

A novel model-based approach to support development cycle of robotic arm
applications

E. Estévez, A. Sánchez García, J. Gámez García, J. Gómez Ortega

*System Engineering and Automation Department, University of Jaen
Campus las Lagunillas, S/N Jaén, Spain.

e-mail:{eestevez, asgarcia, jggarcia, juango}@ujaen.es

Abstract: The robotic-manipulator has, as aim, the integration of robots into people's quotidian issues. To
this purpose, there are a great number of physical devices, such as sensors, actuators, auxiliary elements,
tools… which can be incorporated into a robot. That is why integration, reuse, flexibility and adaptability
are crucial characteristics demanded by current robotic applications. Using Model Driven Engineering
(MDE) software development methodology that promotes an intensive use of models- systems’
abstractions-, the complexity inherent to the robotic application design can be reduced. This work
explores the advantages of the use of (MDE) to provide support to development cycle of such type of
applications. So, in this paper, a modeling approach, where the model is the key concept, is developed to
generate automatically the target code. In addition, using this concept, the design of the robotic-arm
application could be done independently of robotics’ communication middleware.

Keywords: Component Software Engineering, Model Based Engineering, Robotics Software
Middleware.

1. INTRODUCTION

The software development in specific fields such robotics is
closer to art than a systematic discipline. Chella A., et. al.
(2010) details the most important reasons: (1) variability of
applications types and the hardware/software components
used in such specific domain; (2) reusability difficulties due
to lack of limitation of architectural elements (device
manipulators, algorithms, communication middleware …)
and (3) interoperability lack among tool involved in the
development cycle phases. Over the last years, software
architectures for robotics manipulators systems are getting
more and more complex, demanding the development of
more adaptable applications. As a consequence, these
software infrastructures should allow developers face up to
the complexity imposed by different issues such as hardware,
software, real time, and distributed computing environments.

In order to reduce significantly the effort to develop new
software applications, a strong move toward the application
of software engineering principles is taking place in robotics
(Iborra, A., et. al., 2009) (Friedrich M. Wahl and Torsten
Kroger, 2009). In fact, the use of CBSE – Component Based
Software Engineering- (George T. Heineman and William T.
Councill, 2001), (Ian Sommerville, 2007) and MDE- Model
Driven Engineering- (Schmidt, D., 2006) disciplines and
middleware platforms are very helpful for achieving
requirements such as: system scalability, composition,
reusability and flexibility, which are much related with
previous commented drawbacks.

The CBSE, to face up the complexity -as a consequence of
the variability of hardware/software components and

applications-, offers mechanisms that increase the abstraction
level of modelling elements. Hence, systems can be
developed with independent modules that just interact each
other by means of their interfaces. The use of CBSE is very
spread in Robotics field (Brooks, A., et. al., 2005), (Gamez,
J., et. al., 2008), (Brugali, D. and Scandurra, P., 2009),
(Brugali, D. and Shakhimardanov, A., 2010). These
approaches offer high rates of reusability and ease of use but
a little flexibility with respect to the platform where those
components are deployed and run. In this sense, there is a
robotic platform’s dependency.

The Model-Based paradigm increases the abstraction layer
and allows describing applications independently of software
platform (Selic, B., 2003). This approach relies on the use of
models to represent the system elements from an specific
domain viewpoint and their relationships. These models act
as the input and the output at all stages of the development
cycle until the final system is itself generated
(Balasubramanian, K., et. al., 2003). Actually, some attempts
have been done by different authors towards the use of
modelling concepts in robotics field (Brugali, D. and
Shakhimardanov, A., 2010).

Michael Geisinger et., al. (2009) purposes a two models
based programming tool that generates target source code for
Robotino® mobile robot platform. This tool allows users to
define the functionality of the task (application logic model)
and the required hardware resources. V3CMM- 3 View
Component Meta-Model (Alonso D., et. al., 2010) allows
modelling robotics software developments from 3 views: (1)
structural view describes application’s static components
structure; (2) coordination view models event-driven

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3465

behaviour of each component, and (3) algorithmic view,
collects the information that describes the algorithm executed
by each component. Those views are performed via UML-
Unified Modelling Language- subset of diagrams: the
component, state-machine and activity respectively (Booch,
Grady, et. al., 2005). The target is ADA code generation for
CORBA- Common Object Request Broker Architecture-
platform (communication middleware). More recently, the
SmartSoft MDSD –Model Driven Software Development -
Toolchain (2013) allows modelling robotic applications with
SmartSoft Component concept (Schlegel, C., et. al., 2012a,
2012b). The target code runs over CORBA platform. BRICS-
Best Practice in Robotics- European project (Bischoff, R., et.
al., 2010) has as main goal to structure and to formalize the
robot development process. A set of models, functional
libraries have been developed. Target code runs over
OROCOS - Open RObot COntrol Software- platform.

