
Discretizing stochastic dynamical systems
using Lyapunov equations

Niklas Wahlström, Patrix Axelsson, Fredrik Gustafsson

Division of Automatic Control, Linköping University, Sweden
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Abstract: Stochastic dynamical systems are fundamental in state estimation, system identifi-
cation and control. System models are often provided in continuous time, while a major part
of the applied theory is developed for discrete-time systems. Discretization of continuous-time
models is hence fundamental. We present a novel algorithm using a combination of Lyapunov
equations and analytical solutions, enabling efficient implementation in software. The proposed
method circumvents numerical problems exhibited by standard algorithms in the literature.
Both theoretical and simulation results are provided.

Keywords: Optimal sampling, Lyapunov equations, matrix exponential, white noise

1. INTRODUCTION

Dynamical processes in engineering and physics have for a
long time successfully been modeled with continuous-time
differential equations. In order to account for uncertain-
ties, these equations are usually driven by an unknown
stochastic process called process noise. This noise is ideally
modeled as completely “white” in order to obtain the
Markov property, which is required in recursive Bayesian
inference, such as Kalman filtering. However, in order to
implement such filtering, the continuous-time model has
to be discretized. Such discretization includes solving an
integral involving the matrix exponential on the form

Q =

∫ T

0

eAτSeA
Tτdτ, (1)

where A,S,Q ∈ Rn×n.

We propose an algorithm for solving (1) by decompos-
ing the problem into subproblems and then solve these
subproblems either analytically or using a combination of
Lyapunov and Sylvester equations.

In many practical applications the discrete-time process
noise covariance is modeled and tuned directly, rather than
discretized from its continuous-time counterpart. However,
in certain scenarios the dependency between the discrete-
time process noise covariance and the sampling time is
important. If the filtering should work on different de-
vices with different sampling frequencies, this dependency
should be properly modeled to guarantee the same dy-
namical behavior of the filter. Further, in data with non-
equidistant sampling the process noise covariance has to
be rescaled at each time instant. This is often the case
in Gaussian process regression which can be described
with a state-space model and solved using Kalman filtering
(Särkkä et al., 2013).

In the literature there exist different algorithms for com-
puting the integral (1). The probably most well-cited one
was presented by Van Loan (1978), which involves com-
puting the matrix exponential for an augmented 2n×2n
matrix followed by a matrix multiplication of two re-
sulting submatrices. This method does not require any
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assumption on the model, however the resulting matrix
becomes ill-conditioned if the sampling time is large or if
the poles of the system are fast. For certain models, (1)
can be solved analytically. Rome (1969) presented a direct
solution under the assumption that A is diagonalizable.
The method requires an eigenvalue decomposition which
is not always numerical stable (Higham, 2008) and not
all matrices are diagonalizable. Finally, the integral can
always be solved numerically using the trapezoidal or the
rectangular method.

In this work we present an alternative method for solving
(1). This method is based on a Lyapunov equation which
characterizes the solution of (1). However, since Lyapunov
equations cannot be solved if the system contains inte-
grators (Antoulas, 2005), the problem is decomposed into
subproblems where the integrators are treated separately.
As will be explained, one set of subproblems cannot be
solved using Lyapunov equations, but they do have an
analytical solution of (1). Conversely, the remaining set
of subproblems do not have a closed form solution of (1),
but then the method with Lyapunov equations works fine.
The algorithm involves computing the matrix exponential
of the n× n system matrix rather than an augmented
2n×2n matrix as required by the solution by Van Loan.
Furthermore, the proposed algorithm circumvents some
numerical problems in the method proposed by Van Loan.
Our theoretical algebraic contributions include:

• A Lemma describing the relation between (1) and the
aforementioned Lyapunov equation, see Lemma 2.

• A novel extension of this solution which also handles
integrators, see Section 4.

• A complete algorithm which solves (1) with comple-
menting numerical properties compared to existing
solutions, see Algorithm 3.

