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Abstract: The robotic-manipulator has, as aim, the integration of robots into people's quotidian issues. To 
this purpose, there are a great number of physical devices, such as sensors, actuators, auxiliary elements, 
tools… which can be incorporated into a robot. That is why integration, reuse, flexibility and adaptability 
are crucial characteristics demanded by current robotic applications. Using Model Driven Engineering 
(MDE) software development methodology that promotes an intensive use of models- systems’ 
abstractions-, the complexity inherent to the robotic application design can be reduced. This work 
explores the advantages of the use of (MDE) to provide support to development cycle of such type of 
applications. So, in this paper, a modeling approach, where the model is the key concept, is developed to 
generate automatically the target code. In addition, using this concept, the design of the robotic-arm 
application could be done independently of robotics’ communication middleware. 

Keywords: Component Software Engineering, Model Based Engineering, Robotics Software 
Middleware. 

 

1. INTRODUCTION 

The software development in specific fields such robotics is 
closer to art than a systematic discipline. Chella A., et. al. 
(2010) details the most important reasons: (1) variability of 
applications types and the hardware/software components 
used in such specific domain; (2) reusability difficulties due 
to lack of limitation of architectural elements (device 
manipulators, algorithms, communication middleware …) 
and (3) interoperability lack among tool involved in the 
development cycle phases. Over the last years, software 
architectures for robotics manipulators systems are getting 
more and more complex, demanding the development of 
more adaptable applications. As a consequence, these 
software infrastructures should allow developers face up to 
the complexity imposed by different issues such as hardware, 
software, real time, and distributed computing environments. 

In order to reduce significantly the effort to develop new 
software applications, a strong move toward the application 
of software engineering principles is taking place in robotics 
(Iborra, A., et. al., 2009) (Friedrich M. Wahl and Torsten 
Kroger, 2009). In fact, the use of CBSE – Component Based 
Software Engineering- (George T. Heineman and William T. 
Councill, 2001), (Ian Sommerville, 2007) and MDE- Model 
Driven Engineering- (Schmidt, D., 2006) disciplines and 
middleware platforms are very helpful for achieving 
requirements such as: system scalability, composition, 
reusability and flexibility, which are much related with 
previous commented drawbacks. 

The CBSE, to face up the complexity -as a consequence of 
the variability of hardware/software components and 

applications-, offers mechanisms that increase the abstraction 
level of modelling elements. Hence, systems can be 
developed with independent modules that just interact each 
other by means of their interfaces. The use of CBSE is very 
spread in Robotics field (Brooks, A., et. al., 2005), (Gamez, 
J., et. al., 2008), (Brugali, D. and Scandurra, P., 2009), 
(Brugali, D. and Shakhimardanov, A., 2010). These 
approaches offer high rates of reusability and ease of use but 
a little flexibility with respect to the platform where those 
components are deployed and run. In this sense, there is a 
robotic platform’s dependency. 

The Model-Based paradigm increases the abstraction layer 
and allows describing applications independently of software 
platform (Selic, B., 2003). This approach relies on the use of 
models to represent the system elements from an specific 
domain viewpoint and their relationships. These models act 
as the input and the output at all stages of the development 
cycle until the final system is itself generated 
(Balasubramanian, K., et. al., 2003). Actually, some attempts 
have been done by different authors towards the use of 
modelling concepts in robotics field (Brugali, D. and 
Shakhimardanov, A., 2010). 

Michael Geisinger et., al. (2009) purposes a two models 
based programming tool that generates target source code for 
Robotino® mobile robot platform. This tool allows users to 
define the functionality of the task (application logic model) 
and the required hardware resources. V3CMM- 3 View 
Component Meta-Model (Alonso D., et. al., 2010) allows 
modelling robotics software developments from 3 views: (1) 
structural view describes application’s static components 
structure; (2) coordination view models event-driven 
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behaviour of each component, and (3) algorithmic view, 
collects the information that describes the algorithm executed 
by each component. Those views are performed via UML-
Unified Modelling Language- subset of diagrams: the 
component, state-machine and activity respectively (Booch, 
Grady, et. al., 2005). The target is ADA code generation for 
CORBA- Common Object Request Broker Architecture- 
platform (communication middleware). More recently, the 
SmartSoft MDSD –Model Driven Software Development -
Toolchain (2013) allows modelling robotic applications with 
SmartSoft Component concept (Schlegel, C., et. al., 2012a, 
2012b). The target code runs over CORBA platform. BRICS-
Best Practice in Robotics- European project (Bischoff, R., et. 
al., 2010) has as main goal to structure and to formalize the 
robot development process. A set of models, functional 
libraries have been developed. Target code runs over 
OROCOS - Open RObot COntrol Software- platform.  

