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Abstract: In this paper, we deal with the problem of maintenance planning and production planning for a 

multiple-product manufacturing system. The manufacturing system under consideration consists of one 

machine which is subject to random failures and produces several products in order to satisfy some 

random demands. At any given time, the machine can only produce one type of product. The purpose of 

this study is to establish an economical production planning followed by an optimal maintenance 

strategy, taking into account the influence of production rate on the system degradation. Analytical 

models are developed in order to minimize sequentially the production/storage costs and the total 

maintenance cost. Finally, a numerical example is presented to illustrate the usefulness of the proposed 

approach.  



1. INTRODUCTION 

The joint maintenance and production policies for 

manufacturing system, which is subject to uncertainties such 

as machine failures, demand fluctuations, etc., has attracted 

the attention of several researchers. The development of 

industrial strategies (maintenance and production) has 

become very important for industrial companies in order to 

reduce their costs. In this context, Dehayem et al. (2011) 

developed a method to find the optimal production, 

replacement/repair and preventive maintenance policies for a 

degraded manufacturing system. Gharbi and kenné (2007) 

assumed that failure frequencies can be reduced through 

preventive maintenance, and developed joint production and 

preventive maintenance policies depending on produced part 

inventory levels. An analytical model and a numerical 

procedure which allow determining a joint optimal inventory 

control and an age based on preventive maintenance policy 

for a randomly failing production system was presented by 

Rezg et al. (2008). Several reviews have been published to 

summarize the development in this area; (Aghezzaf et al. 

2007, and Dhouib et al. 2012). 

This paper examined a problem of the optimal production 

planning formulation of a manufacturing system consisting of 

one machine producing several products in order to meet 

several random demands. The stochastic nature of the system 

is due to the fact that demands are random and the machine is 

subject to random breakdowns. We consider that the finite 

production horizon is divided into sub-periods. At any given 

sub-period, the machine can only produce one type of 

product.  

This problem was studied by (Kenné et al. 2003). They 

presented the analysis of the production control and 

corrective maintenance rate problem in a multiple-machine, 

multiple-product manufacturing system. They obtained a near 

optimal control policy of the system through numerical 

techniques by controlling both production and repair rates. 

Wei Feng et al. (2012) developed a multi-product 

manufacturing systems problem with sequence dependent 

setup times and finite buffers under seven scheduling 

policies. Sloan and Shanthikumar (2000) presented a Markov 

decision process model that simultaneously determines 

maintenance and production schedules for a multiple-product, 

single-machine production system, accounting for the fact 

that equipment condition can affect the yield of different 

product types differently. Filho (2005) developed a stochastic 

dynamic optimization model to solve a multi-product, multi-

period production planning problem with constraints on 

decision variables and finite planning horizon.  

The considered equipment is subject to random failures. The 

failure rate increases with time and according to the 

production rate. The machine undergoes a preventive 

maintenance policy in order to reduce the occurrence of 

failures. In the literature, the influence of the production rate 

on the materiel degradation is rarely studied. In this study, we 

take into consideration this influence in order to establish the 

optimal maintenance strategy.  

Based on the works of Hajej et al. (2009, 2010, 2011), the 

objective of this study is to determine an economical 

production plan followed by an optimal maintenance 

strategy. Firstly, for a given randomly demand, we 

established an optimal production plan which minimizes the 

average total storage and production costs. Secondly, using 

the optimal production plan obtained and its influence on the 

manufacturing system failure rate, we established an optimal 
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maintenance scheduling which minimizes the maintenance 

total cost. 

This paper is organized as follows: In section 3, we develop 

the production policy. The maintenance strategy is stated in 

section 4. A numerical example is presented in section 5. 

Finally, the conclusion is given in section 6. 

