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Abstract: This note studies the formulation of model predictive control exploiting passivity
properties. The introduction of passive constraints in model predictive control schemes is
particularly appealing since robustness against model uncertainty is inherently guaranteed.
The potential of the discussed control scheme is shown on the regulation problem of a robot
manipulator.

1. INTRODUCTION

Model predictive control (MPC) is a widely used design
technique for multi-input multi-output systems in many
practical applications since input and state constraints
can be taken into account in the design problem directly
Mayne et al. [2000], Qin and Badgwell [2003]. In the
vast majority of MPC formulations the stability of the
closed loop system is based on the decrease of the optimal
cost which is usually obtained by an appropriate choice
of the terminal ingredients as surveyed in Mayne et al.
[2000], Rawlings and Mayne [2009], Limon et al. [2009].
Essentially, all the techniques employed to prove stability
of the MPC controller make use of Lyapunov functions.
The relationship between optimal control, nonlinear MPC
and control Lyapunov function is discussed in Primbs et al.
[2000] where a control Lyapunov function is introduced as
additional constraint in the receding horizon scheme. Here
we are interested in controlling passive systems optimizing
prescribed performance while satisfying input and state
constraints. The notion of passivity is a very important
concept in many areas and in particular in electrical,
electronic and mechanical engineering where the systems
are modeled using Euler-Lagrange equations Ortega et al.
[1998]. Passivity is, roughly speaking, a restatement of
energy conservation principles. In many applications, the
question whether a system is passive or not can be an-
swered from physical considerations on the way the system
interacts with its environment. Passivity is characterized
by the property that at any time the amount of energy the
system can possibly supply to its environment can not ex-
ceed the amount of energy that has been supplied to it. In
other words, when time evolves, a passive system absorbs a
fraction of its supplied energy and transforms it in another
form. When a system is passive it can be advantageous to
use the information on the physical structure of the system
and design a controller to shape the energy of the system
and even change how energy flows inside the system. The
main idea is to design a controller, called passivity based
control (PBC) Ortega and Spong [1989], such that the
closed-loop system is again a passive system. There is a
multitude of applications making use of passivity based
controllers such as walking robots, bilateral teleoperators,
pendular systems massbalance systems, inventory con-
trol, reactors, power systems, power converters, motors,
magnetic levitation systems, underwater vehicles, surface

vessels, spacecrafts, formation control, synchronization,
consensus problems just to mention a few. It is well know
Van der Schaft [2000] that the negative interconnection of
two passive systems is still a passive system. Using the con-
cept of passivity the controlled system can be made robust
to model uncertainties For these reasons we are interested
in the problem of designing optimal passive controllers
for passive nonlinear systems affected by constraints. Note
that the passivity of the nonlinear plant is only required
with respect to a fictitious output and such fictitious out-
put always exists as long as a control Lyapunov function
exists. In this paper we introduce in the MPC formulation
a constraint imposing the passivity of the controller and we
study the stability and robustness properties of the closed
loop system. A passivity based MPC without input and
state constraints has been proposed in Raff et al. [2007]
for the first time where the aim was to impose passivity
of the closed loop systems without the use of terminal
ingredients. In Yan et al. [2013] the robustness against
model discrepancy of the passivity based MPC scheme
introduced in Raff et al. [2007] has been discussed in terms
of the truncated L2 norm adding a dissipative term in the
passivity constraint. Here instead we face the problem of
implicitly designing a passive controller using MPC and
taking into account input and state constraints.

2. PROBLEM FORMULATION

The system to be controlled is described by

ẋ = f(x, u)

y = h(x) (1)

where x ∈ R
n is the state of the system, u ∈ R

m is
the control input and y ∈ R

m the output. The control
u and state x are required to satisfy the hard constraints
u ∈ U and x ∈ X where U and X are compact. In order
to guarantee existence and uniqueness of the solution it is
assumed that f(·) is locally Lipschitz continuous in X, i.e.
for each compact subset C ⊂ X there exist a constant LC

such that ‖f(x, u) − f(x̂, u)‖ ≤ LC‖x− x̂‖ for all x, x̂ ∈ C
and u ∈ U. Moreover h(·) is continuous. Without loss
of generality, we consider the regulation problem to the
equilibrium pair (x̄, ū) = (0, 0) ⊂ X × U while satisfying
input and state constraints.
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Definition 1. The system (1) is strictly output passive if
there exists a positive semidefinite storage function S(x)
and ρ > 0 such that
∫ tf

t0

(u′(τ)y(τ) − ρy′(τ)y(τ))dτ ≥ S(x(tf )) − S(x(t0))

(2)
∀x(t0) ∈ X and u(·) ∈ U where U denotes the space of
measurable and locally essentially bounded functions with
values in U.