Previous work of authors identifies and models the minimal
features of each component that appears in robotic-arm tasks
(sensors, robots, terminal elements, control algorithms…). As
example, a common minimal interface for each element has
been proposed in (Sanchez Garcia, A., et. al., 2013). The idea
is that these standard interfaces can provide to designers
common methods for managing the elements, being not
necessary knowledge about vendor specific drivers.

The main contributions of this paper are: (1) an UML based
approach for modelling Robotic arm tasks. This modelling
defines the functionality of the application independently of
communication middleware over it will be run; (2)
identification of Model-to-Text transformation rules to
generate target source code that runs over a certain
communication middleware.

The remainder of this work is as follows: Section 2 describes
a methodology for modelling robotic-arm applications.
Section 3 presents the main features of most spread
communication middleware in robotic field. The main rules
for achieving the automatic code generation are detailed in
Section 4. An industrial case study is illustrated in Section 5
showing experimental results obtained from the robotic
platform developed under this proposal. Finally, Section 6
introduces the conclusions of this work.

Fig. 1: General scenario of the proposed framework

2. MODELLING OF ROBOTIC-MANIPULATOR
APPLICATIONS

In order to provide the development cycle support, first, the
codification of the device's management in an isolated form,
i.e. without taking into account the application, and software
algorithms, must be done. After, the design phase is the
responsible for the definition of the functionality of a robotic-
arm based application and deals with the selection of the
specific hardware platform. Finally, the coding phase deals
with the automatic generation of the target code. Fig. 1
illustrates the general scenario of the proposed framework
that explores the advantages of model-based techniques in
order to automate the design and development of robotic arm-
based platforms.

Sanchez Garcia, A., et. al., (2013) identifies and characterizes
those components that take part in an execution of robotic
manipulation tasks: Sensors to get the information from the
environment; Robot, and-or its terminal elements (e.g.
gripper, hand, hook) and other algorithms, which during the
task execution, requires environment’s information provide
by sensors, check the state of robot and send the
corresponding command. All these elements are stored in a
database (See Fig. 1).

This section details a methodology for modelling robotic arm
applications during the design phase of the development
cycle. This consists of three main steps: (1) import from the
repository the minimal code structure; (2) definition of the
functionality with UML component diagram and (3) deploy
this functionality to the platform by means of deployment
diagram. Following sub-sections detail each proposed step.

2.1 Import the repository templates to UML model

The Object Management Group (OMG) proposed the XML
Meta-data Interchange (XMI) standard in order to provide
interoperability among UML tools. This specification has an
eXtensible Markup Language (XML) notation and contains
all information about the UML elements and diagrams in a
Markup Language (ML) format. Those UML tools, that
support XMI, can interchange projects because a XMI file
stores all information, i.e. UML elements and printing
information of diagrams. Therefore, authors have selected
this format to import the templates into UML project before
the definition of the robotic application. As UML supports
OO paradigm, the meaning of UML class is the same as C++
or java classes.

Table 1 illustrates how the main concepts of the OO
paradigm are expressed in XMI. A Class is a
packagedElement characterized by three attributes: name, id
and type. A class needs to have uml:Class value in xmi:type
attribute. The identifier’s value must be unique in overall
XMI file. The isAbstract attribute only appears to indicate
that the class is abstract. The OO properties are expressed as
ownedAttribute fixing in this case the xmi:type attribute with
uml:Property value. Every property is characterized by its
name, identifier and visibility. This, latter, is used to indicate
if the property is public, protected or private. OO methods are

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3466

Table 1. Mapping rules for the generation of XMI file

OO
concept XMI notation

Class
<packagedElement xmi:type="uml:Class"
xmi:id="id" name="ClassName"
isAbstract="true"/>

Property
<ownedAttribute xmi:type="uml:Property"
xmi:id="id" name="PropertyName"
visibility="public | protected | private"/>

operation
<ownedOperation xmi:type="uml:Operation"
xmi:id="id" name="MethodName"
visibility="public | protected | private"/>

parameter <ownedParameter xmi:type="uml:Parameter"
xmi:id="id" name="paramName"/>

inheritance <generalization xmi:type="uml:Generalization"
xmi:id="id" general="Class_id"/>

expressed as ownedOperation fixing the xmi:type attribute
with uml:Operation value.