Previous work of authors identifies and models the minimal 
features of each component that appears in robotic-arm tasks 
(sensors, robots, terminal elements, control algorithms…). As 
example, a common minimal interface for each element has 
been proposed in (Sanchez Garcia, A., et. al., 2013). The idea 
is that these standard interfaces can provide to designers 
common methods for managing the elements, being not 
necessary knowledge about vendor specific drivers.  

The main contributions of this paper are: (1) an UML based 
approach for modelling Robotic arm tasks. This modelling 
defines the functionality of the application independently of 
communication middleware over it will be run; (2) 
identification of Model-to-Text transformation rules to 
generate target source code that runs over a certain 
communication middleware.  

The remainder of this work is as follows: Section 2 describes 
a methodology for modelling robotic-arm applications. 
Section 3 presents the main features of most spread 
communication middleware in robotic field. The main rules 
for achieving the automatic code generation are detailed in 
Section 4. An industrial case study is illustrated in Section 5 
showing experimental results obtained from the robotic 
platform developed under this proposal. Finally, Section 6 
introduces the conclusions of this work. 

 

Fig. 1: General scenario of the proposed framework 

2. MODELLING OF ROBOTIC-MANIPULATOR 
APPLICATIONS 

In order to provide the development cycle support, first, the 
codification of the device's management in an isolated form, 
i.e. without taking into account the application, and software 
algorithms, must be done. After, the design phase is the 
responsible for the definition of the functionality of a robotic-
arm based application and deals with the selection of the 
specific hardware platform. Finally, the coding phase deals 
with the automatic generation of the target code. Fig. 1 
illustrates the general scenario of the proposed framework 
that explores the advantages of model-based techniques in 
order to automate the design and development of robotic arm-
based platforms. 

Sanchez Garcia, A., et. al., (2013) identifies and characterizes 
those components that take part in an execution of robotic 
manipulation tasks: Sensors to get the information from the 
environment; Robot, and-or its terminal elements (e.g. 
gripper, hand, hook) and other algorithms, which during the 
task execution, requires environment’s information provide 
by sensors, check the state of robot and send the 
corresponding command. All these elements are stored in a 
database (See Fig. 1).  

This section details a methodology for modelling robotic arm 
applications during the design phase of the development 
cycle. This consists of three main steps: (1) import from the 
repository the minimal code structure; (2) definition of the 
functionality with UML component diagram and (3) deploy 
this functionality to the platform by means of deployment 
diagram. Following sub-sections detail each proposed step. 

2.1 Import the repository templates to UML model 

The Object Management Group (OMG) proposed the XML 
Meta-data Interchange (XMI) standard in order to provide 
interoperability among UML tools. This specification has an 
eXtensible Markup Language (XML) notation and contains 
all information about the UML elements and diagrams in a 
Markup Language (ML) format. Those UML tools, that 
support XMI, can interchange projects because a XMI file 
stores all information, i.e. UML elements and printing 
information of diagrams. Therefore, authors have selected 
this format to import the templates into UML project before 
the definition of the robotic application. As UML supports 
OO paradigm, the meaning of UML class is the same as C++ 
or java classes.  

Table 1 illustrates how the main concepts of the OO 
paradigm are expressed in XMI. A Class is a 
packagedElement characterized by three attributes: name, id 
and type. A class needs to have uml:Class value in xmi:type 
attribute. The identifier’s value must be unique in overall 
XMI file. The isAbstract attribute only appears to indicate 
that the class is abstract. The OO properties are expressed as 
ownedAttribute fixing in this case the xmi:type attribute with 
uml:Property value. Every property is characterized by its 
name, identifier and visibility. This, latter, is used to indicate 
if the property is public, protected or private. OO methods are  
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Table 1.  Mapping rules for the generation of XMI file 

OO 
concept XMI notation 

Class 
<packagedElement xmi:type="uml:Class" 
xmi:id="id" name="ClassName" 
isAbstract="true"/>  

Property 
<ownedAttribute xmi:type="uml:Property" 
xmi:id="id" name="PropertyName" 
visibility="public | protected | private"/> 

operation 
<ownedOperation xmi:type="uml:Operation" 
xmi:id="id" name="MethodName" 
visibility="public | protected | private"/> 

parameter <ownedParameter xmi:type="uml:Parameter" 
xmi:id="id" name="paramName"/> 

inheritance <generalization xmi:type="uml:Generalization" 
xmi:id="id" general="Class_id"/> 

 

expressed as ownedOperation fixing the xmi:type attribute 
with uml:Operation value.  

