a point, with a judiciously chosen delay.

The frequency domain interpretation provides a simple
demonstration of these facts as illustrated in the next
figures. Indeed, G(ω) considerably reduces the phase shift
and consequently the estimation time delay, as compared
to H0,0,1(ω) (compare the blue solid-line with the black
dashed-line curves in Fig. 6). However, G(ω) amplifies by
150% the low-frequency content of the signal (see blue
solid-line curve in Fig. 5) which may not be tolerable in
practice. Note that while the performance improvement
due to a deliberate introduction of a properly selected
delay was clearly established in Mboup et al. [2009], the
very bad performance of the non-minimal non-delayed

algebraic differentiator was so far unexplained. Meanwhile,
the estimator F (ω) not only reduces the phase shift
compared to the minimal estimator (green dot-solid-line,
in Fig. 6) but also, it offers a flat region within the
bandwidth as indicated on the gain plot (green dot-solid-
line, in Fig. 5). This is indeed a very interesting algebraic
differentiator, as already known from the least squares
interpretation of Mboup et al. [2009].

0 5 10 15 20 25 30
0

0.5

1

1.5

2

 

 

10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

k = µ = 0, n = N = 1

G(ω)

F (ω)

Fig. 5. Non-minimal estimators. Gain diagram.
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Fig. 6. Non-minimal estimators. Phase diagram.

5. CASCADE OF DIFFERENTIATORS

When estimating high order derivatives of a noisy signal,
a natural question arises whether is it better to apply a
high order algebraic differentiator or to cascade several
first order algebraic differentiators. Moreover, if cascading
several first order differentiators gives a superior result, is
it better to use same values for κ = µ for the cascaded
filters or not?

Note that this aspect has not been addressed in Mboup
et al. [2009] since an analysis via the least squares inter-
pretation is not straightforward. The frequency domain
interpretation provides simple and immediate answers to
these questions.

Let us provide some possible answers by examining the
gain diagrams on figure 7 corresponding to the smoothing
filters of second order differentiators.

One can immediately notice the poor filtering capabil-
ities of the smoothing filter H0,0,2(ω) corresponding to
the second order algebraic differentiator (see the black
dashed line in figure 7). An increased attenuation of high
frequencies can be achieved by cascading two first order
differentiators with smoothing filters H0,0,1(ω)×H0,0,1(ω)
as it can be noticed from the red dot-solid-line on the
figure 7. Note finally that an additional attenuation of
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Fig. 7. Second order differentiation: Cascade of first order
differentiators.

high frequencies can be obtained by using the differentiator
whose smoothing filter is given by H0,0,1(ω) × H1,1,1(ω)
instead of H0,0,1(ω) × H0,0,1(ω) since its gain diagram
crosses zero twice as much as H0,0,1(ω) × H1,1,1(ω) (see
the zoom in figure 7).

6. CONCLUSION

A frequency domain interpretation is provided for the
Algebraic Differentiators of Mboup et al. [2009]. It com-
plements the least squares interpretation given in Mboup
et al. [2009] and reveals additional properties of these
differentiators. Moreover, it permits the use of the Fourier
theory in order to choose and tune the parameters of an
Algebraic Differentiator.
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