The inheritance is expressed with generalization element. The
value of general named attribute indicates the class from
which the information is inherited.

2.2 Definition of a robotic arm application

The functionality of the robotic arm application is a
component based application where each component
encapsulates the code of the class and provides the logic of an
application, i.e. the communication and data interchange
among the components that take part. Authors propose the
use of Component UML 2.x diagram to perform this
functionality. Table 2 illustrates the UML elements that take
part for modelling the robotic arm applications. UML
Component is used to represent each application component.
The encapsulated code is expressed with a UML class,
imported from the data-base. An UML component
encapsulates code only if an UML class realizes it with
ComponentRealization UML concept. UML port concept is
used to provide external accessibility to a protected property.
UML Interface is used for managing properties.

The components data flow interchange requires an UML
interface element, linked to the corresponding UML ports.

Table 2. UML component diagram elements in robotic-
arm application modelling

UML
concept

Graphical
notation

Role in Robotic arm
application modelling

Component

Robotic application
component..

Port
Provide external accessibility
to protected properties.

Interface
Provided
(InterfaceRea
lization)

Read- only external access.

Required
(Usage) Write-only external access.

Fig. 2. Example of robotic application
The external read-only permission access has been provided
to UML interface adding as many getPropertyName methods
as data that the application component publishes with read-
only permission. The external accessibility is achieved with
UML InterfaceRealization. The external write-only
permission access is attained with UML usage concept. A
UML port uses an UML Interface to update the property’s
value.

For instance, in Fig. 2, Camera UML component
encapsulates the GUPPY 80 class code. In order to provide
an external accessibility to the sensor measurement value, the
image UML port has been defined. The external accessibility
of captured image is illustrated in UML by visionValueConn
UML interface. The read-only permission is accomplished
with UML InterfaceRealization, i.e. image UML port realizes
visionValueConn UML interface. On the other hand,
Pos_Sensor UML component encapsulates the FourPoint
class code. This component has two UML ports to provide
external accessibility to image and position properties. The
image property has write-only external access, so the
corresponding UML port uses visionValueConn interface to
update the value. The position has read-only external access,
accomplished realizing the PosValueConn UML interface.

Table 3. UML deployment diagram elements in robotic-
arm application modelling

UML
concept

Graphical
notation

Role in Robotic arm
application modelling

Device

Device of robotic arm
platform.

Node

Node (e.g. PC) of
robotic arm platform.

Communica-
tionPath

Communication
protocol between
nodes, devices and
node-device(s).

Artefact

Library with device's
isolated management
code.

Execution
Environment

Communication
middleware.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3467

2.3 Deployment to platform

Table 3 illustrates the UML elements that take part for
modelling the deployment platform. The UML deployment
diagram is formed by as many Device UML elements as
devices of the robotic-arm platform. Besides, at least, one
node is required, where to deploy the software components
that form the application. The communication protocols
between devices and nodes are expressed with
CommunicationPath UML elements. The artefact UML
element is used to indicate the necessity of other code or
libraries in the Node; so in this work it is used to provide
information about the code for managing every device in an
isolated way. Finally the ExecutionEnvironment UML
element is used to indicate the communication middleware.

3. AUTOMATIC GENERATION OF THE ROBOTIC-ARM
APPLICATIONS TARGET CODE

This section is centred in the code generation phase of robotic
arm applications’ development cycle (see point 3 of Fig. 1).
The MDE discipline has been followed, which relies on the
model and model transformation concepts in order to
automate the software development process (Schmidt, D.,
2006). Two kinds of transformations can be distinguished:
Model to Model (M2M) and Model to Text (M2T)
transformations. Both have as input a model and they
generate a new model conforming to a meta-model or source
code, respectively. This work is centred in the second type of
transformation, M2T, having as input the functional model -
in XMI standard notation-, obtained after modelling the
robotic-arm application. The definition of the M2T
transformation rules implies having knowledge about both
the input model and the structure of the target code.
Following sub-sections detail the main characteristics of the
input model, the main features of the most spread
communication middleware in robotic field and, finally, the
transformation rules.