The inheritance is expressed with generalization element. The 
value of general named attribute indicates the class from 
which the information is inherited. 

2.2 Definition of a robotic arm application 

The functionality of the robotic arm application is a 
component based application where each component 
encapsulates the code of the class and provides the logic of an 
application, i.e. the communication and data interchange 
among the components that take part. Authors propose the 
use of Component UML 2.x diagram to perform this 
functionality. Table 2 illustrates the UML elements that take 
part for modelling the robotic arm applications. UML 
Component is used to represent each application component. 
The encapsulated code is expressed with a UML class, 
imported from the data-base. An UML component 
encapsulates code only if an UML class realizes it with 
ComponentRealization UML concept. UML port concept is 
used to provide external accessibility to a protected property. 
UML Interface is used for managing properties.  

The components data flow interchange requires an UML 
interface element, linked to the corresponding UML ports.  

Table 2. UML component diagram elements in robotic-
arm application modelling 

UML 
concept 

Graphical 
notation 

Role in Robotic arm 
application modelling 

Component 
 

Robotic application 
component.. 

Port  
Provide external accessibility 
to protected properties. 

Interface   
Provided 
(InterfaceRea
lization)  

Read- only external access. 

Required 
(Usage)  Write-only external access. 

 

Fig.  2. Example of robotic application  
The external read-only permission access has been provided 
to UML interface adding as many getPropertyName methods 
as data that the application component publishes with read-
only permission. The external accessibility is achieved with 
UML InterfaceRealization. The external write-only 
permission access is attained with UML usage concept. A 
UML port uses an UML Interface to update the property’s 
value. 

For instance, in Fig. 2, Camera UML component 
encapsulates the GUPPY 80 class code. In order to provide 
an external accessibility to the sensor measurement value, the 
image UML port has been defined. The external accessibility 
of captured image is illustrated in UML by visionValueConn 
UML interface. The read-only permission is accomplished 
with UML InterfaceRealization, i.e. image UML port realizes 
visionValueConn UML interface. On the other hand, 
Pos_Sensor UML component encapsulates the FourPoint 
class code. This component has two UML ports to provide 
external accessibility to image and position properties. The 
image property has write-only external access, so the 
corresponding UML port uses visionValueConn interface to 
update the value. The position has read-only external access, 
accomplished realizing the PosValueConn UML interface. 

Table 3. UML deployment diagram elements in robotic-
arm application modelling 

UML 
concept 

Graphical 
notation 

Role in Robotic arm 
application modelling 

Device 
 

Device of robotic arm 
platform. 

Node 
 

Node (e.g. PC) of 
robotic arm platform. 

Communica-
tionPath  

Communication 
protocol between 
nodes, devices and 
node-device(s). 

Artefact 

 

Library with device's 
isolated management 
code. 

Execution 
Environment 

Communication 
middleware. 
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2.3  Deployment to platform 

Table 3 illustrates the UML elements that take part for 
modelling the deployment platform. The UML deployment 
diagram is formed by as many Device UML elements as 
devices of the robotic-arm platform. Besides, at least, one 
node is required, where to deploy the software components 
that form the application. The communication protocols 
between devices and nodes are expressed with 
CommunicationPath UML elements. The artefact UML 
element is used to indicate the necessity of other code or 
libraries in the Node; so in this work it is used to provide 
information about the code for managing every device in an 
isolated way. Finally the ExecutionEnvironment UML 
element is used to indicate the communication middleware.  

3. AUTOMATIC GENERATION OF THE ROBOTIC-ARM 
APPLICATIONS TARGET CODE 

This section is centred in the code generation phase of robotic 
arm applications’ development cycle (see point 3 of Fig. 1). 
The MDE discipline has been followed, which relies on the 
model and model transformation concepts in order to 
automate the software development process (Schmidt, D., 
2006). Two kinds of transformations can be distinguished: 
Model to Model (M2M) and Model to Text (M2T) 
transformations. Both have as input a model and they 
generate a new model conforming to a meta-model or source 
code, respectively. This work is centred in the second type of 
transformation, M2T, having as input the functional model -
in XMI standard notation-, obtained after modelling the 
robotic-arm application. The definition of the M2T 
transformation rules implies having knowledge about both 
the input model and the structure of the target code. 
Following sub-sections detail the main characteristics of the 
input model, the main features of the most spread 
communication middleware in robotic field and, finally, the 
transformation rules. 