The outline of the paper is as follows. In Section 2 the
mathematical models are presented and the importance of
the discretization method in use is motivated. In Section 3
the discretization using Lyapunov equations is presented
together with the main theoretical contributions of the
paper. In Section 4 the solutions from the previous two
sections will be combined to solve for systems with integra-
tors. In Section 5 a numerical evaluation is performed and
in Section 6 the conclusions are summarized and future
directions pointed out.
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2. MATHEMATICAL PRELIMINARIES

Consider the following Itô stochastic differential equation
dx(t) = Ax(t)dt+ dβ(t), (2a)

where β(t) is a Brownian motion with

E[dβ(t)dβ(t)T] = Sdt. (2b)

The model (2a) is formally equivalent to the stochastic
differential equation

dx(t)

dt
= Ax(t) +w(t), (3a)

where w(t) is a zero-mean white Gaussian process with

E[w(t)w(τ)T] = Sδ(t− τ). (3b)

Since w(t) is not square Riemann integrable, the model
(3) does not have any mathematical meaning (Jazwinski,
1970). However, we can still intuitively think of it as a
stochastic differential equation driven by white noise.

It is important to note that this is just a model of
the physical process and cannot be found in reality. For
example, white noise has a flat power spectral density
requiring infinite power, which is not physically realizable.
Nevertheless, using this continuous-time model will lead
to sound properties for the equivalent discrete-time model
as will be explained later.

By integrating (2a) over the time interval [tk, tk+1] we can
find its discrete-time equivalence as

x(tk+1) = eATk︸︷︷︸
FTk

x(tk)︸ ︷︷ ︸
xk

+

∫ tk+1

tk

eA(τ−tk+1)dβ(τ)︸ ︷︷ ︸
wk

, (4)

where Tk = tk+1 − tk is the sampling time. This can be
stated as a discrete-time stochastic difference equation

xk+1 = FTk
xk +wk. (5a)

By following for example Jazwinski (1970), the noise wk
will be zero-mean, white Gaussian

E[wkw
T
l ] = QTk

δkl, (5b)

where δkl is the Kronecker delta function and

QTk
=

∫ Tk

0

eAτSeA
Tτdτ, (6a)

which together with the discrete-time system matrix

FTk
= eATk (6b)

completes the discretization procedure.

The integral expression (6a) can be found in multiple text-
books on Kalman filtering (e.g. Bar-Shalom et al. (2001);
Grewal and Andrews (2008)) for modeling discrete-time
dynamical processes. Nevertheless, the discretization of
continuous-time differential equations for filtering appli-
cations is often misused. For example, the noise w(t) is
commonly assumed to be constant during each sampling
interval leading to the following discrete-time noise covari-
ance

Q̄A
Tk

=
1

Tk

(∫ Tk

0

eAτdτ

)
︸ ︷︷ ︸

ḠTk

S

(∫ Tk

0

eA
Tτdτ

)
︸ ︷︷ ︸

ḠT
Tk

, (7a)

or just rescaling the continuous-time noise covariance with
the sampling time

Q̄B
Tk

= TkS. (7b)

In contrast to the discretization in (6), the assumptions in
(7) lead to a dynamical description of the process which

depends on the sampling intervals, whereas the actual
physical process do not. This can be seen by the property
derived in the following example.
Example 2.1. Consider the three time instances t1, t2 and
t3. We then have

Cov
[
x(t3)

∣∣∣x(t1)
]

(8a)

= Cov
[
Ft3−t2x(t2) +w2

∣∣∣x(t1)
]

(8b)

= Cov
[
Ft3−t2

(
Ft2−t1x(t1) +w1

)
+w2

∣∣∣x(t1)
]

(8c)

= Cov
[
FT2

w1 +w2

∣∣∣x(t1)
]

(8d)

= FT2
QT1

FT
T2

+QT2
. (8e)

We could also use only one time interval and go from t1
directly to t3 with the sampling time t3 − t1 = T1 + T2,
which gives

Cov
[
x(t3)

∣∣∣x(t1)
]

(9a)

= Cov
[
Ft3−t1x(t1) +w1

∣∣∣x(t1)
]

(9b)

= Cov
[
w1

∣∣∣x(t1)
]

= Qt3−t1 = QT1+T2
. (9c)

This gives the relation

QT1+T2 = FT2QT1F
T
T2

+QT2 . (10)

Indeed, this property is fulfilled for the discretization
presented in (6).
Lemma 1. If FTk

and QTk
are computed as described in

(6), then
QT1+T2

= FT2
QT1

FT
T2

+QT2
.