2. NOTATIONS 

Cpi The unit production cost of product i 

Csi The unit holding cost of product i during t 

sti The Setup cost of product i 

Mc Cost of corrective maintenance  

Mp Cost of preventive maintenance  

Uimax Maximal  production rate of product i during t 

H The total number of production periods 

n The total number of products 

p The total number of sub-periods  

∆t Length of periods 

(.) Length of the sub-period  

di,k Demand of product i in period k 

σ(di,k) Standard deviation of demand of product i at 

period k 

i Probabilistic index (related to customer 

satisfaction) of product i 

Si,(.) Stock level of product i at the end of the sub-

period  

Z (.) The total expected cost of production and 

inventory over the finite horizon H.t 

(.) The total cost of maintenance 

.(.)  Failure rate function  

n(.)  Nominal failure rate 

(.) The average number of failures 

T Intervention period for preventive maintenance 

actions 

Ui,j,k Production rate of product i in sub-period j of 

the period k 

yi,j,k A binary variable equal to 1 if the product i is 

produced in sub-period j of the period k, and 0 

otherwise 

up Unit produced 

mu Monetary unit 

3. PRODUCTION POLICY 

3.1Problem formulation 

The aim of this section is to develop an analytical model that 

allows us to determine the optimal production plan U*, 

      *

, ,

* 1... , 1... , 1...i j kU U i n j p k H    
, 

consequently, to determine the quantity and the type of 

products to produce in each sub-period. We recall that n 

represents the total number of products, p the number of sub-

period and H the total number of production periods. Figure 

below shows an example of a production plan. 

 

Fig.1. Repartition of the production plan 

To develop this section, the following assumptions are 

specifically made: 
 

o The setup time is negligible;  

o Holding and production costs of each product are 
known and constant; 

o Only a single product can be produced in each sub-
period;  

o The standard deviation of demands σ(di,k) and the 

average demand ˆ
id mean for each product i and each 

period k are known and constant. These two data 
allow us to obtain the demand of each product in each 
period. 

In this study, we assume that the horizon is divided into H 

equal periods and each period is divided into p sub-periods 

with different lengths. We consider that p = n (the total 

number of products). “Fig. 1” shows the distribution of the 

production plan for the finite horizon H t . At any given 

sub-period, the machine can only produce one type of 

product. The demand of each product i, {i=1…n} is satisfied 

at the end of each period k, {k=1…H}. 

 

The mathematical formulation of the proposed problem is 

based on the extension of the model described by Hajej et al. 

(2011), for the one product case study.  

 

Formally, the stochastic production problem is defined as 

follows: 

   2
Min E U  

     
, j,k 1... , 1... , 1...iU U i n j p k H      

With: 

 

 , , , ,

( ) ( )
1 1 1 ,( ) ( )

i j k i i i j kpH n

k p p j
k j i i i k p p j

y st Cp U

U
Cs S

t

   
     

    
 

   
   

 

       (1)
 

Where: E { . } : The mathematical expectation 

Under the following constraints: 

,( ) ( ) ,( ) ( ) 1 , , , , ,i k p p j i k p p j i j k i j k i k

j
S S y U Int d

p
      

 
     

   
                     1... , 1... , 1...i n j p k H                        (2)                                    

Where  Int  : Integer part  
 

     
,( ) 0 1... , 1...i k p iProb S i n k H                     (3)                  

   
     , ,0     1 , 1 , 1

Δ

k p p j

i j k imaxU U i n j p k H
t

   
           (4) 
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     
1

Δ            1

p

k p p j

j

t k H   



                             (5) 

The first constraint denotes the inventory balance equation 

for each product i, {i=1…n} during each period k, {k=1…H}. 

The equation (3) refers to the satisfaction level of demand of 

product i in each period k. The constraint (4) defines the 

upper production rate of the machine for each product i. The 

aim of (5) is to divide each period into p different sub-

periods.  

Constraints below should also be taken into account: 

   , ,

1

1           1     1

n

i j k

i

y j p For k H



                           (6) 

   , ,

1

1        1     1   

p

i j k

j

y i n For k H



                            (7) 

       , ,   0,1           1 ,  1 , 1i j ky i n j p k H                 (8) 

The equations (6) and (7) mention that only one product i can 

be produced in sub-period j of period k. The constraint (8) 

states that , ,i j ky is a binary variable. We note that , ,i j ky  equal 

to 1 if the product i is produced in sub-period j of the period 

k, and 0 otherwise.  

3.2 The deterministic production model 

We admit that the function 

       i, j,k     1 , 1  , 1f i n j p k H        represents the 

cost of storage and production which is relative to the 

proposed plan and E{.} denotes the value of the mathematical 

expectation. The quantity stocked of product i at the end of 

the sub-period j of period k is denoted    ,  i k p p jS    . The 

production rate required to satisfy the demand of product i at 

the end of period k is , ,i j kU , where j is the sub-period during 

which the product i is produced. 

Thus, the problem formulation can be presented as following: 
 

  
2*

( , , ) , , ,( . ) ( )

1 1 1

,

pH n

i j k i j k i k p p j

k j i

U Min E f U S  

  

   
   
    
   (9)    

So our problem is to determine the decision variables

 , , ( . ), ( ), , andi j k k pi j pk jU y    , required to satisfy 

economically the various demands under the constraints seen 

in the previous paragraph. 
 