3.1 Structure of the input model

The input model, from which the code generator gets
information to automatically generate the target code, is
obtained exporting the resulting UML model to XMI
standard notation. Table 4 summarizes the information to be
processed from Component and Deployment UML diagram
in XMI notation in order to generate target code.
Every UML component that forms part of a robotic
application (see Fig. 2) is expressed in XMI as first raw of
Table 4 illustrates. This is characterized by as many number
of ownedAttribute as ports it contains. In order to know if the
port is an input or an output data port, the Usage UML
element must be checked (see third raw of Table 4). Those
port identifiers, that appear in xmi:idref attribute of client
element will be considered input data ports (i.e. write-only
external accessibility); the rest will be considered output data
ports (i.e. read-only external accessibility). The code
encapsulated in the component can be located by the
realization element. In concrete, the class name is referred in
realizingClassifier attribute.

Table 4. Information to be processed

UML
Concept

XMI notation

Compone
nt

<packagedElement xmi:type="uml:Component"
xmi:id="id" name="Comp_Name">
 <ownedAttribute xmi:type="uml:Port" xmi:id="id"
name="Port_Name" visibility="protected"/>
 <realization xmi:type="uml:ComponentRealization"
xmi:id="id" realizingClassifier="Class_Id">
 ..</realization>
</packagedElement>

Interface <packagedElement xmi:type="uml:Interface" xmi:id="id"
name="interface_Name">
<ownedOperation xmi:type="uml:Operation" xmi:id="id"
name="op_Name" visibility="public"/>
</packagedElement>

Usage <packagedElement xmi:type="uml:Usage" xmi:id="id">
 <supplier xmi:idref="interface_id_ref"/>
 <client xmi:idref="port_id_ref"/>
</packagedElement>

Node

<packagedElement xmi:type="uml:Node"
xmi:id=“Node_id" name=“Node_name">

<deployment xmi:type="uml:Deployment" xmi:id=“id"
deployedArtifact=“Artifact_id">

<client xmi:idref=“Node_id"/>
<supplier xmi:idref=“Artifact_id"/>

</deployment>
</packagedElement>

Device <packagedElement xmi:type="uml:Device"
xmi:id=“Device_id" name=“Device_name"/>

Comm.
Path

<packagedElement xmi:type="uml:Association"
xmi:id=“Association_id" name=“Protocol_name">

<ownedEnd xmi:type="uml:Property"
xmi:id=“Property1_id" visibility="protected"
type=“Node_id">
<association xmi:idref=“Association_id/></ownedEnd>

 <ownedEnd xmi:type="uml:Property"
xmi:id=“Property2_id" visibility="protected"
type=“Device_id">

<association xmi:idref=“Association_id"/></ownedEnd>
<memberEnd xmi:idref=“Property1_id"/>
<memberEnd xmi:idref=“Property2_id"/>

</packagedElement>

Artefact <packagedElement xmi:type="uml:Artifact"
xmi:id=“Artifact_id" name=“RequiredLibrary"/>

Execution
Env.

<packagedElement
xmi:type="uml:ExecutionEnvironment" xmi:id=“EE_id"
name="CommunicationMiddleware"/>

Regarding to deployment information, the hardware platform
is defined by a set of UML nodes and devices. The
communication protocol between those elements implies the
use of communicationPath UML element. Artefact and
Execution Environment are packagedElements.

3.2 Communication middleware features

The M2T generator also needs knowledge about the target
code structure and requirements. Section 2.1 of
(Shakhimardanov, A., et al., 2010) summarizes the main
characteristics of the most spread robotic specific
middleware. Since, all these communication frameworks are
component based; they characterize their components with
the same concepts but with different lexicon. Table 5
synthetises these concepts in terms of component’s interface
and timing information. Every one offers an interface for
achieving synchronous and asynchronous operations. If the
goal is to interchange a data, they offer other type of
interface.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3468

Table 5. Interface the state of robotic specific
Middleware’ Components

Concept Component Based Middleware
Orocos OpenRTM Player

Commands
(Asynchr.) Operation ---

Service port
Command
--- Methods

(Synchr.)
Buffered/shar
ed Data
(Asynchr.)

Data Port Data Port Data
Interface

Runtime
mod. param. Property Configurati

on interface
Service
Port

States of the
component

Preoperatio
nal, stop,
running

Created,
inactive,
active

Two of them, which offer an interface type, allow modifying
parameter’s value at runtime. Besides, the framework’s
execution engine controls the state in which component is
(configure, start or stop).

