
Fault Isolation for Urban Railway Vehicle
Suspension Systems ?

Xiukun Wei ∗,∗∗ Limin Jia ∗ Kun Guo ∗∗ Sheng Wu ∗∗∗

∗ State Key Lab of Rail Traffic Control and Safety, Beijing Jiaotong
University, Beijing, 100044

∗∗ School of Traffic and Transportation,Beijing Jiaotong University,
Beijing, 100044

∗∗∗ School of Automation, Beijing University of Science and
Technology, Beijing, 100083

Abstract: Reliability of the railway vehicle suspension system is of critical importance to the
safety of the vehicle. It is very desirable to monitor the health condition and the performance
degradation for rail vehicle suspension systems online, which offers the important information
of the suspension system and it is critically important for the condition based maintenance
rather than scheduled maintenance in the future. Advanced fault diagnosis method is one of the
most effective means for the health monitoring of rail suspension systems. In this paper, taking
the lateral suspension system as an example, the fault isolation issue for different component
faults occurring in the suspension system is concerned. The sensor configuration for obtaining
the state information for fault diagnosis and the mathematical model for the lateral suspension
system are presented. Three different methods, Dempster-Shafer (D-S) evidence theory, Fisher
Discrimination Analysis (FDA) and Support Vector Machine (SVM) techniques are applied
to the fault isolation problem, respectively. Simulation study is carried out by means of the
professional multi-body simulation tool, SIMPACK. The simulation results show that these
methods can isolate the considered component faults effectively with a high accuracy. The
proposed methods provide an effective alternative for the health monitoring of rail vehicle
suspension systems.
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1. INTRODUCTION

The suspension system is used to support the carbody
and bogie, to isolate the forces generated by the track
unevenness at the wheels, and to control the altitude
of the carbody with respect to the track surface for
providing ride comfort. For the case of urban railway, the
performance of some components, such as the springs and
the dampers, degrade significantly after one or two years.
So it is necessary to timely detect the fault and monitor the
performance degradation of vehicle suspension systems.

The health condition monitoring and fault diagnosis issue
of the rail vehicle suspension systems have been paid some
attention. In Bruni et al. (2007), some available health
monitoring techniques are reviewed and it points out that
the condition monitoring methods for railway suspension
systems are critically important in the future. In Li and
Goodall (2004), the fault detection issue of railway vehicle
lateral suspension system is investigated, where a Kalman
filter based method has been proposed for detecting and
isolating faults. In Mei and Ding (2009), the authors
proposed a novel approach which exploits the dynamical
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interactions between different vehicle modes caused by
component failures in the system. In Wei et al. (2011a) and
Wei et al. (2011b), a fault detection approach for the light
rail vehicle suspension systems based on Kalman filter is
derived. In our recent work Wei et al. (2013), different
fault detection methods based on the acceleration methods
for the suspension system are investigated and compared
carefully. It shows that the data driven methods have more
advantages than the model based methods. The current
reported methods for health monitoring of rail suspension
systems are mainly the fault detection methods. How
to isolate the occurring faults is not investigated in the
available literature. Due to the complexity of the rail
suspension system, only detecting the fault is not good
enough for the condition based maintenance. Finding out
the concrete faulty component or isolating different faults
are very desirable. These motivate the work of this paper.

This paper is organized as follows. The urban rail vehicle
lateral suspension system, its state space dynamical model
and the sensor configuration for obtaining the state infor-
mation are introduced in Section 2. In Section 3, the fault
isolation results based on Dempster-Shafer (D-S) evidence
theory, the Fisher Discrimination Analysis (FDA) and the
Support Vector Machine (SVM) methods are presented.
Finally, some conclusions are given in Section 4.
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2. THE RAIL VEHICLE LATERAL SUSPENSION
SYSTEM MODELING AND SENSOR

CONFIGURATION

For a rail vehicle suspension system, vertical suspension
system and lateral suspension system are conventionally
considered separately when the vehicle dynamics is stud-
ied. In this paper, the lateral suspension system is taken
as an example to demonstrate the proposed fault isola-
tion approach. These methods can be extended to the
vertical suspension case easily.In this section, the state
space dynamical model of rail vehicle suspension system
is presented briefly. After that, the acceleration sensor
configuration is introduced and the new state space model
under the new sensor configuration is provided.