Proof.

QT1+T2
=

∫ T1+T2

0

eAτSeA
Tτdτ

=

∫ T2

0

eAτSeA
Tτdτ +

∫ T1+T2

T2

eAτSeA
Tτdτ

=

∫ T2

0

eAτSeA
Tτdτ︸ ︷︷ ︸

Q2

+ eAT2︸︷︷︸
FT2

∫ T1

0

eA
TτSeA

Tτdτ︸ ︷︷ ︸
QT1

eA
TT2︸ ︷︷ ︸

FT
T2

=QT2 + FT2QT1F
T
T2
.

With similar calculations we can easily derive the equiva-
lent results for the covariance matrices in (7) and conclude
that they do not share this property since

Q̄A
T1+T2

= Q̄A
T2

+FT2Q̄
A
T1
FT
T2

+FT2ḠT1SḠ
T
T2

+ḠT2SḠ
T
T1
FT
T2

6= Q̄A
T2

+FT2
Q̄A
T1
FT
T2
, (11a)

Q̄B
T1+T2

= Q̄B
T2

+Q̄B
T1

6= Q̄B
T2

+FT2Q̄
B
T1
FT
T2
. (11b)

Hence by assuming that the underlying continuous-time
model is driven by a continuous-time white process the
corresponding discrete-time model has the property that
the dynamical description does not depend on the sam-
pling intervals, in contrast to other common discretization
procedures. We can therefore see (5) and (6) as algebraic
relations between A, S, Tk, FTk

and QTk
fulfilling the

property in (10) without deriving it from its continuous-
time counterpart.

The main advantage with the alternative expressions in
(7) in comparison to (6a) is their ease of calculation
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(especially true for (7b)). The remaining part of this work
will therefore describe how the integral (6a) can be solved
in an efficient manner with good numerical properties.

3. DISCRETIZATION USING LYAPUNOV
EQUATIONS

A method for computing the integral (6a) will now be
presented. The method will be proposed by requiring the
system to be asymptotically stable. Later in this section we
will prove that this requirements actually can be relaxed.

3.1 Proposal of solution

If the system is asymptotically stable, i.e. if all eigenvalues
of A have negative real part, a stationary covariance will
exist and we denote it as

Cov[x(t)] = Cov[xk] = P. (12)

This covariance satisfies the following two Lyapunov equa-
tions for the continuous-time model (2a) and the discrete-
time model (5a), respectively

0 = AP + PAT + S, (13a)

P = FTk
PFT

Tk
+QTk

. (13b)

which gives a structured way of computing QTk
, as pre-

sented in Algorithm 1.

Algorithm 1 Solution using Lyapunov equation for P

The matrices A and S and the scalar Tk are given. The
matrices FTk

and QTk
in (6) can then be computed as

FTk
= eATk , (14a)

QTk
= P − FTk

PFT
Tk
, (14b)

where P is the solution to the Lyapunov equation

AP + PAT = −S. (14c)

This algorithm can also be reformulated such that we
do not need to compute P in an intermediate step. By
multiplying (14b) with A from the left and with AT from
the right, respectively, we get

AQTk
= AP − FTk

APFT
Tk
, (15a)

QTk
AT = PAT − FTk

PATFT
Tk
, (15b)

where the fact that FTk
and A commute has been used

since

AFTk
= A(I +A+

1

2
A2 . . . ) = (A+A2 +

1

2
A3 . . . )

= (I +A+
1

2
A2 . . . )A = FTk

A.

By adding (15a) and (15b), we get

AQTk
+QTk

AT =AP − FTk
APFT

Tk
+ PAT − FTk

PATFT
Tk

=AP + PAT︸ ︷︷ ︸
−S

−FTk
(AP + PAT︸ ︷︷ ︸

−S

)FT
Tk

=−S + FTk
SFT

Tk
. (16)

This gives the following algorithm as presented in Algo-
rithm 2. This algorithm is similar to the solution pre-
sented by Axelsson and Gustafsson (2012) derived from
a continuous-time differential Lyapunov equation.

From here on we will proceed with Algorithm 2. However,
all results (including the final algorithm) can be reformu-
lated to suit Algorithm 1 as well.