 The inventory balance equation 
 

The stochastic inventory balance equation is: 

,( ) ( ) ,( ) ( ) 1 , , , , ,i k p p j i k p p j i j k i j k i k

j
S S y U Int d

p
      

 
     

 
                                  

We suppose that the mean and variance of demand are known 

and constant for each product i in each period k.  

 , ,
ˆ
ii k kE dd  and    ,

2

, i ki k dVar d 
 

   1... , 1...i n k H    

 ,i kVar d  is the demand variance of product i at period k. 

The inventory variable    ,i k p p jS     
 is statistically described 

by its mean: 

              , ,      1 , 1 1ˆ ,i k p p j i k p p jSE S i n j p k H            

We note that  , , , , , ,
ˆ

i j k i j k i j kUE U U 
 

because , ,i j kU
 

is 

constant for each interval    k p p j     
. 

Then, the balance equation (2) can be converted into an 

equivalent inventory balance equation: 

,( ) ( ) ,( ) ( ) 1 , , , , ,
ˆˆ ˆ

i k p p j i k p p j i j k i j k i k

j
S S y U Int d

p
      

 
     

 
 

        
     1... , 1... , 1...i n j p k H   

                           (10) 

 The service level constraint: 

The second step for transformed our problem into 

deterministic equivalent formulation is to transform the 

service level constraint into deterministic equivalent 

constraint by specifying certain minimum cumulative 

production quantities that depend on the service level 

requirements.  

 

Lemma 1: 

       
1

, , , , , , , 1

1

ˆ ˆ
p

i j k i j k i k i i k i k p

j

y U Var Sdd  
 



                    

     1... , 1... , 1...i n j p k H     

With: 

 i  : Cumulative Gaussian distribution function 

 1
i 

: Inverse distribution function 

  
Proof: (Contact author) 

 The expected total cost of production: 

In this step, we proceed to a simplification of the expected 

cost of production and storage. Then, the expression of the 

expected total cost of production is represented as following: 

 

Lemma 2: 

 

  

 

 

 

1
2

,

1 1

2
,

1

2

, , , ,

1 1 1 ( ) ( )

2

,( ) ( )
ˆ

p

i j k i i

k

i Q

Q l

j

i k

i j k

pH n

k j i k p p j

i

i k p

l

p j

l
In

y St Cp U

U

Cs
t

S

t d
p

l
Int d

p




     

  



 



 
 

 

 
 

   
 
  
  
  
    
  
    
   
 



 
  
 







 







In summary: 

The deterministic optimization problem becomes: 
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Objective function: 

  

 

 

 

1
2

,

1 1

2

2

, , , ,

1 1 1 ( ) ( )

2

)

,

1

,( ) (
ˆ

i j k i i i j k

pH n

k j i k p p j

i

i k p p j

pk

i Q

Q l

j

i k

l

y St Cp

l
Int d

p

l
Int d

p

U

Min

Cs
t

S




     

 



 





    
  
      
   
   
   
     
    
   
  

 
 

 

 
  




     














 

Under the constraints bellow: 

 ,( ) ( ) ,( ) ( ) 1 , , , , ,
ˆˆ ˆ

i k p p j i k p p j i j k i j k i k

j
S S y U Int d

p
      

 
     

 
 

     1... , 1... , 1...i n j p k H   
 

 
       

1
, , , , , , , 1

1

ˆ ˆ
p

i j k i j k i k i i k i k p

j

y U Var Sdd  
 



      

 
   

     , ,0     1 , 1 , 1
Δ

k p p j

i j k imaxU U i n j p k H
t

   
           

      
1

Δ            1

p

k p p j

j

t k H   



     

4. MAINTENANCE STRATEGY 

4.1 Description 

The aim of this strategy is to define the sub-periods of 

production that must be followed by preventive maintenance 

actions. Maintenance strategy adopted in this study is known 

as preventive maintenance with minimal repair. These 

preventive actions are put into practice in the period ×T ( = 

1,2...). The replacement rule for this policy is to replace the 

system with a new system at each  × T. If the system fails 

between preventive maintenance actions, only minimal repair 

is implemented.  
 

In this study, we assume that: 

 
 Maintenance actions have negligible durations; 

 In the case of preventive maintenance, the system 
becomes as good as new; 

 Mp and Mc costs incurred by the preventive and 
corrective maintenance actions are known and 
constant, with Mc>>Mp. 