3.1 Structure of the input model 

The input model, from which the code generator gets 
information to automatically generate the target code, is 
obtained exporting the resulting UML model to XMI 
standard notation. Table 4 summarizes the information to be 
processed from Component and Deployment UML diagram 
in XMI notation in order to generate target code.       
Every UML component that forms part of a robotic 
application (see Fig. 2) is expressed in XMI as first raw of 
Table 4 illustrates. This is characterized by as many number 
of ownedAttribute as ports it contains. In order to know if the 
port is an input or an output data port, the Usage UML 
element must be checked (see third raw of Table 4). Those 
port identifiers, that appear in xmi:idref attribute of client 
element will be considered input data ports (i.e. write-only 
external accessibility); the rest will be considered output data 
ports (i.e. read-only external accessibility). The code 
encapsulated in the component can be located by the 
realization element. In concrete, the class name is referred in 
realizingClassifier attribute.  

Table 4. Information to be processed 

UML 
Concept 

XMI notation 

Compone
nt 

<packagedElement xmi:type="uml:Component" 
xmi:id="id" name="Comp_Name"> 
 <ownedAttribute xmi:type="uml:Port" xmi:id="id" 
name="Port_Name" visibility="protected"/> 
 <realization xmi:type="uml:ComponentRealization" 
xmi:id="id" realizingClassifier="Class_Id">
 ..</realization> 
</packagedElement> 

Interface <packagedElement xmi:type="uml:Interface" xmi:id="id" 
name="interface_Name"> 
<ownedOperation xmi:type="uml:Operation" xmi:id="id" 
name="op_Name" visibility="public"/> 
</packagedElement> 

Usage <packagedElement xmi:type="uml:Usage" xmi:id="id"> 
 <supplier xmi:idref="interface_id_ref"/>               
 <client xmi:idref="port_id_ref"/> 
</packagedElement> 

Node 

<packagedElement xmi:type="uml:Node" 
xmi:id=“Node_id" name=“Node_name"> 

<deployment xmi:type="uml:Deployment" xmi:id=“id" 
deployedArtifact=“Artifact_id"> 

<client xmi:idref=“Node_id"/>                         
<supplier xmi:idref=“Artifact_id"/> 

</deployment> 
</packagedElement> 

Device <packagedElement xmi:type="uml:Device" 
xmi:id=“Device_id" name=“Device_name"/> 

Comm. 
Path 

<packagedElement xmi:type="uml:Association" 
xmi:id=“Association_id" name=“Protocol_name"> 

<ownedEnd xmi:type="uml:Property" 
xmi:id=“Property1_id" visibility="protected" 
type=“Node_id"> 
<association xmi:idref=“Association_id/></ownedEnd> 

 <ownedEnd xmi:type="uml:Property" 
xmi:id=“Property2_id" visibility="protected" 
type=“Device_id"> 

<association xmi:idref=“Association_id"/></ownedEnd> 
<memberEnd xmi:idref=“Property1_id"/> 
<memberEnd xmi:idref=“Property2_id"/> 

</packagedElement> 

Artefact <packagedElement xmi:type="uml:Artifact" 
xmi:id=“Artifact_id" name=“RequiredLibrary"/> 

Execution 
Env. 

<packagedElement 
xmi:type="uml:ExecutionEnvironment" xmi:id=“EE_id" 
name="CommunicationMiddleware"/> 

Regarding to deployment information, the hardware platform 
is defined by a set of UML nodes and devices. The 
communication protocol between those elements implies the 
use of communicationPath UML element. Artefact and 
Execution Environment are packagedElements. 

3.2  Communication middleware features 

The M2T generator also needs knowledge about the target 
code structure and requirements. Section 2.1 of 
(Shakhimardanov, A., et al., 2010) summarizes the main 
characteristics of the most spread robotic specific 
middleware. Since, all these communication frameworks are 
component based; they characterize their components with 
the same concepts but with different lexicon. Table 5 
synthetises these concepts in terms of component’s interface 
and timing information. Every one offers an interface for 
achieving synchronous and asynchronous operations. If the 
goal is to interchange a data, they offer other type of 
interface. 
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Table 5. Interface the state of robotic specific 
Middleware’ Components 

Concept Component Based Middleware 
Orocos OpenRTM Player 

Commands 
(Asynchr.) Operation --- 

Service port 
Command 
--- Methods 

(Synchr.) 
Buffered/shar
ed Data 
(Asynchr.) 