Algorithm 2 Solution using Lyapunov equation for QTk

The matrices A and S and the scalar Tk are given. The
matrices FTk

and QTk
in (6) can then be computed as

FTk
= eATk (17a)

and QTk
is the solution to the Lyapunov equation

AQTk
+QTk

AT = −VTk
, (17b)

where

VTk
= S − FTk

SFT
Tk
. (17c)

3.2 Theoretical result

It can now be proven that Algorithm 2 (and consequently
also Algorithm 1) gives a solution to (6), provided that the
solution of the Lyapunov equation exists and is unique.
Lemma 2. The solution to the integral

Q =

∫ T

0

eAτSeBτdτ (18a)

satisfies the Sylvester equation

AQ+QB = −S + eATSeBT . (18b)

Proof. Start with (18b) and replace Q with the integral
(18a). This gives

AQ+QB =

∫ T

0

AeAτSeBτdτ +

∫ T

0

eAτSeBτBdτ

=

∫ T

0

d

dτ
[eAτSeBτ ]dτ (19a)

= eAτSeBτ
∣∣∣T
0

= eATSeBT − S. (19b)

Remark 3. A similar result was presented by Gawronski
(2004) in the context of time-limited grammians. However,
that result requires B = AT and that all eigenvalues of A
should have negative real part.
Remark 4. Note that Lemma 2 does not require anything
about the matrices A and B. In particular, they do not
need to be stable as assumed in (12) and (13). Indeed,
the requirements for the Lyapunov equation (17b) to have
a unique solution are milder. This is answered by the
following proposition, which is given for the more general
Sylvester equation.
Proposition 5. The Sylvester equation

AP + PB = C (20)

has a unique solution P if and only if
λi(A) + λj(B) 6= 0 ∀i, j. (21)

For proof, see for example Antoulas (2005).

For the case where B = AT and with the requirement
that A is stable, the condition (21) is always fulfilled.
By using that observation together with Lemma 2 where
T → ∞, we get the following well known results relating
the controllability grammian to a Lyapunov equation,
which can be found in most textbooks on linear systems,
e.g. Rugh (1996).
Corollary 6. If all eigenvalues of A have negative real
parts, then for each symmetric matrix S there exists a
unique solution of

AQ+QAT = −S (22a)

given by

Q =

∫ ∞
0

eAτSeA
Tτdτ. (22b)
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According to Proposition 5 the integral (6a) cannot be
computed using the Lyapunov equation (17b) if A and −A
have any common eigenvalues. This is especially the case
if the system has integrators, which indeed is common in
models intended for Kalman filtering. In the next section
we will therefore present a solution which handles such
systems as well. With this extension almost all systems
of interest will be covered, except for the systems which
have at least one pair of non-zero poles mirrored in the
imaginary axis.

This extension will be performed by decomposing the
problem into subproblems where some of these subprob-
lems still can be solved using parts of the Lyapunov
equation (17b), whereas the remaining subproblem can be
solved analytically using the integral (6a).

4. SOLUTION FOR SYSTEMS WITH INTEGRATORS

Consider the case when A is block triangular consisting of
three blocks

A =
[
A11 A12
0 A22

]
, (23)

where

λi(A11) + λj(A11) 6= 0 ∀i, j, (24a)

λi(A11) + λj(A22) 6= 0 ∀i, j, (24b)

λj(A22) = 0 ∀i, j. (24c)

In this manner we have partitioned A such that all zero
eigenvalues have been placed in A22 and all remaining non-
zero eigenvalues in A11. Many systems do have such block
triangular structure, for example if an observer canonical
form has been used, see Example 4.2. If the system does
not have that form, an orthogonal transformation can be
applied. This transformation can be computed using Schur
decomposition and reordering of the eigenvalues (Golub
and Van Loan, 1996). This will also affect the covariance
matrix S as well as VTk

by considering this transformation
as a state transformation, see Appendix A.