Once the structure of input model and the structure of
component-based communication frameworks for robotics
are known, the main 5 common transformation rules can be
identified: Rule 1 generates a middleware application
component for each UML component; Rule 2 (R2) consists
of providing external accessibility to the information. Hence,
the UML ports of the UML components with R2 are
transformed to buffered or shared data. The R2 also processes
UML interfaces to give the execution engine the
communication dialog between middleware’s application
components. Rule 3 is applied to every protected method of
the UML class that realizes the UML component. As a result
of this transformation rule a synchronous method for each
getPropertyName method and an asynchronous command for
each setPropertyName method are added to the middleware's
application component. Rule 4 is applied to every public
property of the UML class that realizes the UML component,
having as result runtime modifiable parameters for the
middleware’s application component. Finally, Rule 5
indicates middleware’s execution engine how the component
is setup. To do this, it processes the value of the sample
property. If this value differs from zero, a periodic execution
thread is generated with this period. Otherwise, a non-
periodic execution thread is generated.

4. CASE STUDY

Nowadays, a vehicle headlamp is a high-sophisticated device
that has to pass exhaustive quality inspections, normally
demanded by the car manufactures (Satorres-Martínez et al,
2009). One of the stages of the production process of
headlamps is the assembly of the components where, the
main operation consists, basically, of the positioning and
fixing of the lens-made of polycarbonate-, over a black
housing made of polypropylene (Fig. 3). The rest of the
components: reflector, lighting system and bezel are placed
into the housing.

Fig. 3. Photograph of the assembly carried out by the robot.
Because of the nature of the production process, the
dimensional variability of both housing and lens are
relatively high if it is compared with the position
requirements demanded by the car manufacturers. Obviously,
this dimensional variation supposes a problem during the
assembly.

The experimental setup, implemented using the methodology
developed in this paper, is the assembly of both components
using an industrial manipulator (Gomez Ortega et al. 2011).
The idea is, considering the housing as a fix element and,
using its gum channel, to move the lens inside the channel
with the robot- whose width is around 2 mm--- in order to
minimise the contact forces.

For this assembly task two sensors were used; a wrist force
sensor attached to robot tip, which can determine the forces
and torques generated by the manipulator and its contact
point; and a vision sensor whose mission is to determine the
position of the gum channel. So, the assembly procedure,
illustrated in Fig. 2, is a follows: once the vision sensor
identifies the gum channel, the manipulator moves the lens to
the housing channel; then, using the wrist sensor, the contact
point is determined, together to the forces and torques exerted
by the lens over the housing. Finally, the robot goes to the
position that minimizes the forces and torques (Fig. 4). As
force controller an impedance algorithm is applied.

Fig. 4. Contact force exerted during the assembly process.

5. CONCLUSIONS

This paper presents a framework that provides support of
development cycle to robotic arm tasks. The Model Driven

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3469

Engineering approach has been followed to provide support
to design and coding phases of the development cycle. The
model concept has been used for describing the functionality
of robotic arm task, which takes place during the design
phase. Also, M2T transformation has been identified to
generate the target code for component-based communication
framework.

Authors’ proposed framework uses UML as modelling
language. In concrete UML 2.x component and deployment
diagrams have been used. The functional model’s XMI
standard notation is the input model of M2T transformer that
generates the target code for communication middleware. As
XMI is a standard notation, the proposed framework is valid
for any UML modelling tool that supports this import/export
option.

ACKNOLEDGEMENTS

This work was partially supported by the projects DPI2011-
27284, TEP2009-5363 and AGR-6429.

REFERENCES

Alonso D., Vicente-Chicote, C., Ortiz, F., Pastor, J. and
Álvarez, B., (2010), V3CMM: a 3-View Component
Meta-Model for Model-Driven Robotic Software
Development, Journal of Software Engineering for
Robotics, Vol:1, Issue:1, pp. 3–17.

Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits,
J. and Neema S., (2006), Developing applications using
model-driven design environments, Computer, Vol. 39,
Issue: 2, pp: 33–40.

Bischoff, R, Guhl, T., Prassler, E., Nowak, W.,
Kraetzschmar, G., Bruyninckx, H., Soetens, P., M.
Haegele, P., Pott, A., Breedveld, P., Broenink, J.,
Brugali, D., and Tomatis, N., (2010), BRICS - best
practice in robotics, Proc. of the 41st International
Symposium on Robotics, pp. 1 –8.