Data Port Data Port Data 
Interface 

Runtime 
mod. param. Property Configurati

on interface 
Service 
Port 

States of the 
component 

Preoperatio
nal, stop, 
running 

Created, 
inactive, 
active 

--- 

 

Two of them, which offer an interface type, allow modifying 
parameter’s value at runtime. Besides, the framework’s 
execution engine controls the state in which component is 
(configure, start or stop). 

Once the structure of input model and the structure of 
component-based communication frameworks for robotics 
are known, the main 5 common transformation rules can be 
identified: Rule 1 generates a middleware application 
component for each UML component; Rule 2 (R2) consists 
of providing external accessibility to the information. Hence, 
the UML ports of the UML components with R2 are 
transformed to buffered or shared data. The R2 also processes 
UML interfaces to give the execution engine the 
communication dialog between middleware’s application 
components. Rule 3 is applied to every protected method of 
the UML class that realizes the UML component. As a result 
of this transformation rule a synchronous method for each 
getPropertyName method and an asynchronous command for 
each setPropertyName method are added to the middleware's 
application component. Rule 4 is applied to every public 
property of the UML class that realizes the UML component, 
having as result runtime modifiable parameters for the 
middleware’s application component. Finally, Rule 5 
indicates middleware’s execution engine how the component 
is setup. To do this, it processes the value of the sample 
property. If this value differs from zero, a periodic execution 
thread is generated with this period. Otherwise, a non-
periodic execution thread is generated.  

4.  CASE STUDY 

Nowadays, a vehicle headlamp is a high-sophisticated device 
that has to pass exhaustive quality inspections, normally 
demanded by the car manufactures (Satorres-Martínez et al, 
2009). One of the stages of the production process of 
headlamps is the assembly of the components where, the 
main operation consists, basically, of the positioning and 
fixing of the lens-made of polycarbonate-, over a black 
housing made of polypropylene (Fig. 3). The rest of the 
components: reflector, lighting system and bezel are placed 
into the housing. 

 

Fig. 3. Photograph of the assembly carried out by the robot. 
Because of the nature of the production process, the 
dimensional variability of both housing and lens are 
relatively high if it is compared with the position 
requirements demanded by the car manufacturers. Obviously, 
this dimensional variation supposes a problem during the 
assembly.  

The experimental setup, implemented using the methodology 
developed in this paper, is the assembly of both components 
using an industrial manipulator (Gomez Ortega et al. 2011). 
The idea is, considering the housing as a fix element and, 
using its gum channel, to move the lens inside the channel 
with the robot- whose width is around 2 mm--- in order to 
minimise the contact forces. 

For this assembly task two sensors were used; a wrist force 
sensor attached to robot tip, which can determine the forces 
and torques generated by the manipulator and its contact 
point; and a vision sensor whose mission is to determine the 
position of the gum channel. So, the assembly procedure, 
illustrated in Fig. 2, is a follows: once the vision sensor 
identifies the gum channel, the manipulator moves the lens to 
the housing channel; then, using the wrist sensor, the contact 
point is determined, together to the forces and torques exerted 
by the lens over the housing. Finally, the robot goes to the 
position that minimizes the forces and torques (Fig. 4). As 
force controller an impedance algorithm is applied. 

 

Fig.  4.  Contact force exerted during the assembly process. 

5. CONCLUSIONS 

This paper presents a framework that provides support of 
development cycle to robotic arm tasks. The Model Driven 
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Engineering approach has been followed to provide support 
to design and coding phases of the development cycle. The 
model concept has been used for describing the functionality 
of robotic arm task, which takes place during the design 
phase. Also, M2T transformation has been identified to 
generate the target code for component-based communication 
framework.  

Authors’ proposed framework uses UML as modelling 
language. In concrete UML 2.x component and deployment 
diagrams have been used. The functional model’s XMI 
standard notation is the input model of M2T transformer that 
generates the target code for communication middleware. As 
XMI is a standard notation, the proposed framework is valid 
for any UML modelling tool that supports this import/export 
option. 
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