4.1 Solution using Lyapunov and Sylvester equations

According to Lemma 2, the solution of the integral (6a) for
the block triangular matrix (23) shall obey the following
Lyapunov equation[
A11 A12
0 A22

][Q11 Q12

QT
12 Q22

]
+

[
Q11 Q12

QT
12 Q22

][
AT

11 0
AT

12 A
T
22

]
=−
[
V11 V12

V T
12 V22

]
,

where QTk
and VTk

have been partitioned in a similar
manner as A. Note that the subscript Tk has been omitted
from the submatrices in order to make the notation less
cluttered. This gives the following set of Lyapunov and
Sylvester equations

A11Q11 +Q11A
T
11 = −V11 −A12Q

T
12 −Q12A

T
12, (25a)

A11Q12 +Q12A
T
22 = −V12 −A12Q22, (25b)

A22Q
T
12 +QT

12A
T
11 = −V T

12 −Q22A
T
12, (25c)

A22Q22 +Q22A
T
22 = −V22. (25d)

Based on the requirements in (24a) and (24b), Proposi-
tion 5 guarantees that Q11 and Q12 can be solved uniquely
using (25a) and (25b) if Q22 is known. In contrast, (25d)
does not have a unique solution for Q22. Instead, Q22 can
be solved analytically using the integral (6a). Note that
(25c) is just a transposed version of (25b) and does not
bring any extra information.

4.2 Analytical solution for the nilpotent part

Due to the block triangular structure of A, the submatrix
Q22 will only depend on A22 and S22 via a similar
expression as in (6a). By starting from (6a) we have

Q22 = [0 I]Q
[
0
I

]
(26a)

= [0 I]

∫ Tk

0

eAτSeA
Tτdτ

[
0
I

]
(26b)

=

∫ Tk

0

[
0 eA22τ

]
S

[
0

eA
T
22τ

]
dτ (26c)

=

∫ Tk

0

eA22τS22e
AT

22τdτ. (26d)

Further, since all eigenvalues of A22 are zero, the subma-
trix A22 will also be nilpotent (Lancaster and Tismenetsky,
1985) leading to

eA22τ =

p−1∑
i=0

Ai22

τ i

i!
, (27)

where p is the dimension of A22, i.e. the number of
integrators in the system. Expression (26d) can then be
computed analytically as

Q22 =

∫ Tk

0

(
p−1∑
i=0

1

i!
Ai22τ

i

)
S22

p−1∑
j=0

1

j!
Aj22

T
τ j

 dτ

=

p−1∑
i=0

p−1∑
j=0

1

i!j!
Ai22S22A

j
22

T
∫ Tk

0

τ i+jdτ (28a)

=

p−1∑
i=0

p−1∑
j=0

T i+j+1
k

i!j!(i+ j + 1)
Ai22S22A

j
22

T
. (28b)

This is illustrated with the following example.

Example 4.1. Consider a constant velocity model, which
formally can be described on the form

ẋ(t) =
[
0 1
0 0

]
︸ ︷︷ ︸

A

x(t) +
[
0
1

]
︸︷︷︸
B

q(t), E[q(t)q(τ)] = δ(t− τ).

This system has only zero eigenvalues which gives

A = A22 =
[
0 1
0 0

]
, (29a)

S = S22 = E[Bq(Bq)T] =
[
0
1

]
1 [0 1] =

[
0 0
0 1

]
. (29b)

By using this in (26) we get

QTk
= STk + SAT

22

T 2
k

2
+A22S

T 2
k

2
+A22SA

T
22

T 3
k

3

=
[
0 0
0 1

]
Tk +

[
0 0
1 0

] T 2
k

2
+
[
0 1
0 0

] T 2
k

2
+
[
1 0
0 0

] T 3
k

3

=

T
3
k

3

T 2
k

2
T 2
k

2
Tk

 , (29c)

which is the same result as given by Grewal and Andrews
(2008), but derived in a different way.
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4.3 General algorithm

Based on the results in the last section, we can now propose
an algorithm for computing the integral (6a), also in the
case where A consists of integrators, see Algorithm 3.

Algorithm 3 Proposed algorithm (for systems with arbi-
trary number of integrators)

The matrices A and S and the scalar Tk are given. The
matrices FTk

and QTk
in (6) can then be computed as

(1) Transform A and S to Ã and S̃ such that Ã becomes
block triangular

U−1AU=Ã=

[
Ã11 Ã12

0 Ã22

]
, U−1SU−T=S̃=

[
S̃11 S̃12

S̃T
12 S̃22

]
,

and with all integrators collected in Ã22. This can
be done with an orthogonal transformation computed
using Schur decomposition and reordering of the
eigenvalues.