Generally, if λ (t) is the function of machine failure rate, the 

total maintenance cost per unit time is expressed as 

following: 

 

 
0

T

p c

T

M M t dt

T




 



                                        (11)

 

 

The aim of this maintenance strategy is to find the optimal 

period of preventive maintenance actions T* minimizing the 

total cost per unit time over a given horizon H t . 

 

The existence of an optimal preventive maintenance period 

T*, is proved in the literature. (Lyonnet, 2000) proved that T* 

exists if the failure rate is increasing. 

 

In this section we will optimize the maintenance strategy 

adopted which is a preventive maintenance with minimal 

repair. From the production plan developed during the time 

horizon H t , we determine the optimal number of sub-

periods     
*

k p p j   , after which the preventive 

maintenance should be performed. We note that if 

    
*

k p p j    exceeds H t , no preventive 

maintenance action is implemented. 

4.2 Failure rate expression  

Before determining the analytical model minimizing the total 

cost of maintenance, we need first, to develop the expression 

of the failure rate      k p p j t    . Then, the average number 

of failures expression  ,ω T U , during the finite horizon H t . 

              

   

 

1 1

, ,

1

k p p j k p p j k p p j

n
i j k

imax k p p ji

t

U t

U

  



          

  




 

 nλ t
 

             0,      1    1k p p jt k H j p   
      
 

             (12) 

 

After simplifying, the failure rate expression becomes: 

 

Lemma 3: 

     

   
    

   
    

   

 

0

1
, ,

 1 1 1

1
, ,

1 1

, ,

1

k p p j

pk n
i l Q

imax Q p p lQ l i

imax k p p l

t

U t

U

U

 





  



  
    



  
   

  




 




 




 









n Q p p l

j n
i l k

n k p p l

l i

n
i j k

n

imax k p p j  i

λ δ

U t
λ δ

U t
λ t

U δ

       0,      1    1k H j p  
      
 k p p jt    δ        

Proof: contact the author 

4.3 The expression of average number of failures: 

Generally the average number of failures in the case of 

maintenance with minimal repair is expressed during a 

defined period and under operating conditions assumed to be 

constant over time. Under these assumptions, the average 

number of failures for a period T is expressed by the relation 

bellow: 

   
0

,

T

T U t dt                                                           (13)                                    
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The intervention period of our model is defined by: 

       

1

1 1 1

p jk

Q p p l k p p l

Q l l

T



     

  

  δ δ
                           (14)

 

Thus, 

     
   

     
.1 2

1 2,

0 0 0

ω      

k p p j

T U k p p jt dt t dt t dt

 

  

 

        (15)
 

Hence the number of failures during the interval  0,T  is 

expressed as following: 

           
1

( , )

1 1 10 0

t tp jk

T U Q p p l k p p l
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t dt t dt

 

  



     

  

     

 

Using the failure rate expression, the average number of 

failures can be presented as follows: 

Lemma 4: 

   
    

   
    

   

 

   

1
, ,

0

1

( , )

1 0

 1 1 1

1
,

, ,

1

,

1

0

1 1

1

Q p n
i d

imax d p pd i

Q
imax Q p p

Q

k

d

d

pk

T U

l

l

dt

U

U

U















  



    




   



  



  

  







 
 
 
  
 
 

  
 
 
 
  
 
 












 







Q p p l

l n
i μ Q

n

n p p

δ

Q p p

n
i j

n

imax p p  i

μ i

λ δ

δ

U t
λ t

U δ

t

δ

U t
λ

δ

   
    

   
    

   

 

   

1

1
,

0

1

,

 1 1

1
,

1 1

k

p n
i d

imax d
d

j

l

p pi

imax d p

k l

p

U

U

dt

U









  

  

  



   



 

  

 



 
 
 

 
 
 






 

 
 
 
  
 















p p l

l n
i μ,k

n

n p p

δ

d p p

n
i,l,k

n

imax p

i

i

μ

p  

t

δ

U

λ δ

δ

U t
λ

λ
δ

t
U δ

t

 

We recall that  n t  is the nominal rate of failures and the 

failure rate  ( ) ( )k p p j t     depends on the production rate 

, ,i j kU      1... , ... , 1...i n j p k H    . 

The decision variables sought in this policy are: the period k* 

and the sub-period j*, after which we must intervene for a 

preventive maintenance action. These variables allow us to 

determine the optimal period of preventive maintenance T. T’s 

formulation is represented in (14). 