Note that, in general, it is possible to adopt the more
general notion of strict input and output passivity as
described in Teel et al. [2010]

∫ tf

t0

(u′(τ)y(τ) − y′(τ)φ(y(τ)) − u′(τ)ψ(u(τ)))dτ

≥ S(x(tf )) − S(x(t0))
(3)

where y′φ(y) > 0 and u′ψ > 0 for all y 6= 0, u 6= 0. However
in this paper, for sake of clarity, we consider strictly output
passive systems with φ = ρy.
Equivalently, system (1) is strictly output passive if there
exists a constant βx0

≥ 0, depending on x(t0), such that
∫ t

t0

(u′(τ)y(τ) − ρy′(τ)y(τ))dτ ≥ −βx0
∀t ≥ t0

and all functions u(·) ∈ U .
A controlled system enjoys strong robustness properties
with respect to model uncertainties preserving passivity
of the open-loop system. In fact, a closed loop system is
strictly output passive if it is given by a negative feedback
interconnection of two strictly output passive systems as
illustrated in fig. 1. Moreover if a system is strictly output
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−

Fig. 1. System interconnection

passive then it has finite L2 gain (see i.e Van der Schaft
[2000], R. Sepulchre and Kokotović [1997]. It is possible
to compute a strictly output feedback system C (see fig.
1) with output v = −u using MPC with the additional
integral constraint

∫ tf

t0

(−u′(τ)y(τ) − γu′(τ)u(τ))dτ ≥ −β (4)

where β ≥ 0 and γ > 0 are constants that need to be
selected using the knowledge of the system and the set X.
The constraint (4) can be included in the MPC formulation
introducing an additional state variable z as follows

ż = u′y + γu′u (5)

with boundary constraints z(t0) = z0, z(tf ) ≤ β, where
z0 = 0 at time t0 = 0 and at t0 > 0 it depends on the
solution to the optimization problem at the previous time
instant as discussed in detail in the next section. Similar
constraints taking into account average performance in
Economic Model Predictive Control have been used in
Angeli et al. [2012].

3. PASSIVE MODEL PREDICTIVE CONTROL

Given the passive system defined in (1) the proposed
model predictive controller using the passivity condition
(4) is obtained at each time instant as the solution to the
optimization problem P(x, z)

V (x, z) = min
u(·)

∫ T

0

ℓ(x(τ), u(τ))dτ

subject to
ẋ = f(x, u) x(0) = x
y = h(x)
ż = u′y + γu′u z(0) = z
u(τ) ∈ U, x(τ) ∈ X, z(τ) ≤ β τ ∈ [0, T ]
x(T ) = 0

(6)

where β is the positive constant introduced in (4), the
stage cost ℓ(·) is a positive definite function and satisfies
ℓ(0, 0) = 0. If the current state of the composite system at
time t is (x, z) we denote the optimal solution to P(x, z)
as (x0(·;x, z), u0(·;x, z), z0(·;x, z), y0(·;x, z)). The control
applied to the system is

κ(x, z) , u0(τ ;x, z) τ ∈ [0, δ] (7)

in the interval [t, t + δ]; at time t + δ the optimal control
problem is solved again given the initial states x(0) =
x0(t+ δ;x, z) and z(0) = z0(t+ δ;x, z). The non negative
constants β and γ can be pre-assigned or obtained, at
the first time instant, as the solution to the optimization
problem P

0(x) where β and γ are decision variables as well

V ∗(x) = inf
u(·),β,γ

∫ T

0

ℓ(x(τ), u(τ))dτ

subject to
ẋ = f(x, u) x(0) = x
y = h(x)
u(τ) ∈ U, x(τ) ∈ X z(τ) ≤ β τ ∈ [0, T ]
ż = u′y + γu′u z(0) = 0
x(T ) = 0 β > 0 γ > 0

(8)

Remark 1. The terminal constraint x(T ) = 0 has been
chosen for simplicity. Since the system (1) can be stabilized
with a feedback u = −g(y) it is possible to use as terminal
constraint a set Xf ⊆ X that is positive invariant for the
system ẋ = f(x,−g(y)) and satisfies −g(h(x)) ∈ U for all
x ∈ Xf .