2.1 The state space model of the vehicle lateral dynamics
system

The rail vehicle lateral suspension system considered in
this paper is shown in Fig. 1 and Fig. 2. The suspension
system connects the carbodys, the front bogie, the rear bo-
gie and the wheelsets together. For the considered lateral
suspension system, a model with 17 degrees-of-freedom
(DOF) is needed for describing the dynamical behavior.
The degrees-of-freedom of vehicle system’s carbody, bogies
and wheelsets are presented in Table 1. Standard dynamic
equations for three degrees-of-freedom (DOF) (transverse,
yaw and roll) carbody and bogie can refer to our former
work Wei et al. (2013).

Table 1. DOF of the vehicle lateral suspension
system
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Fig. 1. Top view of the vehicle’s lateral dynamical model

In the light of the differential equations, the state space
equation of the lateral suspension system is as follows:

ẋv = Avxv + Bvd (1)

yv = Cvxv + Dvd (2)

where
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Fig. 2. Front view of the vehicle’s lateral dynamical model
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The matrix Av, Bv, Cv and Dv are derived from the
differential equations presented before. d is the track
lateral irregularity.

2.2 The sensor configuration for the signal measurements

In the model derived in the last subsection, the place-
ment, the yaw angle and the pitch angle of the carbody,
the front and rear bogie are taken as the outputs. The
system is detectable and observable in the course of the
system theory. This means that the changes of the system
states can be observed by the outputs in a limited time
range. When component faults occur in the system, they
can be detected by the outputs. However, in reality, the
placements for the carbody, the front and rear bogie are
difficult to measure and few ideal and reliable sensors
can be applied to measure these placements. Similarly,
effective and high precision roll and yaw angle sensors
for the concerned problem are not available as for the
knowledge of the authors. These comments are also stated
in our former work Wei et al. (2013).In this paper, a new
sensor configuration is also proposed to the fault isolation
problem for the lateral suspension system. The vehicle sus-
pension system is only equipped with acceleration sensors
on two of the four corners of the carbody, the front and rear
bogie. Each sensor can measure the vertical acceleration
and lateral acceleration simultaneously. Carbody sensors
are equipped in two diagonal corners on the floorboard.
The two bogie sensors are equipped in the sides faced to
outside and one is in the front and the other is in the
rear(see Fig. 1 and Fig. 2). The acceleration signal can
be transformed to displacement signal by applying double
integral to the acceleration signal, that is

y =
∫∫

adtdt (3)

where a is the acceleration value and y is the transverse
displacement.
Remark 1. In principle, the displacement signal can be
obtained by double integrating the acceleration signal di-
rectly. However, in reality, the output of acceleration sen-
sors always contains DC component. The DC component
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must be filtered by a high pass filter. The numerical inte-
gral algorithm is also critical to achieve a high accuracy.

3. FAULT ISOLATION SIMULATION

In this paper, the data acquired from the vehicle sus-
pension system are preprocessed (such as DC filtering,
double integrating) before the statistical fault features are
calculated. The obtained fault features are extracted by
principle component analysis technique. After that, the
pattern classification, such as the SVM, FDA methods,
and the D-S evidence theory are applied to the fault class
identification.

3.1 Simpack vehicle modeling and suspension system fault
simulation

To analyze and study the fault isolation performance of the
three methods, a SIMPACK and MATLAB co-simulation
environment is built. The parameters are provided by the
vehicle manufacturer to obtain the simulation data for
the purpose of algorithm validation. The multi-body sim-
ulation model is built by the construction of coordinates
system, bodies, joints, constraints, force elements, track
excitations and so on. The SIMPACK vehicle model is used
to generate the acceleration signals and to simulate differ-
ent faults in both primary and secondary suspensions. The
SIMPACK vehicle suspension simulation model equipped
with acceleration sensors is shown on the right part of Fig.
3. The track irregularity used in the simulations is the fifth-
grade track irregularity spectrum of the US railway lines.
The proposed sensor configuration is seen in Fig. 1. Fur-
thermore, it should be stated here that the fault detection
results do not depend on the special track irregularity.