So our objective function is: 

 

 * *

( , )

1

( ) ( ) ( ) ( )

1 1 1

,

T U

p jk

r p p k p p

r

Min k j

Mp Mc
Min

 

 



 


     

  

 
 

  
  

 


 
 
 

               (16)
 

5. NUMERICAL EXAMPLE 

Let us consider a system that produces three products to meet 

the random demands below. Using the models described in 

previous sections, we will determine the optimal production 

plan.  
 

We will determine then the optimal number of preventive 

maintenance minimizing the total cost of maintenance over a 

finite planning horizon: H=9 trimesters. We consider that the 

length of periods t = 3 months. We supposed that the 

standard deviation of demand of product i, is the same for all 

periods, (σ(di,k)= σ(di,k+1)= σ(di)). The data required to run 

this model are given in sequence. 

 

 The data relating to production: 

 

The mean demands:  

1 1 2 2 3 3
ˆ ˆ ˆ200, ( ) 12 , 100, ( ) 7 ,and 300, ( ) 15d d d d d d       

 
 di,1 di,2 di,3 di,4 di,5 di,6 di,7 di,8 di,9 

i=1 210 189 217 194 210 175 208 197 199 

i=2 102 90 93 100 101 99 95 97 99 

i=3 315 310 292 288 280 302 330 325 310 

The other data are presented as following: 

 Si,0 Ui,max Cpi Csi Sti Өi 

i=1 30 450 15 4 65 92 

i=2 100 330 22 7 80 87 

i=3 80 620 10 3 75 90 

 

 The data relating to system reliability: 

 

System reliability, costs and times related to maintenance 

actions are defined by the following data: 

 
o The law of failure characterizing the nominal 

conditions is Weibull. It is defined by: 

- Scale parameter (β) : 20 

- Shape parameter (α) : 2   

- Position parameter (𝜸) :0 
 

o The initial failure rate: 0 0   

These parameters provide information on the evolution of the 

failure rate in time. 

This failure rate is increasing and linear over time. Thus the 

function of the nominal failure rate is expressed by: 

 
1

2

20 20
n

t t
t





 


   

      
  

 

 

 The obtained production plan: 

 Period 1 Period 2 Period 3 

 1 2 3 4 5 6 7 8 9 

 0.23 1.09 1.62 1.33 0.11 1.56 1 1.28 0.72 

P1  0 0 272 223 0 0 0 190 0 

P2  98 0 0 0 0 188 0 0 110 

P3  0 357 0 0 211 0 327 0 0 
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 Period 4 Period 5 Period 6 

 10 11 12 13 14 15 16 17 18 

 0.23 1.09 1.62 1.2 1.27 0.71 0.27 1 1.63 

P1  0 241 0 0 0 190 0 0 283 

P2  0 0 194 175 0 0 0 134 0 

P3  213 0 0 0 396 0 292 0 0 

 Period 7 Period 8 Period 9 

 19 20 21 22 23 24 25 26 27 

 1.33 1.11 0.56 1.62 1.33 0.11 1.56 1 0.28 

P1  0 269 0 0 201 0 0 129 0 

P2  159 0 0 125 0 0 0 0 107 

P3  0 0 258 0 0 93 249 0 0 

 

 The obtained maintenance strategy: 

 
Fig. 2. The total cost of maintenance depending to sub-

periods. 
 

The preventive 

maintenance cost (mu) 
500 1000 2000 

The optimal period of 

intervention  
5 9 17 

 

To illustrate the robustness of the proposed approach, we 

made a sensitivity study on the preventive maintenance cost 

Mp. The corrective maintenance cost Mc is fixed at 2500 mu, 

then we change the preventive maintenance cost value. We 

deduce that if we increase Mp, the intervention period of 

preventive maintenance T increases too.   

6. CONCLUSION 

In this paper we considered a manufacturing system 

composed in one machine which produces several products in 

order to meet several random demands. The machine is 

subject to random failures, then, preventive maintenance 

actions are considered in order to improve its reliability. At 

failure, a minimal repair is carried out to restore the system 

into the operating state without changing its failure rate.  

It’s noted that the use of the optimal production plan in the 

maintenance cost formulation is justified by the significant the 

influence of the production plan on the system deterioration.  

The primary objective of the study was to determine the 

optimal production rates and when to perform the preventive 

maintenance. Firstly, we have formulated a stochastic 

production problem in order to obtain an optimal production 

plan. Secondly, using the optimal production plan in the 

maintenance problem formulation, we established an optimal 

maintenance scheduling.  
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