4. STABILITY AND ROBUSTNESS

To establish convergence of the nominal closed loop system
to the zero equilibrium we use, as is customary, Lyapunov
arguments. Let x(t;x0, 0) denote the solution to ẋ =
f(x, κ(x, z)) at time t if x0 = x(0) and κ(x, z) is given

by (7). Also, let X , {x ∈ X | P(x, 0) is feasible} i.e. the
set X denotes the set of initial states x for which a solution
to P(x, 0) exists.

Theorem 1. Under the above assumptions, every solution
of ẋ = f(x, κ(x, z)) with initial state x ∈ X , where κ(x, z)
is solution to the optimization problem P(x, z), remains in
X and converges to the zero equilibrium state.

Proof: - The proof is by induction, showing that feasibility
at time t implies feasibility at time t+ δ.
Let assume that (x0(τ ;x, z, t),u0(τ ;x, z, t), z0(τ ;x, z, t),
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y0(τ ;x, z, t)), τ ∈ [0, T ], is the optimal solution at time
t to P(x, z). Now we prove that at time t + δ the input
function

ũ(τ) =

{

u0(τ + δ;x, z, t) τ ∈ [0, T − δ]
0 τ ∈ [T − δ, T ]

(9)

is a feasible solution to P(x0(δ;x, z, t), z0(δ;x, z, t)). Let

x̃(τ) =

{

x0(τ + δ;x, z, t) τ ∈ [0, T − δ]
0 τ ∈ [T − δ, T ]

(10)

By construction, the pointwise-in-time constraints x̃(τ) ∈
X, ũ(τ) ∈ U and the terminal condition x̃(T ) = 0 are
satisfied. Let assume that at time t

z(T ) = z(0) +

∫ T

0

(u
′0(τ)y0(τ) + γu

′0(τ)u0(τ))dτ ≤ β

is satisfied where z(0) is the initial condition at time t. At
time t+ δ we have that

z̃(T ) , z̃(0) +

∫ T

0

(ũ′(τ)h(x̃(τ)) + γũ′(τ)ũ(τ))dτ

= z̃(0) +

∫ T

δ

(u
′0(τ)y0(τ) + γu

′0(τ)u0(τ))dτ

(11)

where z̃(0) = z(δ) and z̃(·) describes the evolution of z(·)
when the feasible solution (9) is employed. Adding and

subtracting the term
∫ δ

0
(u

′0(τ)y0(τ) + γu
′0(τ)u0(τ))dτ to

the equation (11) we obtain

z̃(T ) = z̃(0) −

∫ δ

0

(u
′0(τ)y0(τ) + γu

′0(τ)u0(τ))dτ

+

∫ T

0

(u
′0(τ)y0(τ) + γu

′0(τ)u0(τ))dτ

Since, by definition,
∫ δ

0
(u

′0(τ)y0(τ) + γu
′0(τ)u0(τ))dτ =

z(δ) − z(0) and z̃(0) = z(δ) we obtain z̃(T ) ≤ β which
shows feasibility of the integral constraint; feasibility at
any time ensures the invariance of the set X . Now we
prove the convergence of x(t;x, z, 0) to the zero state
equilibrium; The optimal value function V (x, z) is selected
as a candidate Lyapunov function. It satisfies V (x, z) ≥ 0
and V (x, z) = 0 if and only if x = 0 ∀ z ∈ R