Fig. 3. The vehicle suspension fault simulation based on
Matlab-SIMPACK software

In this paper, by using the interface between SIMPACK
and MATLAB, construct urban rail vehicle suspension
system fault simulation experiment model as shown in Fig.
3, to realize the vehicle component faults simulation of
suspension system at an arbitrary time instant and with an
arbitrary amplitude. The principle of the fault simulation
is described as follows:

Take the fault of damper as an example. In the light of
the working principle of the damper component, the force
generated by the damper is equal to the damper coefficient
times piston’s velocity, which is used to prevent the moving
of the piston. The force is proportional to the velocity of
movement of the piston, the direction is opposite to the
movement of the piston. It can be stated as:

FC = C · v (4)

where, C is the damping coefficient, v is the velocity of
the piston. When the damper is faulty and its performance
degrades, for instance, the coefficient has a 25% reduction,
a smaller force is generated by the damper and the
reduced force is proportional to the product of the piston’s
velocity and the reduced damper coefficient. To simulate
the damper faulty behavior, a virtual force is generated
in the light of the fault scenarios and acts on the position
where the damper is fixed. As shown in Fig. 3, for instance,
sensors are equipped at the position of a secondary damper
to measure its moving velocity. Assume that the damper
coefficient is reduced to half of its normal value at the 20th
second (controlled by MATLAB), then an external force
(the fault signal in Fig. 3) is exerted on the piston to reduce
the resistance generated by the damper. The direction of
the virtual force is opposite to the force generated by
the damper and the value of force is equal to the fault
magnitude times the piston’s velocity. The effective force
is described as follows when the damper occurs a failure:

FC = C · v − Cre · v (5)
where, Cre denotes the damping coefficient attenuation
values of the faulty dampers.

In a similar way, spring failure can also use a similar
method to simulate. In the course of simulation, MATLAB
needs to get the signal of the displacements of the faulty
spring location in which the fault occurs. The effective
force is described as follows when the spring occurs a
failure:

FK = K · s−Kre · s (6)
where, K denotes the spring stiffness in normal condition,
Kre denotes the attenuation value of stiffness coefficient.

3.2 Spring and damper faults of the suspension system

In this paper, the vehicle lateral suspension system is taken
as an example for the presented fault isolation methods.
The considered suspension component faults are mainly
the primary spring stiffness faults, the secondary spring
stiffness faults and the secondary damping coefficient loss
faults. For each component, both the middle level fault
(MF) and the severe fault (SF) are considered in the fault
isolation issue. In total, 16 different faults are used in
the fault isolation simulation study. The detailed faults
description considered in this paper are described in Table
2 and the concrete occurring location for the considered
faults is shown in Fig. 1.

3.3 MF and SF used for the fault isolation

The faults of the springs and the dampers can be indicated
by the changes of the spring stiffness or the damping
coefficient. In the light of the range of the coefficients,
the faults can be divided into different types, for instance,
small level faults, middle level faults and severe level
faults. A small level fault of a component means that
its stiffness reduction or damping coefficient loss is in the
range between 0% and 25%. The middle level fault(MF)
has coefficient change in the range between 26% and 60%.
The coefficient change of the severe level fault(SF) is
greater than 60%. In our former work Wei et al. (2013), the
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Table 2. Spring and damper faults of the vehi-
cle lateral suspension system

Fault Fault Fault Fault Description
No. Component Type

1 c21 MF 26% ∼ 60% damping reduction
2 c21 SF 60% ∼ 100% damping reduction
3 k21 MF 26% ∼ 60% stiffness reduction
4 k21 SF 60% ∼ 100% stiffness reduction
5 c22 MF 26% ∼ 60% damping reduction
6 c22 SF 60% ∼ 100% damping reduction
7 k22 MF 26% ∼ 60% stiffness reduction
8 k22 SF 60% ∼ 100% stiffness reduction
9 k11 MF 26% ∼ 60% stiffness reduction
10 k11 SF 60% ∼ 100% stiffness reduction
11 k12 MF 26% ∼ 60% stiffness reduction
12 k12 SF 60% ∼ 100% stiffness reduction
13 k13 MF 26% ∼ 60% stiffness reduction
14 k13 SF 60% ∼ 100% stiffness reduction
15 k14 MF 26% ∼ 60% stiffness reduction
16 k14 SF 60% ∼ 100% stiffness reduction

fault detection issue for the rail vehicle suspension system
is investigated. It shows that for most of the component
faults, the small fault (coefficient loss less than 25%) is
difficult to be detected. Hence, the fault isolation issue
for small faults is not considered in this paper. Only
the middle level faults and severe faults isolation issue
are concerned in the following. A typical presentive value
for the middle level fault is 50% stiffness or damping
coefficient loss and the value for the severe fault is 75%.
The aim of the fault isolation of this paper is two folds.
On the one hand, the fault isolation method can identify
which component occurs a fault. On the other hand,
the occurred fault is a middle level fault or a severe
level fault. The performance is evaluated by the fault
component identification accuracy(FCA) and the faulty
type prediction accuracy(FTA) defined in the following
respectively.