(2) Compute F̃Tk
= eÃTk .

(3) Compute ṼTk
= S̃ − F̃Tk

S̃F̃T
Tk

.

(4) Compute

Q̃Tk
=

[
Q̃11 Q̃12

Q̃T
12 Q̃22

]
using the following steps:
(a) Compute Q̃22 by evaluating

Q̃22 =

p−1∑
i=0

p−1∑
j=0

T i+j+1
k

i!j!(i+ j + 1)
Ãi22S̃22(Ãi22)T,

where p is the number of integrators.

(b) Compute Q̃12 by solving the Sylvester equation

Ã11Q̃12 + Q̃12Ã
T
22 = −Ṽ12 − Ã12Q̃22. (30)

(c) Compute Q̃11 by solving the Lyapunov equation

Ã11Q̃11 + Q̃11Ã
T
11 = −Ṽ11 − Ã12Q̃

T
12 − Q̃12Ã

T
12.
(31)

(5) Transform F̃Tk
and Q̃Tk

back to FTk
and QTk

FTk
= UF̃Tk

U−1, (32a)

QTk
= UQ̃Tk

UT. (32b)

Remark 7. If A does not have any integrators, Algorithm 3
will collapse to the simpler version in Algorithm 2.

Remark 8. In theory, U−1 = UT since U is orthogonal.
However, numerical algorithms for computing the Schur
decomposition do not make U completely orthogonal.
From a numerical point of view it is therefor a benefit
to distinguish between U−1 and UT.

Remark 9. If Ã12 = 0 the coupling in (30) and (31)

via Q̃12 and Q̃22 will disappear and they can be solved
independently from each other. If this is desired, the
transformation in Step 1 can be extended to eliminate
Ã12 by solving an addition Sylvester equation (Bavely and
Stewart, 1979). However, such transformation is no longer
orthogonal and can be arbitrary ill-conditioned if the non-
zero eigenvalues are close to zero.

Remark 10. If the system already has a block triangular
structure, Step 1 and Step 5 in Algorithm 3 can be omitted.
This is the case for the observer canonical form as seen in
the following short example.

Example 4.2. Consider a SISO-system of order n = m +
p with m non-zero poles and p additional integrators
described with a transfer function

G(s) =
b1s

m−1 + b2s
m−2 + · · ·+ bm−1s+ bm

sn + a1sm−1 + · · ·+ am−1s+ am
· 1

sp
. (33)

This system can be described with the observer canonical
form (Glad and Ljung, 2000)

ẋ =



−a1 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

−am−1 0 . . . 1 0 0 . . . 0
−am 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 1
0 0 . . . 0 0 0 . . . 0


x+



0
...
0
b1
...
...
bm


w, (34a)

y = [ 1 0 . . . 0 ]x, (34b)

which can be written more compactly as

ẋ =

[
A11 A12

0 A22

]
x+Bw, (35a)

y = [1 0 . . . 0]x. (35b)

This system has by construction the desired block trian-
gular structure.

5. NUMERICAL EVALUATION

In this section the numerical properties of the proposed so-
lution will be compared with a standard solution presented
by Van Loan (1978) given in Algorithm 4.

Algorithm 4 Van Loan’s method

The matrices A and S and the scalar Tk are given. The
matrices FTk

and QTk
in (6) can then be computed as

(1) Compute the matrix exponential of an augmented
2n× 2n matrix[
M11 M12

0 M22

]
= eHTk ,where H =

[
A S
0 −AT

]
. (36a)

(2) The matrices FTk
and QTk

are given as

FTk
= M11, QTk

= M12M
T
11. (36b)

5.1 Implementation aspects

In both methods Matlab’s built-in function expm has
been used for computing the matrix exponential. In Step
1 of Algorithm 3 the functions schur and ordschur have
been used for computing the Schur decomposition and the
reordering of the eigenvalues. Finally, the Lyapunov and
Sylvester equations have been solved using lyap.

5.2 Simulation results

In total 100 systems of order n = 6 with m = 4 stable poles
and p = 2 additional integrators are randomly generated.
Each system is normalized such that the fastest pole is at
distance 1 from the imaginary axis, i.e. max(|Re(λi)|) = 1.