+ . For all
x ∈ X there exist K∞ functions α1(·) and α2(·) such that

α1(‖x‖) ≤ V (x, z) ≤ α2(‖x‖) ∀ z ∈ R
+

since ℓ(·) is a positive definite function and satisfies
ℓ(0, 0) = 0. At time t given x the optimization problem
P(x, z) is solved and the control u0(τ ;x, z, t), τ ∈ [0, δ]
is applied to the system. After the sampling time δ the
optimization problem P(xδ, zδ) is solved where xδ , x(t+
δ;x, z, t). Since the control sequence ũ(·) is feasible but
not necessarily optimal for P(xδ, zδ), the following relation
holds

V (xδ, zδ) ≤

∫ T

0

ℓ(x̃(τ), ũ(τ))dτ =

V (x, z) −

∫ δ

0

ℓ(x0(τ), u0(τ))dτ

where ũ(τ) is the feasible input defined in (9) and the
functions x0(τ ;x, z) are u0(τ ;x, z) are the optimal solution
to P(x, z).

Since
∫ δ

0
(ℓ(x0(τ), u0(τ))dτ) ≥ 0 for all x such that ‖x‖ >

0, 0 ≤ V (xδ, zδ) < V 0(x, z) is satisfied for all x such that
‖x‖ > 0 and convergence of x(t;x, z, 0) to the zero state
equilibrium is obtained by standard Lyapunov arguments.

The strict passivity constraint introduced in the optimiza-
tion problem P(x, z) enforces strict passivity of the open
loop controller having v(t) = −u(t) as output and y(t) as
input. Now we are interested to show strictly passivity of
the closed loop controller obtained implicitly by the MPC
strategy.

Theorem 2. Let w(t) ∈ h(Xzt
) where zt is the value of z(0)

at time t and Xzt
, {x ∈ X | P(x, zt) is feasible } denotes

the set of feasible states defined by P(x, z). The closed loop
controller, defined by

ż(τ) = κ(x(t0), z(t0))w(τ) + γv(τ)′v(τ)
v(τ) = −κ(x(t0), z(t0))

t0 ≥ 0, τ ∈ [t0; t0 + δ]
(12)

is strictly output passive for all x(0) ∈ X where z(0) = 0.

Proof: - Strict passivity of (12) is guaranteed if
∫ t

0

(−v′(τ)w(τ) + γv′(τ)v(τ))dτ ≤ β̂x0

for all t ≥ 0 and x(t) ∈ Xzt
where β̂x0

≥ 0 with x0 ∈ X and
v(t) is the solution of the system (12) with w(t) ∈ h(Xzt

)
and z(0) = 0. Since h(·) is continuous and Xzt

is bounded,
w(t) is bounded. Moreover since P(x, z) is feasible at any
time if it is feasible at time zero and w(t) ∈ h(Xzt

) we have

z(t0) +

∫ t0+δ

t0

(κ(x(τ), z(τ))′(w(τ))+

γκ(x(τ), z(τ))′κ(x(τ), z(τ)))dτ+
∫ t0+T

t0+δ

(u′(τ)y(τ) + γu′(τ)u(τ))dτ ≤ β

(13)

for all x(t) ∈ Xzt
where

z(t0) =

∫ t0

0

(κ(x(τ), z(τ))′(w(τ))+

γκ(x(τ), z(τ))′κ(x(τ), z(τ))dτ

and
∫ t0+T

t0+δ
(u′(τ)y(τ) + γu′(τ)u(τ))dτ is given by the open

loop controller and predictions. Since condition (13) holds
for any t0 > 0 by feasibility of P(x, z) at any time the
system (12) is strictly output passive for all x(t) ∈ Xzt

.
Robustness of the closed loop system follows from the
fact that the negative feedback interconnection of strictly
output passive systems is still strictly output passive. Let
assume that the real system described by

ẋs = f̃(xs, u)

ys = h̃(xs)
(14)

is strictly output passive in X for some β̃ ≥ β̃x0
, ρ̃ ≥ ρ̃x0

>
0 with x0 ∈ X . In order to achieve robust stability we need
to assume that the system (14) is zero-state detectable
Van der Schaft [2000], i.e limt→∞ xs(t) = 0 if u(t) = 0,
y(t) = 0, ∀t ≥ 0 where xs(t) is the solution of system (14).