FCA =
Number of correctly predicted component

Number of total component fault
×100%

FTA =
Number of correctly predicted type

Number of total component fault type
× 100%

3.4 Data acquisition and fault feature calculation

The total simulation time is 50s and all the different
faults occur at 20s after the simulation starts. The 12
acceleration signals at the bogie corners and carbody
corners are recorded with a sampling time 0.1s. By using
double integration, the displacement signals of the bogie
and carbody corners are obtained. For each considered
fault with a specified fault magnitude, the measurements
in 50s are recorded with a length of 500 time instants.

For each recorded measurement, the seven fault features
(4 in the time domain and 3 in the frequency domain) are
calculated. Since we have 12 sensors for 12 displacement
signals, 84 fault feature values are obtained for a compo-
nent fault with specified magnitude.

Due to the existence of irrelevant and useless features
in the 84 features, it is helpful for the fault isolation
performance by using principal component analysis(PCA)

to reduce the fault feature dimension and extract the
principal fault features.

3.5 Case study based on D-S evidence theory

In this section, the application of the D-S evidence theory
to the fault isolation is presented. The considered new
occurred fault types are the same with the recorded faults
in the database Table 2, while the fault magnitudes are
different from the fault magnitudes recorded in the fault
database, which are 50% for middle level fault (MF) and
75% for severe level fault (SF).

The fault isolation results based on the D-S evidence
theory for the secondary spring k21 with a fault magnitude
50%(MF) and a primary spring k13 with a fault magnitude
75%(SF) are shown in Fig. 4 and Fig. 5, respectively.
Where, the maximum of vertical coordinate corresponding
to lateral coordinate is the most likely occurring fault.
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Fig. 4. Simulation case of k21 50%

c21(MF)
c21(SF)

k21(MF)
k21(SF)

c22(MF)
c22(SF)

k22(MF)
k22(SF)

k11(MF)
k11(SF)

k12(MF)
k12(SF)

k13(MF)
k13(SF)

k14(MF)
k14(SF)

m1
m2

m3
m4

m5
m6

m7
m

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. Simulation case of k13 75%

As shown in Fig. 4, the first line m1 , is the normalized
distance similarity between the first feature of the new
occurred fault and all recorded faults in the database. In
the same way, the other lines m2, · · · ,m7 , are the other
six pieces of normalized distance similarity for other six
features respectively. In terms of the principles of decision
making, the decision about the isolation result is made.
k21(MF ) is the maximum of the BBAs, and it is lager
than the other BBAs. From this result, k21is considered as
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the most possible occurred fault. Furthermore, this fault
magnitude of obtained result is predicted in MF correctly.
The final result is consistent with the new occurred fault.

In the same way, the result of Fig. 5, depicts that the fault
component can be predicted correctly. However, the fault
type is isolated wrongly.

In summary, at the first, from the isolation results, primary
spring can be clearly distinguished with secondary spring
and damper; Secondly, all the faulty components are
predicted correctly. However, two primary spring faulty
types are not predicted correctly. Hence, the FCA is 100%
for the D-S evidence theory based fault isolation method.
Its FTA is 83.3%.

3.6 SVM fault isolation results

The SVMs-based multi-class classification is applied to
perform the fault isolation process of the suspension sys-
tem. Three different fault magnitudes (for instance, 45%,
47% and 53% for middle level fault and 70%, 72% and
78% for severe fault) are recorded for each component
fault. The fault features are calculated and extracted by
using PCA, respectively. Theses fault features are used
for the SVM classifier training by using different kernel
functions. To validate the fault isolation effectiveness, new
component fault with different fault magnitudes used in
the training fault set (for instance, 50% for middle level
fault and 75% for severe fault) is generated. Similarly,
the fault features are calculated and extracted by using
PCA, respectively. The LIBSVM toolbox is applied to
the SVM training and prediction. The suspension fault
isolation results are shown in Table 3 and Table 4.