An estimate Q̂Tk
is computed using both Algorithm 3 and

Algorithm 4 with single precision for different values of the
sampling time Tk. Finally, the error

ε = ‖Q̂Tk
−QTk

‖2/‖QTk
‖2

is evaluated, where QTk
is computed using numerical

integration of (6a) with double precision, here considered
as the true value. The result is presented in Figure 1.
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Fig. 1. The performance of the proposed method (Algo-
rithm 3) and Van Loan’s method (Algorithm 4).

According to the result the proposed method outperforms
the standard method for large Tk. The reason will be-
come clear if we investigate the two methods further.
In Algorithm 4, both ATk and −ATTk are present in
the augmented matrix HTk and the task to compute its
matrix exponential (36a) will become ill-conditioned if
Tk or max(|Re(λi)|) is large. In fact, the error will grow
exponentially with Tk, or the magnitude of work will grow
linearly with Tk to keep a certain tolerance (Van Loan,
1978). This issue is not present in the proposed method,
which can be seen in its simplified version in Algorithm 1.
If Tk is large we have FTk

= eATk ≈ 0 and QTk
will

approach the stationary covariance P according to (14b).

However, for fast sampling the proposed method perform-
ers slightly worse. This is especially the case if the system
has integrators as well as non-zero poles close to the origin
leading to that the Sylvester equation (30) will become ill-
conditioned. Consequently, van Loan’s method preforms
worse when the fastest pole is fast and the sampling is
slow, whereas the proposed method preforms worse when
the slowest (non-zero) pole is slow and the sampling is fast.
The proposed method also has computational complexity
advantages since it only needs to compute the matrix
exponential of an n×nmatrix rather than of an augmented
2n× 2n matrix as required by van Loan’s method.

6. CONCLUSIONS AND FUTURE WORK

An algorithm for computing an integral involving the
matrix exponential common in optimal sampling was pro-
posed. The algorithm is based on a Lyapunov equation and
is justified with a novel lemma. An extension to systems
with integrators was presented. Numerical evaluations
showed that the proposed algorithm has advantageous
numerical properties slow sampling and fast dynamics in
comparison with a standard method in the literature.

Further work includes extending the algorithm further to
handle arbitrary matrices, i.e. also matrices with non-
zero eigenvalues mirrored in the imaginary axis. Also
the numerical properties should be analyzed further and
strategies for improving the numerical properties for slow
poles should be investigated.

REFERENCES

Antoulas, A.C. (2005). Approximation of large-scale dy-
namical systems. SIAM, Philadelphia, PA, USA.

Axelsson, P. and Gustafsson, F. (2012). Discrete-time
solutions to the continuous-time differential Lyapunov
equation with applications to Kalman filtering. Techni-
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Appendix A. STATE TRANSFORMATION

Consider the following state transformation
x = U x̃. (A.1)

By applying (A.1) to the dynamical equation (3a) we get
ẋ = Ax+w ⇒ (A.2a)

U ˙̃x = AU x̃+w ⇒ (A.2b)

˙̃x = U−1AU x̃+ U−1w ⇒ (A.2c)

˙̃x = Ãx̃+ w̃. (A.2d)

which gives the following transformation of A, S and V

Ã = U−1AU, (A.3a)

S̃ = E[w̃w̃T] = E[U−1w(U−1w)T] = U−1E[wwT]U−T

= U−1SU−T. (A.3b)

These matrices will then be used to compute F̃Tk
and Q̃Tk

by following Step 2-4 in Algorithm 3. We then have

x̃k+1 = F̃Tk
x̃k + w̃k ⇒ (A.4a)

U−1xk+1 = F̃Tk
U−1xk + w̃k ⇒ (A.4b)

xk+1 = UF̃Tk
U−1xk + Uw̃k ⇒ (A.4c)

xk+1 = FTk
xk +wk (A.4d)

which gives the transformations

FTk
= UF̃Tk

U−1, (A.5a)

QTk
= E[wkw

T
k ] = E[Uw̃k(Uw̃k)T] = UE[w̃kw̃

T
k ]UT

= UQ̃Tk
UT. (A.5b)

Note that if U is orthogonal, we have U−1 = UT.
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