Proposition 1. Let assume that the perturbed system (14)
is zero-state detectable and strictly output passive and
that P(xs, z) is feasible at any time then the closed loop
system

ẋs = f̃(xs, κ(xs, z))
ż = κ(x, z)w + γκ(x, z)κ(x, z)

(15)

where κ(x, z) is solution to P(xs, z), satisfies limt→∞ xs(t) =
0.

Proof: - Since the system (14) is strictly output passive
there exists a storage function Ss(x) and ρ̃ > 0 such that
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∫ tf

t0

(u′(τ)y(τ) − ρ̃y′(τ)y(τ))dτ ≥ Ss(x(tf )) − Ss(x(t0))

(16)

Moreover choose Sc(z) , −z + β as storage function
associated to the controller. This storage function satisfies
Sc(z) ≥ 0 since z ≤ β holds. Using the feedback relations
u = eu − v and w = ey + y (see figure 1) we get

Ss(x(t0 + δ)) + Sc(z(t0 + δ)) ≤ Sc(z(t0)) + Ss(x(t0))+
∫ t0+δ

t0

(e′u(τ)y(τ) + e′y(τ)u(τ)−

γu′(τ)u(τ)) − ρ̃y′(τ)y(τ)))dτ
(17)

for all x ∈ Xzt0
. If system (14) is zero-state detectable and

xs(t) ∈ Xzt
for all t ≥ 0 the inequality (17) guarantees

that if eu(·), ey(·) ∈ L2 then u(·), y(·) ∈ L2. Moreover if
eu(·) = 0 and ey(·) = 0, since u(·), y(·) ∈ L2, the zero-
state detectability of the system guarantees that

lim
t→∞

xs(t) = 0.

Remark 2. Note that, in order to get robustness, is im-
portant to know the system’s passivity property and the
equilibrium pair us, ys.

5. EXAMPLE

This example illustrates the position control for a flexible
2-link robot manipulator in the horizontal plane with
dynamics

M(q)q̈ + C(q, q̇)q̇ + F (q̇) = K(θ − q)

Jθ̈ +K(θ − q) = u
(18)

where q = [q1, q2] are the generalized configuration coordi-
nates for a system with two degrees of freedom, θ = [θ1, θ2]
are the motor angles, C(q, q̇)q̇ describes the centrifugal
and Coriolis forces, F (q̇) = [β1q̇1, β2q̇2]

′ describes the
linear viscous friction, J = [J1 0; 0 J2] represents ac-
tuator inertia reflected to the links side of the gears,
K = [k1 0; 0 k2] > 0 models the stiffness of the joints
and M(q), that brings information on the inertia of the
system, is a positive symmetric matrix for all q. Under
weak assumptions (see Van der Schaft [2000]) the system

(18) is passive with supply rate θ̇′u and it is zero-state
detectable with respect to [q, θ]. In particular the matrix
entries mi,j(q) of M(q) and ci,j(q, q̇) of C(q, q̇) are

m1,1(q) = a1 + 2a3 cos(q2) + 2a4 sin(q2)
m1,2(q) = m2,1(q) = a2 + a3 cos(q2) + a4 sin(q2)
m2,2(q) = a2, c2,2(q, q̇) = 0
c1,1(q, q̇) = −h(q)q̇2, c2,1(q, q̇) = h(q)q̇1
c1,2(q, q̇) = −h(q)(q̇2 + q̇1)

where h(q) = a3 sin(q2)−a4 cos(q2), a1 = I1 +m1l
2
c1

+Ie +

mel
2
ce + mel

2
1, a2 = Ie + mel

2
ce, a3 = mel1lce cos(δe) and

a4 = mel1lce sin(δe) (see Fig. 2). The model parameters
for the nominal model are m1 = 1, l1 = 1, me = 2,
δe = π/6, I1 = 0.12, lc1 = 0.5, Ie = 0.25, lce = 0.6,
J1 = 0.6, J2 = 0.5, k1 = 1, k2 = 1.5, β1 = 0.01 and
β2 = 0.05 in the appropriate units of measure. Introducing
the state variable x , [θ, θ̇, q, q̇] the state and control
constraint sets are