Table 3. Fault isolation results using original
feature and SVM

FCA (%) FCA (%) FTA (%) FTA (%)
Kernel Training Testing Training Testing

Linear 100 68.75 100 68.75
Polynomial 100 75 100 68.75

(d=1,γ = 0.1)
Gassian RBF 100 75 100 68.75

(C=100,
γ = 0.0001)

Table 4. Fault isolation results using PCA
feature extraction and SVM

FCA (%) FCA (%) FTA (%) FTA (%)
Kernel Training Testing Training Testing

Linear 100 68.75 100 68.75
Polynomial 100 75 100 68.75

(d = 1, γ = 0.1)
Gassian RBF 100 87.5 100 75

(C = 100,
γ = 0.0001)

From the fault isolation simulation results, it can be seen
that the SVM with Gassian RBF kernel receives the best
performance as it is expected. The training data achieves
a 100% accuracy with all the methods. However, there
are some wrong predictions when using the testing data.
It is observed that all the secondary spring and damper
faults (both faulty component and faulty type) are isolated
correctly. However, two primary spring faulty components

are not predicted correctly. Four primary spring faulty
types are predicted wrongly.
Remark 2. Due to the complexity and nonlinearity of the
lateral suspension system, it is difficult to isolate all the
component faults with 100% accuracy rate. However, the
training data achieves a perfect isolation result. Note that
the occurring fault is in the training fault set, the faulty
component and also its faulty type can always be predicted
correctly. Hence, a training fault set with enough different
fault magnitudes is very helpful for real application.

3.7 FDA fault isolation results

In this section, the Fisher Discrimination Analysis is
applied to the fault isolation issue. The data used to
obtaining the Fisher discriminant projection vectors are
the same to the one used in the SVM fault isolation
method. The testing fault set is also the same as used
before. The Mahalanobis distance method is used for
classifying the fault.

It is observed that the FDA method can achieve 100%
FTA and FCA accuracy rates when the training fault set
is used to classify. For the testing fault set, the calculated
Mahalanobis distances for each testing fault to the fault
class are shown in Table 5. The smallest distance are
bold-faced. It can be seen that 3 faults in the 16 faults
are isolated into wrong fault types. Hence, the FTA rate
is 81.25%. The fault k11(SF ) is classified into k11(MF ).
However, the fault component is still correctly identified
as k11. The FDA method also achieves a high FCA rate as
87.5% for the testing faults.

3.8 Comparison of the three fault isolation methods

From the fault isolation results of the three methods,
it is shown that D-S evidence theory achieves the best
fault component isolation accuracy (100%). It means that
all the faulty components are correctly identified. In the
mean time, the FTA of D-S evidence theory is also higher
than that of the other two methods (FDA and SVM).
Furthermore, the D-S evidence theory is also robust to
the fault magnitudes. FDA achieves a little better perfor-
mance than SVM method combined with PCA technique.
However, the algorithm of FDA is simpler and easier to
be implemented than SVM method which need a multi-
objective optimization solver.

4. CONCLUSIONS

In this paper, using the lateral rail vehicle suspension
system as an example, the fault isolation issue for the
different component faults occurring in the suspension
system is concerned. The mathematical model for the
lateral suspension system is presented. The acceleration
sensor configuration for obtaining the state information is
introduced. After that, three different methods, Dempster-
Shafer (D-S) evidence theory, Fisher Discrimination Anal-
ysis (FDA) and Support Vector Machine (SVM) tech-
niques are applied to the fault isolation problem, respec-
tively. Simulation study is carried out by means of the
multi-body simulation tool, SIMPACK. The simulation
results show that these methods can isolate the considered
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Table 5. Mahalanobis distances of the testing faults to the fault class. Smallest is Bold-faced

Fault No. c21 (MF) c21 (SF) k21 (MF) k21 (SF) c22 (MF) c22 (SF) k22 (MF) k22 (SF)