Booch, Grady, Rumbaugh, James and Jacobson, Ivar, (2005),
The Unified Modeling Language User Guide, 2nd
Edition, Addison-Wesley Professional.

Brooks, A., Kaupp, T., Makarenko, A., Williams, S. and
Oreback, A. (2005), Towards component-based robotics,
Proc. of the IEEE International Conference Intelligent
Robots and Systems (IROS), pp: 163-168.

Brugali, D. and Scandurra, P., (2009), Component-based
robotic engineering (Part I) Reusable Building Blocks,
IEEE Robotics Automation Magazine, Vol: 16, Issue: 4,
pp: 84-96.

Brugali, D. and Shakhimardanov, A., (2010), Component-
Based Robotic Engineering (Part II) Systems and
models, IEEE Robotics Automation Magazine, Vol: 17,
Issue:1, pp:100-112.

Chella, A., Cossentino, M., Gaglio, S., Sabatucci, L., Seidita,
V., (2010). Agentoriented software patterns for rapid
and affordable robot programming. Journal of Systems
and Software 83, Issue:4, pp:557 – 573.

Friedrich M. Wahl and Torsten Kroger (2009), Advances in
Robotics Research: Theory, Implementation,

Application, Springer-Verlag Berlin and Heidelberg
GmbH & Co. K.

Gamez, J., Robertsson, A., Gomez Ortega, J., and Johansson,
R. (2008), Sensor fusion for compliant robot motion
control, IEEE Trans. Robot., Vol: 24, Issue: 2, pp. 430–
441.

Gomez Ortega, J., Gamez Garcia, J., Satorres-Martínez, S.,
Sanchez Garcia, A. (2011). Industrial assembly of parts
with dimensional variations. case study: assembling
vehicle headlamps. Robotics and Computer-Integrated
Manufacturing. Vol: 27, Issue: 6, pp. 1001–1010.

George T. Heineman and William T. Councill (2001),
Component-based software engineering: putting the
pieces together, Addison-Wesley.

Ian Sommerville, (2007), Software Engineering, eight
Edition, Pearson Education.

Iborra, A., Caceres, D.A., Ortiz, F.J., Franco, J.P., Palma,
P.S. and Alvarez, B. (2009), Design of Service Robots,
experiences using software engineering, IEEE Robotics
and Automation Magazine, Vol:16, Issue: 1, pp: 24-33.

Michael Geisinger, Simon Barner, Martin Wojtczyk, and
Alois Knoll (2009), A software architecture for model-
based programming of robot systems, Lecture Notes on
Computer Science, Advances in Robotics Research, pp.
135–146.

Sanchez Garcia, A., Estevez, E., Gomez Ortega, J., Gamez
Garcia, J. (2013), “Component-based modelling for
generating robotic arm applications running under
OROCOS middleware”, Proc. of the IEEE International
Conference on Systems, Man, and Cybernetics, pp:
3633-3638.

Satorres-Martínez, S., Gomez Ortega, J., Gamez Garcia, J.,
Sanchez Garcia, A. (2009). “A dynamic lighting system
for automated visual inspection of headlamp lenses”.
IEEE Conference on Emerging Technologies and
Factory Automation.

Selic, B., (2003), The pragmatics of model-driven
development, Software, IEEE, Vol: 20, Issue: 5, pp. 19 –
25.

Schmidt, D. ,(2006), Guest editor’s introduction: Model-
Driven Engineering, Computer, Vol:39 (2), pp. 25–31.

Schlegel, C., Steck, A., Lotz., A. (2012a), Robotic Software
Systems: From Code-Driven to Model-Driven Software
Development, Robotics and Automation, Robotics
Systems – Applications, Control and Programming,
Intechopen, pp:473-502

Schlegel, C., Steck, A., Lotz., A. (2012b) Model-Driven
Software Development in Robotics: Communication
Patterns as Key for a Robotics Component Model. In
Introduction to Modern Robotics. iConcept Press.

Shakhimardanov, A., Paulus J., Hochgeschwender, N.,
Reckhaus, R. and Kraetzschmar, G. (2010)v“Best
Practice Assessment of Software Technologies for
Robotics”. Available at: http://www.best-of-
robotics.org/pages/publications/BRICS_Deliverable_D2.
1.pdf

SmartSoft MDSD Toolchain, (2013), SmartSoft Model
Driven Development Software Design Toolchain,
Available at: http://smart-
robotics.sourceforge.net/index.php

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3470