y

x

me

δe

m1

l1

q1

q2

Ie

lc1
I1

Fig. 2. Two-link arm manipulator

X ={x ∈ R
8 | θi, qi ∈ [−5π/6, 5π/6],

θ̇i, q̇i ∈ [−50, 50], i = 1, 2},

U ={u ∈ R
2 | ui ∈ [−1000, 1000], i = 1, 2},

The robot is initially at rest with x0 = 0 and it is required
to reach the steady state q̄1 = θ̄1 = π/3 and q̄2 =
θ̄2 = π/2 while satisfying the constraints. The discrete-
time model is implicitly defined via the optimization
process; the optimization packages described in Wächter
and Biegler [2006], Wyk et al. [2010] were employed for
all the simulations. The controller uses N = 1750 with a
prediction horizon T = 3.5s corresponding to a sampling
period of 0.01 seconds. The selected stage cost is ℓ(x, u) =
5000‖q − q̄‖2 + 5000‖θ − θ̄‖2 + 0.01‖u‖2.

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time

q i
(t

)

Fig. 3. State variables q vs time: q1 (dashed) and q2 (solid).

The terminal ingredient has been chosen as x(T ) =
[π/3, π/2, 0, 0, π/3, π/2, 0, 0]. Finally the parameters
to enforce output strict passivity of the controller have
been chosen as β = 1000 and γ = 0.01. The large value for
the parameter β allows to tolerate consistent discrepancies
between the nominal model and the real system whenever

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1020



0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time

θ i
(t

)

Fig. 4. State variables θ vs time: θ1 (dashed) and θ2 (solid).
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Fig. 5. State variables q̇ vs time: q̇1 (dashed) and q̇2 (solid).

it remains passive. Simulation experiments have been
carried out assuming a different load and different values of
the coefficient describing the friction and the stiffness. In
particular the reported results have been obtained with,
me = 1, δe = π/12, Ie = 0.25, lce = 1, k1 = 0.4,
k2 = 0.6, β1 = 10−5 and β2 = 10−6. It can be seen
in Figs. 3 and 4 that the controller is able to drive the
robot arm to the desired position while satisfying input
and state constraints (see Figs. 5, 6 and 8) despite the
lack of the precise knowledge of the model. The constraint
z(t)/β ≤ 1 is satisfied as well and it becomes active during
the transient.

6. CONCLUSION

In this paper an MPC formulation for strictly output
passive systems subject to input and state constraints
has been proposed with guaranteed robustness properties.
The nominal MPC control scheme has been enriched
with a dynamic equation allowing to impose strict output
passivity of the controller and consequently the passivity
of the closed loop system. The scheme has been proved
to be robust against model errors preserving passivity of
the system to be controlled whenever feasibility of the
optimization problem is not lost. The robustness property

0 2 4 6 8 10 12
−10

0

10

20

30

40

50

dx

Time

Fig. 6. State variables θ̇ vs time: θ̇1 (dashed) and θ̇2 (solid).

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

z
(t

)/
β

Fig. 7. State variable z(t)/β vs time.
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Fig. 8. Input variable u(t) vs time: u1 (dashed) and u2

(solid).

of the scheme has been illustrated by simulation results
concerning the position control problem for a flexible
2-link robot manipulator in the horizontal plane. The
convergence to the desired target set is obtained despite
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large mismatches between the nominal model and the real
one.
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Nonlinear Control. Springer, 1997.

T. Raff, C. Ebenbauer, and F. Allgöewer. Assessment
and Future Directions of Nonlinear Model Predictive
Control, chapter Nonlinear model predictive control: A
passivity-based approach, pages 151–162. Lecture Notes
in Control and Information Sciences. Springer, 2007.

James B. Rawlings and David Q. Mayne. Model Predic-
tive Control: Theory and Design. Nob Hill, Madison,
Wisconsin, August 2009.

A.R. Teel, T.T. Georgiou, L. Praly, and E.D. Sontag.
Input-output stability. In W. S. Levine, editor, The
Control Systems Handbook: Control System Advanced
Methods, Second Edition, pages 44.1–44.23 (1011–1033).
CRC Press, Boca Raton, 2010.

A.J. Van der Schaft. L2-Gain and Passivity Techniques
in Nonlinear Control, 2nd Edition. Springer-Verlag,
London, 2000.
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