1 0.0076 0.1038 1.1035 0.1464 0.1969 0.1216 0.4793 1.1988
2 0.0277 0.0120 0.3670 0.1253 1.2455 0.4305 0.4099 1.2307
3 0.0740 0.3518 0.0139 0.1334 0.4860 0.1206 1.1106 0.5598
4 0.0580 0.0510 0.0752 0.0180 0.5358 1.2640 2.0196 0.7620
5 0.0247 0.5465 3.7952 0.0749 0.6357 0.2040 3.8190 0.5271
6 0.0103 0.4798 0.2915 0.0877 1.1210 0.0136 0.4964 0.5263
7 0.0380 0.3797 1.8689 0.1263 0.3739 0.2689 0.0360 0.4070
8 0.1186 1.2395 0.1927 0.0477 2.0352 0.4136 1.6476 0.0926
9 0.2572 0.0549 0.5249 0.4330 0.8748 0.1803 0.1849 0.3375
10 0.2235 0.6657 0.2182 0.0240 5.0460 0.1067 0.1629 1.8042
11 0.0738 0.2540 3.4569 0.2780 0.5830 0.2471 0.4489 1.0122
12 0.0364 0.3423 0.7274 0.0395 2.5316 0.7984 0.1485 1.4688
13 0.8066 0.0348 0.9331 0.0475 1.0377 0.0302 2.4915 5.9040
14 0.6270 1.2240 0.3235 0.2135 1.1089 2.3689 0.9140 0.5937
15 1.1002 0.7852 0.7810 0.1517 2.7122 1.9658 0.7907 1.3779
16 0.0446 0.2697 1.4075 0.1170 3.3318 1.0879 0.5195 1.7295

Fault No. k11 (MF) k11 (SF) k12 (MF) k12 (SF) k13 (MF) k13 (SF) k14 (MF) k14 (SF)

1 3.1386 1.1838 0.8568 0.5311 0.5666 3.6652 0.2313 3.2469
2 4.1517 0.6024 1.4252 2.0525 0.5525 1.6277 0.8471 4.2705
3 6.0041 1.5981 0.4230 3.6004 1.3566 4.0655 2.7858 2.0654
4 2.4287 0.2171 0.4578 0.0270 0.4041 1.4931 0.8965 1.8868
5 2.4240 0.8532 1.1239 7.0076 0.0958 2.9378 0.5044 7.3589
6 3.8151 0.1233 0.2636 0.1657 0.3778 2.1067 1.2011 0.2736
7 1.3116 0.2960 0.2483 0.5591 0.1172 1.5492 0.2816 6.1455
8 0.9039 0.8944 0.3928 2.8747 0.0621 4.6444 1.1692 1.0304
9 0.2230 0.1165 0.3845 0.4196 0.0933 2.8077 0.8150 1.7349
10 0.5295 1.1994 0.0236 1.9777 0.1370 5.2057 0.0864 0.9553
11 1.3407 0.3501 0.0087 2.4016 0.2157 1.3455 0.0864 0.5432
12 4.9313 0.7712 0.5286 0.8107 0.8082 0.9412 1.1583 7.8229
13 0.7651 0.3364 0.1454 2.4230 0.0192 1.7997 0.7187 2.1729
14 1.1430 2.0749 3.1263 0.8474 0.1067 0.2002 0.4456 6.5478
15 1.4894 1.2324 0.6056 4.1263 0.1047 1.8135 0.0597 0.4216
16 0.5532 0.2428 1.6628 3.3961 0.1897 3.7896 0.3834 0.2508

component faults effectively with a high accuracy. In these
three methods, the isolation accuracy rate of FDA and
SVM techniques depend on the training fault set. However,
the D-S evidence method is robust to the fault magnitude
changes. The proposed method provides an effective alter-
native for the health monitoring of rail vehicle suspension
systems.

In this paper, the lateral suspension system is taken as a
example for the considered urban rail vehicles. However,
the sensor configuration, modeling and the fault isolation
methods can be trivially extended to the vertical suspen-
sion system. Also the proposed methods can be applied to
other rail vehicles, such as high speed railway vehicles. In
addition, the proposed methods can also being applied to
the gyro sensor configuration framework when robust and
cheap gyros are available.

The fault scenarios caused in this paper are mainly one
component fault occurring at a time instant. However, it is
very possible that the performance of several components
in the suspension system degrade simultaneously due to
component aging. In addition, the disturbances caused
by the tracks (for instance, the track irregularities) and
the wheel defects (for instance, the wheel-flat) are not
considered in our study. This will be carried out in the
future work.
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